Efficacy of ketogenic diet on body composition during resistance training in trained men: a randomized controlled trial

Salvador Vargas, Ramón Romance, Jorge L Petro, Diego A Bonilla, Ismael Galancho, Sergio Espinar, Richard B Kreider, Javier Benítez-Porres, Salvador Vargas, Ramón Romance, Jorge L Petro, Diego A Bonilla, Ismael Galancho, Sergio Espinar, Richard B Kreider, Javier Benítez-Porres

Abstract

Background: Ketogenic diets (KD) have become a popular method of promoting weight loss. More recently, some have recommended that athletes adhere to ketogenic diets in order to optimize changes in body composition during training. This study evaluated the efficacy of an 8-week ketogenic diet (KD) during energy surplus and resistance training (RT) protocol on body composition in trained men.

Methods: Twenty-four healthy men (age 30 ± 4.7 years; weight 76.7 ± 8.2 kg; height 174.3 ± 19.7 cm) performed an 8-week RT program. Participants were randomly assigned to a KD group (n = 9), non-KD group (n = 10, NKD), and control group (n = 5, CG) in hyperenergetic condition. Body composition changes were measured by dual energy X-ray absorptiometry (DXA). Compliance with the ketosis state was monitored by measuring urinary ketones weekly. Data were analyzed using a univariate, multivariate and repeated measures general linear model (GLM) statistics.

Results: There was a significant reduction in fat mass (mean change, 95% CI; p-value; Cohen's d effect size [ES]; - 0.8 [- 1.6, - 0.1] kg; p < 0.05; ES = - 0.46) and visceral adipose tissue (- 96.5 [- 159.0, - 34.0] g; p < 0.05; ES = - 0.84), while no significant changes were observed in the NKD and CG in fat mass (- 0,5 [- 1.2, 0.3] kg; p > 0.05; ES = - 0.17 and - 0,5 [- 2.4, 1.3] kg; p > 0.05; ES = - 0.12, respectively) or visceral adipose tissue (- 33.8 [- 90.4, 22.8]; p > 0.5; ES = - 0.17 and 1.7 [- 133.3, 136.7]; p > 0.05; ES = 0.01, respectively). No significant increases were observed in total body weight (- 0.9 [- 2.3, 0.6]; p > 0.05; ES = [- 0.18]) and muscle mass (- 0.1 [- 1.1,1.0]; p > 0,05; ES = - 0.04) in the KD group, but the NKD group showed increases in these parameters (0.9 [0.3, 1.5] kg; p < 0.05; ES = 0.18 and (1.3[0.5, 2.2] kg; p < 0,05; ES = 0.31, respectively). There were no changes neither in total body weight nor lean body mass (0.3 [- 1.2, 1.9]; p > 0.05; ES = 0.05 and 0.8 [- 0.4, 2.1]; p > 0.05; ES = 0.26, respectively) in the CG.

Conclusion: Our results suggest that a KD might be an alternative dietary approach to decrease fat mass and visceral adipose tissue without decreasing lean body mass; however, it might not be useful to increase muscle mass during positive energy balance in men undergoing RT for 8 weeks.

Keywords: Bodybuilding; Fat distribution; High-fat diet; Hypertrophy; Ketosis.

Conflict of interest statement

Ethics approval and consent to participate

Participation in the study was voluntary, with written consent being obtained from each subject before the initiation of data collection. This study was conducted after review and approval by the Ethics Committee of the EADE-University of Wales Trinity Saint David (Málaga, Spain). Committee’s reference number: EADECAFYD2017-3.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
CONSORT diagram
Fig. 2
Fig. 2
Overview of training protocol. WK: Workout (microcycle); UL: Upper-Limb; LL: Lower-Limb; R: Rest; 30X: 3 s of eccentric contraction and explosive movement during concentric activity
Fig. 3
Fig. 3
Changes in body mass and body composition. Mean changes with 95% CI’s completely above or below the baseline are significant changes; BW: Total body weight; FM: Fat mass; VAT: Visceral adipose tissue; LBM: lean body mass. a Changes in BW, FM, LBM. b Changes in VAT. ǂ Significant difference with KD after post-hoc analysis (p < 0.05)

References

    1. Evans M, Cogan KE, Egan B. Metabolism of ketone bodies during exercise and training: physiological basis for exogenous supplementation. J Physiol. 2017;595:2857–2871. doi: 10.1113/JP273185.
    1. Aragon AA, Schoenfeld BJ, Wildman R, Kleiner S, VanDusseldorp T, Taylor L, Earnest CP, Arciero PJ, Wilborn C, Kalman DS, et al. International society of sports nutrition position stand: diets and body composition. J Int Soc Sports Nutr. 2017;14:16. doi: 10.1186/s12970-017-0174-y.
    1. Paoli A, Grimaldi K, Toniolo L, Canato M, Bianco A, Fratter A. Nutrition and acne: therapeutic potential of ketogenic diets. Skin Pharmacol Physiol. 2012;25:111–117. doi: 10.1159/000336404.
    1. Paoli A. Ketogenic diet for obesity: friend or foe? Int J Environ Res Public Health. 2014;11:2092–2107. doi: 10.3390/ijerph110202092.
    1. Bueno NB, de Melo IS, de Oliveira SL, da Rocha Ataide T. Very-low-carbohydrate ketogenic diet v. Low-fat diet for long-term weight loss: a meta-analysis of randomised controlled trials. Br J Nutr. 2013;110:1178–1187. doi: 10.1017/S0007114513000548.
    1. Gibson AA, Sainsbury A. Strategies to improve adherence to dietary weight loss interventions in research and real-world settings. Behav Sci (Basel). 2017;7:44.
    1. Goday A, Bellido D, Sajoux I, Crujeiras AB, Burguera B, Garcia-Luna PP, Oleaga A, Moreno B, Casanueva FF. Short-term safety, tolerability and efficacy of a very low-calorie-ketogenic diet interventional weight loss program versus hypocaloric diet in patients with type 2 diabetes mellitus. Nutr Diab. 2016;6:e230. doi: 10.1038/nutd.2016.36.
    1. Hussain TA, Mathew TC, Dashti AA, Asfar S, Al-Zaid N, Dashti HM. Effect of low-calorie versus low-carbohydrate ketogenic diet in type 2 diabetes. Nutrition. 2012;28:1016–1021. doi: 10.1016/j.nut.2012.01.016.
    1. Youngson NA, Morris MJ, Ballard B. The mechanisms mediating the antiepileptic effects of the ketogenic diet, and potential opportunities for improvement with metabolism-altering drugs. Seizure. 2017;52:15–19. doi: 10.1016/j.seizure.2017.09.005.
    1. Martin-McGill KJ, Jenkinson MD, Tudur Smith C, Marson AG. The modified ketogenic diet for adults with refractory epilepsy: an evaluation of a set up service. Seizure. 2017;52:1–6. doi: 10.1016/j.seizure.2017.08.013.
    1. Martin K, Jackson CF, Levy RG, Cooper PN. Ketogenic diet and other dietary treatments for epilepsy. Cochrane Database Syst Rev. 2016;2:Cd001903.
    1. Klement RJ. Beneficial effects of ketogenic diets for cancer patients: a realist review with focus on evidence and confirmation. Med Oncol. 2017;34:132. doi: 10.1007/s12032-017-0991-5.
    1. Oliveira CL, Mattingly S, Schirrmacher R, Sawyer MB, Fine EJ, Prado CM. A nutritional perspective of ketogenic diet in Cancer: a narrative review. J Acad Nutr Diet. 2018;118:668–88.
    1. Erickson N, Boscheri A, Linke B, Huebner J. Systematic review: isocaloric ketogenic dietary regimes for cancer patients. Med Oncol. 2017;34:72. doi: 10.1007/s12032-017-0930-5.
    1. Smyl C. Ketogenic diet and Cancer-a perspective. Recent Results Cancer Res. 2016;207:233–240. doi: 10.1007/978-3-319-42118-6_11.
    1. Walczyk T, Wick JY. The ketogenic diet: making a comeback. Consult Pharm. 2017;32:388–396. doi: 10.4140/TCP.n.2017.388.
    1. Chang CK, Borer K, Lin PJ. Low-carbohydrate-high-fat diet: can it help exercise performance? J Hum Kinet. 2017;56:81–92. doi: 10.1515/hukin-2017-0025.
    1. Burke LM, Ross ML, Garvican-Lewis LA, Welvaert M, Heikura IA, Forbes SG, Mirtschin JG, Cato LE, Strobel N, Sharma AP, Hawley JA. Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. J Physiol. 2017;595:2785–2807. doi: 10.1113/JP273230.
    1. Burke LM. Re-examining high-fat diets for sports performance: did we call the ‘Nail in the Coffin’ too soon? Sports Med. 2015;45(Suppl 1):S33–S49. doi: 10.1007/s40279-015-0393-9.
    1. Paoli A, Bianco A, Grimaldi KA. The ketogenic diet and sport: a possible marriage? Exerc Sport Sci Rev. 2015;43:153–162. doi: 10.1249/JES.0000000000000050.
    1. World Medical Association. Declaration of Helsinki: ethical principles for medical research involving human subjects. J Am Coll Dent. 2014;81:14–8.
    1. Helms E, Valdez A, Morgan A. The Muscle and Strength Pyramid: Nutrition. 2015.
    1. Rozenek R, Ward P, Long S, Garhammer J. Effects of high-calorie supplements on body composition and muscular strength following resistance training. J Sports Med Phys Fitness. 2002;42:340–347.
    1. Garthe I, Raastad T, Refsnes PE, Sundgot-Borgen J. Effect of nutritional intervention on body composition and performance in elite athletes. Eur J Sport Sci. 2013;13:295–303. doi: 10.1080/17461391.2011.643923.
    1. Jager R, Kerksick CM, Campbell BI, Cribb PJ, Wells SD, Skwiat TM, Purpura M, Ziegenfuss TN, Ferrando AA, Arent SM, et al. International Society of Sports Nutrition Position Stand: protein and exercise. J Int Soc Sports Nutr. 2017;14:20. doi: 10.1186/s12970-017-0177-8.
    1. Hall KD, Chen KY, Guo J, Lam YY, Leibel RL, Mayer LE, Reitman ML, Rosenbaum M, Smith SR, Walsh BT, Ravussin E. Energy expenditure and body composition changes after an isocaloric ketogenic diet in overweight and obese men. Am J Clin Nutr. 2016;104:324–333. doi: 10.3945/ajcn.116.133561.
    1. Wilson JM, Lowery RP, Roberts MD, Sharp MH, Joy JM, Shields KA, Partl J, Volek JS, D’Agostino D. The effects of ketogenic dieting on body composition, strength, power, and hormonal profiles in resistance training males. J Strength Cond Res. 2017. 10.1519/JSC.0000000000001935.
    1. Chen JL, Yeh DP, Lee JP, Chen CY, Huang CY, Lee SD, Chen CC, Kuo TB, Kao CL, Kuo CH. Parasympathetic nervous activity mirrors recovery status in weightlifting performance after training. J Strength Cond Res. 2011;25:1546–1552. doi: 10.1519/JSC.0b013e3181da7858.
    1. Schoenfeld BJ. The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res. 2010;24:2857–2872. doi: 10.1519/JSC.0b013e3181e840f3.
    1. Grgic J, Lazinica B, Mikulic P, Krieger JW, Schoenfeld BJ. The effects of short versus long inter-set rest intervals in resistance training on measures of muscle hypertrophy: a systematic review. Eur J Sport Sci. 2017;17:983–993. doi: 10.1080/17461391.2017.1340524.
    1. Schoenfeld BJ, Pope ZK, Benik FM, Hester GM, Sellers J, Nooner JL, Schnaiter JA, Bond-Williams KE, Carter AS, Ross CL, et al. Longer Interset rest periods enhance muscle strength and hypertrophy in resistance-trained men. J Strength Cond Res. 2016;30:1805–1812. doi: 10.1519/JSC.0000000000001272.
    1. Proske U, Morgan DL. Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J Physiol. 2001;537:333–345. doi: 10.1111/j.1469-7793.2001.00333.x.
    1. Schoenfeld BJ, Ogborn D, Krieger JW. Effects of resistance training frequency on measures of muscle hypertrophy: a systematic review and meta-analysis. Sports Med. 2016;46:1689–1697. doi: 10.1007/s40279-016-0543-8.
    1. Fleck SJ, Kraemer W. Designing resistance training programs. Champaign: Human Kinetics; 2014.
    1. Dalton RL, Sowinski RJ, Grubic TJ, Collins PB, Coletta AM, Reyes AG, Sanchez B, Koozehchian M, Jung YP, Rasmussen C, et al. Hematological and hemodynamic responses to acute and short-term Creatine nitrate supplementation. Nutrients. 2017;9(12). 10.3390/nu9121359.
    1. Nakagawa S, Cuthill IC. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev Camb Philos Soc. 2007;82:591–605. doi: 10.1111/j.1469-185X.2007.00027.x.
    1. Park HM. Comparing group means: t-tests and one-way ANOVA using Stata, SAS, R, and SPSS. 2009.
    1. Noakes M, Foster PR, Keogh JB, James AP, Mamo JC, Clifton PM. Comparison of isocaloric very low carbohydrate/high saturated fat and high carbohydrate/low saturated fat diets on body composition and cardiovascular risk. Nutr Metab (Lond) 2006;3:7. doi: 10.1186/1743-7075-3-7.
    1. Brehm BJ, Seeley RJ, Daniels SR, D’Alessio DA. A randomized trial comparing a very low carbohydrate diet and a calorie-restricted low fat diet on body weight and cardiovascular risk factors in healthy women. J Clin Endocrinol Metab. 2003;88:1617–1623. doi: 10.1210/jc.2002-021480.
    1. Brehm BJ, Spang SE, Lattin BL, Seeley RJ, Daniels SR, D’Alessio DA. The role of energy expenditure in the differential weight loss in obese women on low-fat and low-carbohydrate diets. J Clin Endocrinol Metab. 2005;90:1475–1482. doi: 10.1210/jc.2004-1540.
    1. Brinkworth GD, Noakes M, Clifton PM, Buckley JD. Effects of a low carbohydrate weight loss diet on exercise capacity and tolerance in obese subjects. Obesity (Silver Spring) 2009;17:1916–1923. doi: 10.1038/oby.2009.134.
    1. Johnstone AM, Horgan GW, Murison SD, Bremner DM, Lobley GE. Effects of a high-protein ketogenic diet on hunger, appetite, and weight loss in obese men feeding ad libitum. Am J Clin Nutr. 2008;87:44–55. doi: 10.1093/ajcn/87.1.44.
    1. Ruth MR, Port AM, Shah M, Bourland AC, Istfan NW, Nelson KP, Gokce N, Apovian CM. Consuming a hypocaloric high fat low carbohydrate diet for 12 weeks lowers C-reactive protein, and raises serum adiponectin and high density lipoprotein-cholesterol in obese subjects. Metabolism. 2013;62:1779–1787. doi: 10.1016/j.metabol.2013.07.006.
    1. Wood RJ, Fernandez ML, Sharman MJ, Silvestre R, Greene CM, Zern TL, Shrestha S, Judelson DA, Gomez AL, Kraemer WJ, Volek JS. Effects of a carbohydrate-restricted diet with and without supplemental soluble fiber on plasma low-density lipoprotein cholesterol and other clinical markers of cardiovascular risk. Metabolism. 2007;56:58–67. doi: 10.1016/j.metabol.2006.08.021.
    1. Gomez-Arbelaez D, Bellido D, Castro AI, Ordonez-Mayan L, Carreira J, Galban C, Martinez-Olmos MA, Crujeiras AB, Sajoux I, Casanueva FF. Body composition changes after very-low-calorie ketogenic diet in obesity evaluated by 3 standardized methods. J Clin Endocrinol Metab. 2017;102:488–498.
    1. Volek JS, Sharman MJ, Love DM, Avery NG, Gomez AL, Scheett TP, Kraemer WJ. Body composition and hormonal responses to a carbohydrate-restricted diet. Metabolism. 2002;51:864–870. doi: 10.1053/meta.2002.32037.
    1. Upadhyay J, Farr O, Perakakis N, Ghaly W, Mantzoros C. Obesity as a disease. Med Clin N Am. 2018;102:13–33. doi: 10.1016/j.mcna.2017.08.004.
    1. Ismail I, Keating SE, Baker MK, Johnson NA. A systematic review and meta-analysis of the effect of aerobic vs. resistance exercise training on visceral fat. Obes Rev. 2012;13:68–91. doi: 10.1111/j.1467-789X.2011.00931.x.
    1. Willis LH, Slentz CA, Bateman LA, Shields AT, Piner LW, Bales CW, Houmard JA, Kraus WE. Effects of aerobic and/or resistance training on body mass and fat mass in overweight or obese adults. J Appl Physiol. 2012;113:1831–1837. doi: 10.1152/japplphysiol.01370.2011.
    1. Roberts MD, Holland AM, Kephart WC, Mobley CB, Mumford PW, Lowery RP, Fox CD, McCloskey AE, Shake JJ, Mesquita P, et al. A putative low-carbohydrate ketogenic diet elicits mild nutritional ketosis but does not impair the acute or chronic hypertrophic responses to resistance exercise in rodents. J Appl Physiol (1985) 2016;120:1173–1185. doi: 10.1152/japplphysiol.00837.2015.
    1. Holland AM, Kephart WC, Mumford PW, Mobley CB, Lowery RP, Shake JJ, Patel RK, Healy JC, McCullough DJ, Kluess HA, et al. Effects of a ketogenic diet on adipose tissue, liver, and serum biomarkers in sedentary rats and rats that exercised via resisted voluntary wheel running. Am J Physiol Regul Integr Comp Physiol. 2016;311:R337–R351. doi: 10.1152/ajpregu.00156.2016.
    1. Schoenfeld BJ. Science and development of muscle hypertrophy. Champaign: Human Kinetics; 2016.
    1. Schoenfeld BJ. Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Med. 2013;43:179–194. doi: 10.1007/s40279-013-0017-1.
    1. Rauch JT, Silva JE, Lowery RP, McCleary SA, Shields KA, Ormes JA, Sharp MH, Weiner SI, Georges JI, Volek JS, et al. The effects of ketogenic dieting on skeletal muscle and fat mass. J Int Soc Sports Nutr. 2014;11:P40. doi: 10.1186/1550-2783-11-S1-P40.
    1. Okamura T, Hashimoto Y, Hamaguchi M, Obora A, Kojima T, Fukui M. Ectopic fat obesity presents the greatest risk for incident type 2 diabetes: a population-based longitudinal study. Int J Obes. 2018. 10.1038/s41366-018-0076-3.
    1. Schousboe JT, Langsetmo L, Schwartz AV, Taylor BC, Vo TN, Kats AM, Barrett-Connor E, Orwoll ES, Marshall LM, Miljkovic I, et al. Comparison of associations of DXA and CT visceral adipose tissue measures with insulin resistance, lipid levels, and inflammatory markers. J Clin Densitom. 2017;20:256–264. doi: 10.1016/j.jocd.2017.01.004.

Source: PubMed

3
Abonneren