The Relationship between Body Composition, Dietary Intake, Physical Activity, and Pulmonary Status in Adolescents and Adults with Cystic Fibrosis

Kevin J Scully, Laura T Jay, Steven Freedman, Gregory S Sawicki, Ahmet Uluer, Joel S Finkelstein, Melissa S Putman, Kevin J Scully, Laura T Jay, Steven Freedman, Gregory S Sawicki, Ahmet Uluer, Joel S Finkelstein, Melissa S Putman

Abstract

Measures of body fat and lean mass may better predict important clinical outcomes in patients with cystic fibrosis (CF) than body mass index (BMI). Little is known about how diet quality and exercise may impact body composition in these patients. Dual X-ray absorptiometry (DXA) body composition, 24-h dietary recall, and physical activity were assessed in a cross-sectional analysis of 38 adolescents and adults with CF and 19 age-, race-, and gender-matched healthy volunteers. Compared with the healthy volunteers, participants with CF had a lower appendicular lean mass index (ALMI), despite no observed difference in BMI, and their diets consisted of higher glycemic index foods with a greater proportion of calories from fat and a lower proportion of calories from protein. In participants with CF, pulmonary function positively correlated with measures of lean mass, particularly ALMI, and negatively correlated with multiple measures of body fat after controlling for age, gender, and BMI. Higher physical activity levels were associated with greater ALMI and lower body fat. In conclusion, body composition measures, particularly ALMI, may better predict key clinical outcomes in individuals with CF than BMI. Future longitudinal studies analyzing the effect of dietary intake and exercise on body composition and CF-specific clinical outcomes are needed.

Keywords: appendicular lean mass index; body composition; cystic fibrosis; dietary intake; dual-energy X-ray absorptiometry; fat mass index; lean body mass.

Conflict of interest statement

Putman reports grants and speaking fees from Vertex Pharmaceuticals as well as grants from the Cystic Fibrosis Foundation, outside the submitted work. Sawicki reports personal fees from Vertex Pharmaceuticals, outside the submitted work. Uluer reports grants from the Cystic Fibrosis Foundation and serves an advisory board for Vertex Pharmaceuticals and as an unpaid board member for the Cystic Fibrosis Research Institute. Freedman reports grants from the Cystic Fibrosis Foundation. The other authors have nothing to disclose.

Figures

Figure 1
Figure 1
Multivariable regression of FEV1 vs. ALMI in participants with CF. Figure 1 displays the relationship between individuals’ FEV1 and ALMI values (circles) as well as the regression line of best fit across the whole dataset when controlling for age, gender and BMI (Model 2). FEV1, % predicted forced expiratory volume in 1 s; ALMI, appendicular lean mass index.

References

    1. Moran A., Brunzell C., Cohen R.C., Katz M., Marshall B.C., Onady G., Robinson K.A., Sabadosa K.A., Stecenko A., Slovis B., et al. Clinical care guidelines for cystic fibrosis-related diabetes: A position statement of the American Diabetes Association and a clinical practice guideline of the Cystic Fibrosis Foundation, endorsed by the Pediatric Endocrine Society. Diabetes Care. 2010;33:2697–2708. doi: 10.2337/dc10-1768.
    1. Yen E.H., Quinton H., Borowitz D. Better nutritional status in early childhood is associated with improved clinical outcomes and survival in patients with cystic fibrosis. J. Pediatr. 2013;162:530–535.e1. doi: 10.1016/j.jpeds.2012.08.040.
    1. Borowitz D., Baker R.D., Stallings V. Consensus report on nutrition for pediatric patients with cystic fibrosis. J. Pediatr. Gastroenterol. Nutr. 2002;35:246–259. doi: 10.1097/00005176-200209000-00004.
    1. Morton A.M. Symposium 6: Young people, artificial nutrition and transitional care the nutritional challenges of the young adult with cystic fibrosis: Transition. Proc. Nutr. Soc. 2009;68:430–440. doi: 10.1017/S0029665109990176.
    1. Calella P., Valerio G., Thomas M., McCabe H., Taylor J., Brodlie M., Siervo M. Association between body composition and pulmonary function in children and young people with cystic fibrosis. Nutrition. 2018;48:73–76. doi: 10.1016/j.nut.2017.10.026.
    1. McDonald C.M., Alvarez J.A., Bailey J., Bowser E.K., Farnham K., Mangus M., Padula L., Porco K., Rozga M. Academy of Nutrition and Dietetics: 2020 Cystic Fibrosis Evidence Analysis Center Evidence-Based Nutrition Practice Guideline. J. Acad. Nutr. Diet. 2021;121:1591–1636.e3. doi: 10.1016/j.jand.2020.03.015.
    1. Culhane S., George C., Pearo B., Spoede E. Malnutrition in cystic fibrosis: A review. Nutr. Clin. Pract. 2013;28:676–683. doi: 10.1177/0884533613507086.
    1. Engelen M.P.K.J., Com G., Deutz N.E.P. Protein is an important but undervalued macronutrient in the nutritional care of patients with cystic fibrosis. Curr. Opin. Clin. Nutr. Metab. Care. 2014;17:515–520. doi: 10.1097/MCO.0000000000000100.
    1. Bellissimo M.P., Zhang I., Ivie E.A., Tran P.H., Tangpricha V., Hunt W.R., Stecenko A.A., Ziegler T.R., Alvarez J.A. Visceral adipose tissue is associated with poor diet quality and higher fasting glucose in adults with cystic fibrosis. J. Cyst. Fibros. 2019;18:430–435. doi: 10.1016/j.jcf.2019.01.002.
    1. Sutherland R., Katz T., Liu V., Quintano J., Brunner R., Tong C.W., Collins C.E., Ooi C.Y. Dietary intake of energy-dense, nutrient-poor and nutrient-dense food sources in children with cystic fibrosis. J. Cyst. Fibros. 2018;17:804–810. doi: 10.1016/j.jcf.2018.03.011.
    1. Calvo-Lerma J., Boon M., Hulst J., Colombo C., Asseiceira I., Garriga M., Masip E., Claes I., Bulfamante A., Janssens H.M., et al. Change in Nutrient and Dietary Intake in European Children with Cystic Fibrosis after a 6-Month Intervention with a Self-Management mHealth Tool. Nutrients. 2021;13:1801. doi: 10.3390/nu13061801.
    1. Woestenenk J.W., Castelijns S.J.A.M., van der Ent C.K., Houwen R.H.J. Dietary intake in children and adolescents with cystic fibrosis. Clin. Nutr. 2014;33:528–532. doi: 10.1016/j.clnu.2013.07.011.
    1. Panagopoulou P., Fotoulaki M., Nikolaou A., Nousia-Arvanitakis S. Prevalence of malnutrition and obesity among cystic fibrosis patients. Pediatr. Int. 2014;56:89–94. doi: 10.1111/ped.12214.
    1. Hanna R.M., Weiner D.J. Overweight and obesity in patients with cystic fibrosis: A center-based analysis. Pediatr. Pulmonol. 2015;50:35–41. doi: 10.1002/ppul.23033.
    1. Stephenson A.L., Mannik L.A., Walsh S., Brotherwood M., Robert R., Darling P.B., Nisenbaum R., Moerman J., Stanojevic S. Longitudinal trends in nutritional status and the relation between lung function and BMI in cystic fibrosis: A population-based cohort study. Am. J. Clin. Nutr. 2013;97:872–877. doi: 10.3945/ajcn.112.051409.
    1. Harindhanavudhi T., Wang Q., Dunitz J., Moran A., Moheet A. Prevalence and factors associated with overweight and obesity in adults with cystic fibrosis: A single-center analysis. J. Cyst. Fibros. 2020;19:139–145. doi: 10.1016/j.jcf.2019.10.004.
    1. Guimbellot J.S., Baines A., Paynter A., Heltshe S.L., VanDalfsen J., Jain M., Rowe S.M., Sagel S.D. Long term clinical effectiveness of ivacaftor in people with the G551D CFTR mutation. J. Cyst. Fibros. 2021;20:213–219. doi: 10.1016/j.jcf.2020.11.008.
    1. Cystic Fibrosis Foundation . 2019 Patient Registry Annual Data Report. Cystic Fibrosis Foundation; Bethesda, MD, USA: 2019.
    1. Moran A., Pekow P., Grover P., Zorn M., Slovis B., Pilewski J., Tullis E., Liou T.G., Allen H. Cystic Fibrosis Related Diabetes Therapy Study Group. Insulin therapy to improve BMI in cystic fibrosis-related diabetes without fasting hyperglycemia: Results of the cystic fibrosis related diabetes therapy trial. Diabetes Care. 2009;32:1783–1788. doi: 10.2337/dc09-0585.
    1. Alvarez J.A., Ziegler T.R., Millson E.C., Stecenko A.A. Body composition and lung function in cystic fibrosis and their association with adiposity and normal-weight obesity. Nutrition. 2016;32:447–452. doi: 10.1016/j.nut.2015.10.012.
    1. Ritchie H., Nahikian-Nelms M., Roberts K., Gemma S., Shaikhkhalil A. The prevalence of aberrations in body composition in pediatric cystic fibrosis patients and relationships with pulmonary function, bone mineral density, and hospitalizations. J. Cyst. Fibros. 2021;20:837–842. doi: 10.1016/j.jcf.2021.04.004.
    1. Nevill A.M., Stewart A.D., Olds T., Holder R. Relationship between adiposity and body size reveals limitations of BMI. Am. J. Phys. Anthropol. 2006;129:151–156. doi: 10.1002/ajpa.20262.
    1. King S.J., Nyulasi I.B., Strauss B.J.G., Kotsimbos T., Bailey M., Wilson J.W. Fat-free mass depletion in cystic fibrosis: Associated with lung disease severity but poorly detected by body mass index. Nutrition. 2010;26:753–759. doi: 10.1016/j.nut.2009.06.026.
    1. Sheikh S., Zemel B.S., Stallings V.A., Rubenstein R.C., Kelly A. Body composition and pulmonary function in cystic fibrosis. Front. Pediatr. 2014;2:33. doi: 10.3389/fped.2014.00033.
    1. Baker J.F., Putman M.S., Herlyn K., Tillotson A.P., Finkelstein J.S., Merkel P.A. Body composition, lung function, and prevalent and progressive bone deficits among adults with cystic fibrosis. Jt. Bone Spine. 2016;83:207–211. doi: 10.1016/j.jbspin.2015.04.021.
    1. King S.J., Tierney A.C., Edgeworth D., Keating D., Williams E., Kotsimbos T., Button B.M., Wilson J.W. Body composition and weight changes after ivacaftor treatment in adults with cystic fibrosis carrying the G551 D cystic fibrosis transmembrane conductance regulator mutation: A double-blind, placebo-controlled, randomized, crossover study with open-label extension. Nutrition. 2021;85:111124.
    1. Putman M.S., Greenblatt L.B., Bruce M., Joseph T., Lee H., Sawicki G., Uluer A., Sicilian L., Neuringer I., Gordon C.M., et al. The Effects of Ivacaftor on Bone Density and Microarchitecture in Children and Adults with Cystic Fibrosis. J. Clin. Endocrinol. Metab. 2021;106:E1248–E1261. doi: 10.1210/clinem/dgaa890.
    1. Matthews D.R., Hosker J.P., Rudenski A.S., Naylor B.A., Treacher D.F., Turner R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–419. doi: 10.1007/BF00280883.
    1. Augustin L.S.A., Kendall C.W.C., Jenkins D.J.A., Willett W.C., Astrup A., Barclay A.W., Björck I., Brand-Miller J.C., Brighenti F., Buyken A.E., et al. Glycemic index, glycemic load and glycemic response: An International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC) Nutr. Metab. Cardiovasc. Dis. 2015;25:795–815. doi: 10.1016/j.numecd.2015.05.005.
    1. Sievert Y.A., Schakel S.F., Buzzard I.M. Maintenance of a nutrient database for clinical trials. Control. Clin. Trials. 1989;10:416–425. doi: 10.1016/0197-2456(89)90006-8.
    1. Kriska A.M., Bennett P.H. An epidemiological perspective of the relationship between physical activity and NIDDM: From activity assessment to intervention. Diabetes. Metab. Rev. 1992;8:355–372. doi: 10.1002/dmr.5610080404.
    1. Madeira F.B., Silva A.A., Veloso H.F., Goldani M.Z., Kac G., Cardoso V.C., Bettiol H., Barbieri M.A. Normal weight obesity is associated with metabolic syndrome and insulin resistance in young adults from a middle-income country. PLoS ONE. 2013;8:e60673. doi: 10.1371/journal.pone.0060673.
    1. Bunout D., de la Maza M.P., Barrera G., Leiva L., Hirsch S. Association between sarcopenia and mortality in healthy older people. Australas. J. Ageing. 2011;30:89–92. doi: 10.1111/j.1741-6612.2010.00448.x.
    1. Alicandro G., Bisogno A., Battezzati A., Bianchi M.L., Corti F., Colombo C. Recurrent pulmonary exacerbations are associated with low fat free mass and low bone mineral density in young adults with cystic fibrosis. J. Cyst. Fibros. 2014;13:328–334. doi: 10.1016/j.jcf.2013.11.001.
    1. Vaisman N., Pencharz P.B., Corey M., Canny G.J., Hahn E. Energy expenditure of patients with cystic fibrosis. J. Pediatr. 1987;111:496–500. doi: 10.1016/S0022-3476(87)80107-5.
    1. Turck D., Braegger C.P., Colombo C., Declercq D., Morton A., Pancheva R., Robberecht E., Stern M., Strandvik B., Wolfe S., et al. ESPEN-ESPGHAN-ECFS guidelines on nutrition care for infants, children, and adults with cystic fibrosis. Clin. Nutr. 2016;35:557–577. doi: 10.1016/j.clnu.2016.03.004.
    1. Matel J.L. Nutritional Management of Cystic Fibrosis. J. Parenter. Enter. Nutr. 2012;36((Suppl. 1)):60S–67S. doi: 10.1177/0148607111420156.
    1. Gaskin K.J. Nutritional care in children with cystic fibrosis: Are our patients becoming better? Eur. J. Clin. Nutr. 2013;67:558–564. doi: 10.1038/ejcn.2013.20.
    1. Prévotat A., Godin J., Bernard H., Perez T., Le Rouzic O., Wallaert B. Improvement in body composition following a supervised exercise-training program of adult patients with cystic fibrosis. Respir. Med. Res. 2019;75:5–9. doi: 10.1016/j.resmer.2019.04.001.
    1. Papalexopoulou N., Dassios T.G., Lunt A., Bartlett F., Perrin F., Bossley C.J., Wyatt H.A., Greenough A. Nutritional status and pulmonary outcome in children and young people with cystic fibrosis. Respir. Med. 2018;142:60–65. doi: 10.1016/j.rmed.2018.07.016.
    1. Fielding J., Brantley L., Seigler N., McKie K.T., Davison G.W., Harris R.A. Oxygen uptake kinetics and exercise capacity in children with cystic fibrosis. Pediatr. Pulmonol. 2015;50:647–654. doi: 10.1002/ppul.23189.

Source: PubMed

3
Abonneren