Inflammation as a central mechanism in Alzheimer's disease

Jefferson W Kinney, Shane M Bemiller, Andrew S Murtishaw, Amanda M Leisgang, Arnold M Salazar, Bruce T Lamb, Jefferson W Kinney, Shane M Bemiller, Andrew S Murtishaw, Amanda M Leisgang, Arnold M Salazar, Bruce T Lamb

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized by cognitive decline and the presence of two core pathologies, amyloid β plaques and neurofibrillary tangles. Over the last decade, the presence of a sustained immune response in the brain has emerged as a third core pathology in AD. The sustained activation of the brain's resident macrophages (microglia) and other immune cells has been demonstrated to exacerbate both amyloid and tau pathology and may serve as a link in the pathogenesis of the disorder. In the following review, we provide an overview of inflammation in AD and a detailed coverage of a number of microglia-related signaling mechanisms that have been implicated in AD. Additional information on microglia signaling and a number of cytokines in AD are also reviewed. We also review the potential connection of risk factors for AD and how they may be related to inflammatory mechanisms.

Keywords: Alzheimer's disease; Cytokines; Inflammation; Microglia; Microglia receptors.

References

    1. Prince M., Comas-Herrera A., Knapp M., Guerchet M., Karagiannidou M. Alzheimer's Disease International; London: 2016. World Alzheimer Report 2016: Improving Healthcare for People Living With Dementia: Coverage, Quality and Costs Now and in the Future.
    1. Hebert L.E., Weuve J., Scherr P.A., Evans D.A. Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology. 2013;80:1778–1783.
    1. Alzheimer's Impact Movement . Alzheimer's Association; Chicago, IL: 2017. Alzheimer's Disease Caregivers Factsheet.
    1. Selkoe D.J. Normal and abnormal biology of the beta-Amyloid Precursor Protein. Annu Rev Neurosci. 1994;17:489–517.
    1. O'Brien R.J., Wong P.C. Amyloid precursor protein processing and Alzheimer's disease. Annu Rev Neurosci. 2011;34:185–204.
    1. Anderson J.P., Chen Y., Kim K.S., Robakis N.K. An alternative secretase cleavage produces soluble Alzheimer amyloid precursor protein containing a potentially amyloidogenic sequence. J Neurochem. 1992;59:2328–2331.
    1. Blasko I., Veerhuis R., Stampfer-Kountchev M., Saurwein-Teissl M., Eikelenboom P., Grubeck-Loebenstein B. Costimulatory Effects of Interferon-γ and Interleukin-1β or Tumor Necrosis Factor α on the Synthesis of Aβ1-40 and Aβ1-42 by Human Astrocytes. Neurobiol Dis. 2000;7:682–689.
    1. Busciglio J., Gabuzda D.H., Matsudaira P., Yankner B.A. Generation of beta-amyloid in the secretory pathway in neuronal and nonneuronal cells. Proc Natl Acad Sci. 1993;90:2092–2096.
    1. Butterfield D.A., Swomley A.M., Sultana R. Amyloid β-Peptide (1–42)-Induced oxidative stress in Alzheimer disease: Importance in disease pathogenesis and progression. Antioxid Redox Signal. 2012;19:823–835.
    1. Haass C., Schlossmacher M.G., Hung A.Y., Vigo-Pelfrey C., Mellon A., Ostaszewski B.L. Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature. 1992;359:322–325.
    1. Liao Y.-F., Wang B.-J., Cheng H.-T., Kuo L.-H., Wolfe M.S. Tumor Necrosis Factor-α, Interleukin-1β, and Interferon-γ Stimulate γ-Secretase-mediated Cleavage of Amyloid Precursor Protein through a JNK-dependent MAPK Pathway. J Biol Chem. 2004;279:49523–49532.
    1. Murphy M.P., LeVine H. Alzheimer's disease and the β-Amyloid peptide. J Alzheimer's Dis. 2010;19:311.
    1. Sadigh-Eteghad S., Sabermarouf B., Majdi A., Talebi M., Farhoudi M., Mahmoudi J. Amyloid-Beta: A crucial factor in Alzheimer's disease. Med Princ Pract. 2015;24:1–10.
    1. Selkoe D.J. Physiological production of the β-amyloid protein and the mechanism of Alzheimer's disease. Trends Neurosci. 1993;16:403–409.
    1. Shoji M., Golde T.E., Ghiso J., Cheung T.T., Estus S., Shaffer L.M. Production of the Alzheimer amyloid beta protein by normal proteolytic processing. Science. 1992;258:126–129.
    1. Stockley J.H., O'Neill C. Understanding BACE1: essential protease for amyloid-β production in Alzheimer's disease. Cell Mol Life Sci. 2008;65:3265.
    1. Wilson C.A., Doms R.W., Lee V.M. Intracellular APP processing and A beta production in Alzheimer disease. J Neuropathol Exp Neurol. 1999;58:787–794.
    1. Alonso A.C., Grundke-Iqbal I., Iqbal K. Alzheimer's disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat Med. 1996;2:783–787.
    1. Alonso A.C., Zaidi T., Grundke-Iqbal I., Iqbal K. Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc Natl Acad Sci U S A. 1994;91:5562–5566.
    1. Alonso A. del C., Grundke-Iqbal I., Barra H.S., Iqbal K. Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: Sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. Proc Natl Acad Sci U S A. 1997;94:298–303.
    1. Bancher C., Brunner C., Lassmann H., Budka H., Jellinger K., Wiche G. Accumulation of abnormally phosphorylated τ precedes the formation of neurofibrillary tangles in Alzheimer's disease. Brain Res. 1989;477:90–99.
    1. Braak H., de Vos R.A., Jansen E.N., Bratzke H., Braak E. Neuropathological hallmarks of Alzheimer's and Parkinson's diseases. Prog Brain Res. 1998;117:267–285.
    1. Iqbal K., Zaidi T., Wen G., Grundke-Iqbal I., Merz P., Shaikh S. Defective brain microtubule assembly in Alzheimer's disease. Lancet. 1986;328:421–426.
    1. Iqbal K., Liu F., Gong C.-X., Grundke-Iqbal I. Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res. 2010;7:656–664.
    1. Köpke E., Tung Y.C., Shaikh S., Alonso A.C., Iqbal K., Grundke-Iqbal I. Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J Biol Chem. 1993;268:24374–24384.
    1. Schmitt H., Gozes I., Littauer U.Z. Decrease in levels and rates of synthesis of tubulin and actin in developing rat brain. Brain Res. 1977;121:327–342.
    1. Weingarten M.D., Lockwood A.H., Hwo S.Y., Kirschner M.W. A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A. 1975;72:1858–1862.
    1. Avila J., Lucas J.J., Perez M., Hernandez F. Role of tau protein in both physiological and pathological conditions. Physiol Rev. 2004;84:361–384.
    1. Ebneth A., Godemann R., Stamer K., Illenberger S., Trinczek B., Mandelkow E.-M. Overexpression of Tau Protein Inhibits Kinesin-dependent Trafficking of Vesicles, Mitochondria, and Endoplasmic Reticulum: Implications for Alzheimer's Disease. J Cell Biol. 1998;143:777–794.
    1. Gong C.-X., Iqbal K. Hyperphosphorylation of microtubule-Associated protein Tau: A promising therapeutic target for Alzheimer disease. Curr Med Chem. 2008;15:2321–2328.
    1. Guo T., Noble W., Hanger D.P. Roles of tau protein in health and disease. Acta Neuropathol. 2017;133:665–704.
    1. Lippens G., Sillen A., Landrieu I., Amniai L., Sibille N., Barbier P. Tau Aggregation in Alzheimer's Disease. Prion. 2007;1:21–25.
    1. Šimić G., Babić Leko M., Wray S., Harrington C., Delalle I., Jovanov-Milošević N. Tau Protein Hyperphosphorylation and aggregation in Alzheimer's disease and other tauopathies, and possible neuroprotective strategies. Biomolecules. 2016;6
    1. Cummings J., Aisen P.S., DuBois B., Frölich L., Jack C.R., Jones R.W. Drug development in Alzheimer's disease: the path to 2025. Alzheimers Res Ther. 2016;8:39.
    1. Hardy J., Selkoe D.J. The Amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. Science. 2002;297:353–356.
    1. Morris G.P., Clark I.A., Vissel B. Inconsistencies and controversies surrounding the amyloid hypothesis of Alzheimer's disease. Acta Neuropathol Commun. 2014;2
    1. Guillozet A.L., Weintraub S., Mash D.C., Mesulam M.M. Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment. Arch Neurol. 2003;60:729–736.
    1. Nelson P.T., Alafuzoff I., Bigio E.H., Bouras C., Braak H., Cairns N.J. Correlation of Alzheimer disease neuropathologic changes with cognitive status: A review of the literature. J Neuropathol Exp Neurol. 2012;71:362–381.
    1. Nelson P.T., Braak H., Markesbery W.R. Neuropathology and cognitive impairment in Alzheimer disease: A complex but coherent relationship. J Neuropathol Exp Neurol. 2009;68:1–14.
    1. Akama K.T., Eldik L.J.V. β-Amyloid Stimulation of Inducible Nitric-oxide Synthase in Astrocytes Is Interleukin-1β- and Tumor Necrosis Factor-α (TNFα)-dependent, and Involves a TNFα Receptor-associated Factor- and NFκB-inducing Kinase-dependent Signaling Mechanism. J Biol Chem. 2000;275:7918–7924.
    1. Akiyama H., Barger S., Barnum S., Bradt B., Bauer J., Cole G.M. Inflammation and Alzheimer's disease. Neurobiol Aging. 2000;21:383–421.
    1. Combs C.K., Johnson D.E., Karlo J.C., Cannady S.B., Landreth G.E. Inflammatory mechanisms in Alzheimer's disease: Inhibition of β-Amyloid-Stimulated proinflammatory responses and neurotoxicity by PPARγ agonists. J Neurosci. 2000;20:558–567.
    1. Griffin W.S., Stanley L.C., Ling C., White L., MacLeod V., Perrot L.J. Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A. 1989;86:7611–7615.
    1. Griffin W.S.T., Sheng J.G., Roberts G.W., Mrak R.E. Interleukin-1 expression in different plaque types in Alzheimer's disease: Significance in plaque evolution. J Neuropathol Exp Neurol. 1995;54:276–281.
    1. McGeer P.L., Akiyama H., Itagaki S., McGeer E.G. Immune system response in Alzheimer's disease. Can J Neurol Sci. 1989;16:516–527.
    1. McGeer P.L., McGeer E.G. The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res Rev. 1995;21:195–218.
    1. Mrak R.E., Griffin W.S.T. Common inflammatory mechanisms in Lewy Body disease and Alzheimer disease. J Neuropathol Exp Neurol. 2007;66:683–686.
    1. Mrak R.E., Sheng J.G., Griffin W.S.T. Glial cytokines in Alzheimer's disease: Review and pathogenic implications. Hum Pathol. 1995;26:816–823.
    1. Tuppo E.E., Arias H.R. The role of inflammation in Alzheimer's disease. Int J Biochem Cell Biol. 2005;37:289–305.
    1. Walters A., Phillips E., Zheng R., Biju M., Kuruvilla T. Evidence for neuroinflammation in Alzheimer's disease. Prog Neurol Psychiatry. 2016;20:25–31.
    1. Cribbs D.H., Berchtold N.C., Perreau V., Coleman P.D., Rogers J., Tenner A.J. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. J Neuroinflammation. 2012;9:179.
    1. Gomez-Nicola D., Boche D. Post-mortem analysis of neuroinflammatory changes in human Alzheimer's disease. Alzheimers Res Ther. 2015;7
    1. Sudduth T.L., Schmitt F.A., Nelson P.T., Wilcock D.M. Neuroinflammatory phenotype in early Alzheimer's disease. Neurobiol Aging. 2013;34:1051–1059.
    1. Janssen B., Vugts D.J., Funke U., Molenaar G.T., Kruijer P.S., van Berckel B.N.M. Imaging of neuroinflammation in Alzheimer's disease, multiple sclerosis and stroke: Recent developments in positron emission tomography. Biochim Biophys Acta. 2016;1862:425–441.
    1. Knezevic D., Mizrahi R. Molecular imaging of neuroinflammation in Alzheimer's disease and mild cognitive impairment. Prog Neuropsychopharmacol Biol Psychiatry. 2018;80:123–131.
    1. Lagarde J., Sarazin M., Bottlaender M. In vivo PET imaging of neuroinflammation in Alzheimer's disease. J Neural Transm (Vienna) 2018;125:847–867.
    1. Zimmer E.R., Leuzy A., Benedet A.L., Breitner J., Gauthier S., Rosa-Neto P. Tracking neuroinflammation in Alzheimer's disease: the role of positron emission tomography imaging. J Neuroinflammation. 2014;11:120.
    1. Ferreira S.T., Clarke J.R., Bomfim T.R., De Felice F.G. Inflammation, defective insulin signaling, and neuronal dysfunction in Alzheimer's disease. Alzheimers Dement. 2014;10:S76–S83.
    1. Grammas P. Neurovascular dysfunction, inflammation and endothelial activation: Implications for the pathogenesis of Alzheimer's disease. J Neuroinflammation. 2011;8:26.
    1. Meraz-Ríos M.A., Toral-Rios D., Franco-Bocanegra D., Villeda-Hernández J., Campos-Peña V. Inflammatory process in Alzheimer's Disease. Front Integr Neurosci. 2013;7
    1. Rubio-Perez J.M., Morillas-Ruiz J.M. A Review: Inflammatory process in Alzheimer's disease, role of cytokines. ScientificWorldJournal. 2012;2012
    1. Herrero M.-T., Estrada C., Maatouk L., Vyas S. Inflammation in Parkinson's disease: role of glucocorticoids. Front Neuroanat. 2015;9
    1. Wang Q., Liu Y., Zhou J. Neuroinflammation in Parkinson's disease and its potential as therapeutic target. Transl Neurodegener. 2015;4:19.
    1. Crotti A., Glass C.K. The choreography of neuroinflammation in Huntington's disease. Trends Immunol. 2015;36:364–373.
    1. Ellrichmann G., Reick C., Saft C., Linker R.A. The role of the immune system in Huntington's disease. Clin Dev Immunol. 2013;2013
    1. Silajdžić E., Rezeli M., Végvári Á., Lahiri N., Andre R., Magnusson-Lind A. A critical evaluation of inflammatory markers in Huntington's Disease plasma. J Huntington's Dis. 2013;2:125–134.
    1. Breunig J., Guillot-Sestier M.-V., Town T. Brain injury, neuroinflammation and Alzheimer's disease. Front Aging Neurosci. 2013;5
    1. Faden A.I., Loane D.J. Chronic neurodegeneration after traumatic brain injury: Alzheimer disease, chronic traumatic encephalopathy, or persistent neuroinflammation? Neurotherapeutics. 2015;12:143–150.
    1. Ling H., Hardy J., Zetterberg H. Neurological consequences of traumatic brain injuries in sports. Mol Cell Neurosci. 2015;66:114–122.
    1. McCombe P., Henderson R. The role of immune and inflammatory mechanisms in ALS. Curr Mol Med. 2011;11:246–254.
    1. Chen W.-W., Zhang X., Huang W.-J. Role of neuroinflammation in neurodegenerative diseases (Review) Mol Med Rep. 2016;13:3391–3396.
    1. Amor S., Peferoen L.A.N., Vogel D.Y.S., Breur M., Valk P., Baker D. Inflammation in neurodegenerative diseases – an update. Immunology. 2014;142:151–166.
    1. Amor S., Puentes F., Baker D., van der Valk P. Inflammation in neurodegenerative diseases. Immunology. 2010;129:154–169.
    1. Cappellano G., Carecchio M., Fleetwood T., Magistrelli L., Cantello R., Dianzani U. Immunity and inflammation in neurodegenerative diseases. Am J Neurodegenerative Dis. 2013;2:89–107.
    1. Glass C.K., Saijo K., Winner B., Marchetto M.C., Gage F.H. Mechanisms Underlying Inflammation in Neurodegeneration. Cell. 2010;140:918–934.
    1. Griffin W.S.T. Inflammation and Neurodegenerative Diseases. Am J Clin Nutr. 2006;83:470S–474S.
    1. Wyss-Coray T., Yan F., Lin A.H.-T., Lambris J.D., Alexander J.J., Quigg R.J. Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer's mice. Proc Natl Acad Sci U S A. 2002;99:10837–10842.
    1. Garwood C.J., Pooler A.M., Atherton J., Hanger D.P., Noble W. Astrocytes are important mediators of Aβ-induced neurotoxicity and tau phosphorylation in primary culture. Cell Death Dis. 2011;2:e167.
    1. Kitazawa M., Oddo S., Yamasaki T.R., Green K.N., LaFerla F.M. Lipopolysaccharide-Induced inflammation exacerbates tau pathology by a Cyclin-Dependent Kinase 5-Mediated pathway in a transgenic model of Alzheimer's disease. J Neurosci. 2005;25:8843–8853.
    1. Kitazawa M., Yamasaki T.R., Laferla F.M. Microglia as a potential bridge between the amyloid β-Peptide and tau. Ann N Y Acad Sci. 2004;1035:85–103.
    1. Ma Q.-L., Yang F., Rosario E.R., Ubeda O.J., Beech W., Gant D.J. β-Amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-Terminal kinase signaling: Suppression by Omega-3 fatty acids and curcumin. J Neurosci. 2009;29:9078–9089.
    1. Nisbet R.M., Polanco J.-C., Ittner L.M., Götz J. Tau aggregation and its interplay with amyloid-β. Acta Neuropathol. 2015;129:207–220.
    1. Rhein V., Song X., Wiesner A., Ittner L.M., Baysang G., Meier F. Amyloid-β and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer's disease mice. Proc Natl Acad Sci. 2009;106:20057–20062.
    1. Rogers J., Luber-Narod J., Styren S.D., Civin W.H. Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer's disease. Neurobiol Aging. 1988;9:339–349.
    1. Beard C.M., Waring S.C., O'Brien P.C., Kurland L.T., Kokmen E. Nonsteroidal anti-inflammatory drug use and Alzheimer's disease: a case-control study in Rochester, Minnesota, 1980 through 1984. Mayo Clinic Proc. 1998;73:951–955.
    1. Breitner J.C., Gau B.A., Welsh K.A., Plassman B.L., McDonald W.M., Helms M.J. Inverse association of anti-inflammatory treatments and Alzheimer's disease: initial results of a co-twin control study. Neurology. 1994;44:227–232.
    1. Rich J.B., Rasmusson D.X., Folstein M.F., Carson K.A., Kawas C., Brandt J. Nonsteroidal anti-inflammatory drugs in Alzheimer's disease. Neurology. 1995;45:51–55.
    1. McGeer P.L., McGeer E.G. NSAIDs and Alzheimer disease: Epidemiological, animal model and clinical studies. Neurobiol Aging. 2007;28:639–647.
    1. Miguel-Álvarez M., Santos-Lozano A., Sanchis-Gomar F., Fiuza-Luces C., Pareja-Galeano H., Garatachea N. Non-steroidal anti-inflammatory drugs as a treatment for Alzheimer's disease: a systematic review and meta-analysis of treatment effect. Drugs Aging. 2015;32:139–147.
    1. McGeer P.L., Rogers J. Anti-inflammatory agents as a therapeutic approach to Alzheimer's disease. Neurology. 1992;42:447–449.
    1. Zotova E., Nicoll J.A., Kalaria R., Holmes C., Boche D. Inflammation in Alzheimer's disease: relevance to pathogenesis and therapy. Alzheimer's Res. 2010;2:1.
    1. Kim Y.S., Joh T.H. Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson's disease. Exp Mol Med. 2006;38:333–347.
    1. Goldgaber D., Harris H.W., Hla T., Maciag T., Donnelly R.J., Jacobsen J.S. Interleukin 1 regulates synthesis of amyloid beta-protein precursor mRNA in human endothelial cells. Proc Natl Acad Sci. 1989;86:7606–7610.
    1. Plassman B.L., Havlik R.J., Steffens D.C., Helms M.J., Newman T.N., Drosdick D. Documented head injury in early adulthood and risk of Alzheimer's disease and other dementias. Neurology. 2000;55:1158–1166.
    1. Quintanilla R.A., Orellana D.I., González-Billault C., Maccioni R.B. Interleukin-6 induces Alzheimer-type phosphorylation of tau protein by deregulating the cdk5/p35 pathway. Exp Cell Res. 2004;295:245–257.
    1. Sarma J.D. Microglia-mediated neuroinflammation is an amplifier of virus-induced neuropathology. J NeuroVirology. 2014;20:122–136.
    1. Glenn J.A., Jordan F.L., Thomas W.E. Further studies on the identification of microglia in mixed brain cell cultures. Brain Res Bull. 1989;22:1049–1052.
    1. Glenn J.A., Ward S.A., Stone C.R., Booth P.L., Thomas W.E. Characterisation of ramified microglial cells: detailed morphology, morphological plasticity and proliferative capability. J Anat. 1992;180:109–118.
    1. Davalos D., Grutzendler J., Yang G., Kim J.V., Zuo Y., Jung S. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci. 2005;8:752–758.
    1. Eyo U.B., Dailey M.E. Microglia: Key elements in neural development, plasticity, and pathology. J Neuroimmune Pharmacol. 2013;8:494–509.
    1. Nolte C., Moller T., Walter T., Kettenmann H. Complement 5a controls motility of murine microglial cells in vitro via activation of an inhibitory G-protein and the rearrangement of the actin cytoskeleton. Neuroscience. 1996;73:1091–1107.
    1. Madry C., Attwell D. Receptors, ion channels, and signaling mechanisms underlying microglial dynamics. J Biol Chem. 2015;290:12443–12450.
    1. Pocock J.M., Kettenmann H. Neurotransmitter receptors on microglia. Trends Neurosci. 2007;30:527–535.
    1. Cross A.K., Woodroofe M.N. Chemokines induce migration and changes in actin polymerization in adult rat brain microglia and a human fetal microglial cell line in vitro. J Neurosci Res. 1999;55:17–23.
    1. Flynn G., Maru S., Loughlin J., Romero I.A., Male D. Regulation of chemokine receptor expression in human microglia and astrocytes. J Neuroimmunol. 2003;136:84–93.
    1. Lee Y.B., Nagai A., Kim S.U. Cytokines, chemokines, and cytokine receptors in human microglia. J Neurosci Res. 2002;69:94–103.
    1. Harrison J.K., Jiang Y., Chen S., Xia Y., Maciejewski D., McNamara R.K. Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci U S A. 1998;95:10896–10901.
    1. Bolmont T., Haiss F., Eicke D., Radde R., Mathis C.A., Klunk W.E. Dynamics of the Microglial/Amyloid interaction indicate a role in plaque maintenance. J Neurosci. 2008;28:4283–4292.
    1. Brierley J.B., Brown A.W. The origin of lipid phagocytes in the central nervous system: II. The adventitia of blood vessels. J Comp Neurol. 1982;211:407–417.
    1. Graeber M.B., Tetzlaff W., Streit W.J., Kreutzberg G.W. Microglial cells but not astrocytes undergo mitosis following rat facial nerve axotomy. Neurosci Lett. 1988;85:317–321.
    1. Mrak R.E. Microglia in Alzheimer Brain: A neuropathological perspective. Int J Alzheimer's Dis. 2012
    1. Baik S.H., Kang S., Son S.M., Mook-Jung I. Microglia contributes to plaque growth by cell death due to uptake of amyloid β in the brain of Alzheimer's disease mouse model. Glia. 2016;64:2274–2290.
    1. Stalder M., Phinney A., Probst A., Sommer B., Staufenbiel M., Jucker M. Association of Microglia with Amyloid Plaques in Brains of APP23 Transgenic Mice. Am J Pathol. 1999;154:1673–1684.
    1. Bard F., Cannon C., Barbour R., Burke R.L., Games D., Grajeda H. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med. 2000;6:916–919.
    1. Simard A.R., Soulet D., Gowing G., Julien J.-P., Rivest S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease. Neuron. 2006;49:489–502.
    1. Tamboli I.Y., Barth E., Christian L., Siepmann M., Kumar S., Singh S. Statins promote the degradation of extracellular amyloid β-Peptide by microglia via stimulation of exosome-associated insulin-degrading Enzyme (IDE) secretion. J Biol Chem. 2010;285:37405–37414.
    1. Yuyama K., Sun H., Mitsutake S., Igarashi Y. Sphingolipid-modulated exosome secretion promotes clearance of amyloid-β by microglia. J Biol Chem. 2012;287:10977–10989.
    1. Hickman S.E., Allison E.K., Khoury J.E. Microglial dysfunction and defective β-amyloid clearance pathways in aging Alzheimer's disease mice. J Neuroscience. 2008;28:8354–8360.
    1. Chakrabarty P., Jansen-West K., Beccard A., Ceballos-Diaz C., Levites Y., Verbeeck C. Massive gliosis induced by interleukin-6 suppresses Aβ deposition in vivo: evidence against inflammation as a driving force for amyloid deposition. FASEB J. 2010;24:548–559.
    1. Shaftel S.S., Kyrkanides S., Olschowka J.A., Miller J.H., Johnson R.E., O'Banion M.K. Sustained hippocampal IL-1β overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology. J Clin Invest. 2007;117:1595–1604.
    1. Meda L., Cassatella M.A., Szendrei G.I., Otvos L., Baron P., Villalba M. Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature. 1995;374:647–650.
    1. Sheng J.G., Zhou X.Q., Mrak R.E., Griffin W.S.T. Progressive neuronal injury associated with amyloid plaque formation in Alzheimer disease. J Neuropathol Exp Neurol. 1998;57:714–717.
    1. Krabbe G., Halle A., Matyash V., Rinnenthal J.L., Eom G.D., Bernhardt U. Functional impairment of microglia coincides with beta-amyloid deposition in mice with Alzheimer-Like pathology. PLoS One. 2013;8:e60921.
    1. Michelucci A., Heurtaux T., Grandbarbe L., Morga E., Heuschling P. Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: Effects of oligomeric and fibrillar amyloid-β. J Neuroimmunol. 2009;210:3–12.
    1. Bhaskar K., Maphis N., Xu G., Varvel N.H., Kokiko-Cochran O.N., Weick J.P. Microglial derived tumor necrosis factor-α drives Alzheimer's disease-related neuronal cell cycle events. Neurobiol Dis. 2014;62
    1. Smith J.A., Das A., Ray S.K., Banik N.L. Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull. 2012;87:10–20.
    1. Yates S.L., Burgess L.H., Kocsis-Angle J., Antal J.M., Dority M.D., Embury P.B. Amyloid β and amylin fibrils induce increases in proinflammatory cytokine and chemokine production by THP-1 cells and murine microglia. J Neurochem. 2000;74:1017–1025.
    1. Wisniewski H.M., Moretz R.C., Lossinsky A.S. Evidence for induction of localized amyloid deposits and neuritic plaques by an infectious agent. Ann Neurol. 1981;10:517–522.
    1. Jay T.R., Miller C.M., Cheng P.J., Graham L.C., Bemiller S., Broihier M.L. TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer's disease mouse models. J Exp Med. 2015;212:287–295.
    1. Bemiller S.M., McCray T.J., Allan K., Formica S.V., Xu G., Wilson G. TREM2 deficiency exacerbates tau pathology through dysregulated kinase signaling in a mouse model of tauopathy. Mol Neurodegener. 2017;12
    1. Savage J.C., Jay T., Goduni E., Quigley C., Mariani M.M., Malm T. Nuclear Receptors License Phagocytosis by Trem2+ Myeloid Cells in Mouse Models of Alzheimer's Disease. J Neurosci. 2015;35:6532–6543.
    1. Wang Y., Cella M., Mallinson K., Ulrich J.D., Young K.L., Robinette M.L. TREM2 lipid sensing sustains microglia response in an Alzheimer's disease model. Cell. 2015;160:1061–1071.
    1. Guerreiro R., Wojtas A., Bras J., Carrasquillo M., Rogaeva E., Majounie E. TREM2 Variants in Alzheimer's Disease. N Engl J Med. 2013;368:117–127.
    1. Hickman S.E., Khoury J.E. TREM2 and the neuroimmunology of Alzheimer's disease. Biochem Pharmacol. 2014;88:495–498.
    1. Jin S.C., Carrasquillo M.M., Benitez B.A., Skorupa T., Carrell D., Patel D. TREM2 is associated with increased risk for Alzheimer's disease in African Americans. Mol Neurodegener. 2015;10
    1. Jonsson T., Stefansson H., Steinberg S., Jonsdottir I., Jonsson P.V., Snaedal J. Variant of TREM2 associated with the risk of Alzheimer's disease. N Engl J Med. 2013;368:107–116.
    1. Paloneva J., Mandelin J., Kiialainen A., Bohling T., Prudlo J., Hakola P. DAP12/TREM2 deficiency results in impaired osteoclast differentiation and osteoporotic features. J Exp Med. 2003;198:669–675.
    1. Paloneva J., Manninen T., Christman G., Hovanes K., Mandelin J., Adolfsson R. Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am J Hum Genet. 2002;71:656–662.
    1. Paloneva J., Kestila M., Wu J., Salminen A., Bohling T., Ruotsalainen V. Loss-of-function mutations in TYROBP (DAP12) result in a presenile dementia with bone cysts. Nat Genet. 2000;25:357–361.
    1. Kaneko M., Sano K., Nakayama J., Amano N. Nasu-Hakola disease: The first case reported by Nasu and review. Neuropathology. 2010;30:463–470.
    1. Bird T.D., Koerker R.M., Leaird B.J., Vlcek B.W., Thorning D.R. Lipomembranous polycystic osteodysplasia (brain, bone, and fat disease): a genetic cause of presenile dementia. Neurology. 1983;33:81–86.
    1. Sessa G., Podini P., Mariani M., Meroni A., Spreafico R., Sinigaglia F. Distribution and signaling of TREM2/DAP12, the receptor system mutated in human polycystic lipomembraneous osteodysplasia with sclerosing leukoencephalopathy dementia. Eur J Neurosci. 2004;20:2617–2628.
    1. Saunders A.M., Strittmatter W.J., Schmechel D., George-Hyslop P.H., Pericak-Vance M.A., Joo S.H. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer's disease. Neurology. 1993;43:1467–1472.
    1. Corder E.H., Saunders A.M., Strittmatter W.J., Schmechel D.E., Gaskell P.C., Small G.W. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science. 1993;261:921–923.
    1. Ulrich J.D., Finn M.B., Wang Y., Shen A., Mahan T.E., Jiang H. Altered microglial response to A beta plaques in APPPS1-21 mice heterozygous for TREM2. Mol Neurodegener. 2014;9
    1. Jay T.R., Hirsch A.M., Broihier M.L., Miller C.M., Neilson L.E., Ransohoff R.M. Disease Progression-Dependent Effects of TREM2 Deficiency in a Mouse Model of Alzheimer's Disease. J Neurosci. 2017;37:637–647.
    1. Tan Y.J., Ng A.S.L., Vipin A., Lim J.K.W., Chander R.J., Ji F. Higher peripheral TREM2 mRNA levels relate to cognitive deficits and hippocampal atrophy in Alzheimer's disease and amnestic mild cognitive impairment. J Alzheimers Dis. 2017;58:413–423.
    1. Chan G., White C.C., Winn P.A., Cimpean M., Replogle J.M., Glick L.R. CD33 modulates TREM2: convergence of Alzheimer loci. Nat Neurosci. 2015;18:1556–1558.
    1. Hu N., Tan M.S., Yu J.T., Sun L., Tan L., Wang Y.L. Increased expression of TREM2 in peripheral blood of Alzheimer's disease patients. J Alzheimers Dis. 2014;38:497–501.
    1. Ulrich J.D., Finn M.B., Wang Y., Shen A., Mahan T.E., Jiang H. Altered microglial response to Abeta plaques in APPPS1-21 mice heterozygous for TREM2. Mol Neurodegener. 2014;9:20.
    1. Wang Y., Ulland T.K., Ulrich J.D., Song W., Tzaferis J.A., Hole J.T. TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques. J Exp Med. 2016;213:667–675.
    1. Yuan P., Condello C., Keene C.D., Wang Y., Bird T.D., Paul S.M. TREM2 haplodeficiency in mice and humans impairs the microglia barrier function leading to decreased amyloid compaction and severe axonal dystrophy. Neuron. 2016;90:724–739.
    1. Cantoni C., Bollman B., Licastro D., Xie M., Mikesell R., Schmidt R. TREM2 regulates microglial cell activation in response to demyelination in vivo. Acta Neuropathol. 2015;129:429–447.
    1. Poliani P.L., Wang Y., Fontana E., Robinette M.L., Yamanishi Y., Gilfillan S. TREM2 sustains microglial expansion during aging and response to demyelination. J Clin Invest. 2015;125:2161–2170.
    1. Ulland T.K., Song W.M., Huang S.C., Ulrich J.D., Sergushichev A., Beatty W.L. TREM2 Maintains Microglial Metabolic Fitness in Alzheimer's Disease. Cell. 2017;170:649–663.e13.
    1. Bemiller S.M., McCray T.J., Allan K., Formica S.V., Xu G., Wilson G. TREM2 deficiency exacerbates tau pathology through dysregulated kinase signaling in a mouse model of tauopathy. Mol Neurodegener. 2017;12:74.
    1. Leyns C.E.G., Ulrich J.D., Finn M.B., Stewart F.R., Koscal L.J., Remolina Serrano J. TREM2 deficiency attenuates neuroinflammation and protects against neurodegeneration in a mouse model of tauopathy. Proc Natl Acad Sci U S A. 2017;114:11524–11529.
    1. Keren-Shaul H., Spinrad A., Weiner A., Matcovitch-Natan O., Dvir-Szternfeld R., Ulland T.K. A Unique Microglia Type Associated with Restricting Development of Alzheimer's Disease. Cell. 2017;169:1276–1290.e17.
    1. Bazan J.F., Bacon K.B., Hardiman G., Wang W., Soo K., Rossi D. A new class of membrane-bound chemokine with a CX3C motif. Nature. 1997;385:640–644.
    1. Umehara H., Bloom E., Okazaki T., Domae N., Imai T. Fractalkine and vascular injury. Trends Immunol. 2001;22:602–607.
    1. Sheridan G.K., Murphy K.J. Neuron-glia crosstalk in health and disease: fractalkine and CX3CR1 take centre stage. Open Biol. 2013;3:130181.
    1. Landsman L., Bar-On L., Zernecke A., Kim K.-W., Krauthgamer R., Shagdarsuren E. CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival. Blood. 2009;113:963–972.
    1. Lionakis M.S., Swamydas M., Fischer B.G., Plantinga T.S., Johnson M.D., Jaeger M. CX3CR1-dependent renal macrophage survival promotes Candida control and host survival. J Clin Invest. 2013;123:5035–5051.
    1. Ponzetta A., Sciume G., Benigni G., Antonangeli F., Morrone S., Santoni A. CX3CR1 regulates the maintenance of KLRG1+ NK Cells into the bone marrow by promoting their entry into circulation. J Immunol. 2013;191:5684–5694.
    1. Cardona A.E., Pioro E.P., Sasse M.E., Kostenko V., Cardona S.M., Dijkstra I.M. Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci. 2006;9:917–924.
    1. Fuhrmann M., Bittner T., Jung C.K.E., Burgold S., Page R.M., Mitteregger G. Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer's disease. Nat Publishing Group. 2010;13:411–413.
    1. Lee S., Varvel N.H., Konerth M.E., Xu G., Cardona A.E., Ransohoff R.M. CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer's disease mouse models. Am J Pathol. 2010;177:2549–2562.
    1. Hickman S.E., Kingery N.D., Ohsumi T.K., Borowsky M.L., Wang L.-C., Means T.K. The microglial sensome revealed by direct RNA sequencing. Nat Neurosci. 2013;16:1896–1905.
    1. Nishiyori A., Minami M., Ohtani Y., Takami S., Yamamoto J., Kawaguchi N. Localization of fractalkine and CX3CR1 mRNAs in rat brain: does fractalkine play a role in signaling from neuron to microglia? FEBS Lett. 1998;429:167–172.
    1. Imai T., Hieshima K., Haskell C., Baba M., Nagira M., Nishimura M. Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell. 1997;91:521–530.
    1. Limatola C., Ransohoff R.M. Modulating neurotoxicity through CX3CL1/CX3CR1 signaling. Front Cell Neurosci. 2014;8:229.
    1. Zujovic V., Benavides J., Vigé X., Carter C., Taupin V. Fractalkine modulates TNF-α secretion and neurotoxicity induced by microglial activation. Glia. 2000;29:305–315.
    1. Mizuno T., Kawanokuchi J., Numata K., Suzumura A. Production and neuroprotective functions of fractalkine in the central nervous system. Brain Res. 2003;979:65–70.
    1. Jung S., Aliberti J., Graemmel P., Sunshine M.J., Kreutzberg G.W., Sher A. Analysis of Fractalkine Receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol. 2000;20:4106–4114.
    1. Bhaskar K., Konerth M., Kokiko-Cochran O.N., Cardona A., Ransohoff R.M., Lamb B.T. Regulation of tau pathology by the microglial fractalkine receptor. Neuron. 2010;68:19–31.
    1. Fenn A.M., Smith K.M., Lovett-Racke A.E., Guerau-de-Arellano M., Whitacre C.C., Godbout J.P. Increased micro-RNA 29b in the aged brain correlates with the reduction of insulin-like growth factor-1 and fractalkine ligand. Neurobiol Aging. 2013;34:2748–2758.
    1. Kim T.-S., Lim H.-K., Lee J.Y., Kim D.-J., Park S., Lee C. Changes in the levels of plasma soluble fractalkine in patients with mild cognitive impairment and Alzheimer's disease. Neurosci Lett. 2008;436:196–200.
    1. Cho S.-H., Sun B., Zhou Y., Kauppinen T.M., Halabisky B., Wes P. CX3CR1 protein signaling modulates microglial activation and protects against plaque-independent cognitive deficits in a mouse model of Alzheimer disease. J Biol Chem. 2011;286:32713–32722.
    1. Padgett C.L., Slesinger P.A. GABAB receptor coupling to G-proteins and ion channels. Adv Pharmacol. 2010;58:123–147.
    1. De Strooper B., Karran E. The cellular phase of Alzheimer's disease. Cell. 2016;164:603–615.
    1. Jo S., Yarishkin O., Hwang Y.J., Chun Y.E., Park M., Woo D.H. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer's disease. Nat Med. 2014;20:886.
    1. Kim Y.S., Yoon B.-E. Altered GABAergic signaling in brain disease at various stages of life. Exp Neurobiol. 2017;26:122–131.
    1. Li Y., Sun H., Chen Z., Xu H., Bu G., Zheng H. Implications of GABAergic Neurotransmission in Alzheimer's disease. Front Aging Neurosci. 2016;8
    1. Wu Z., Guo Z., Gearing M., Chen G. Tonic inhibition in dentate gyrus impairs long-term potentiation and memory in an Alzhiemer's disease model. Nat Commun. 2014;5:4159.
    1. Heaney C.F., Kinney J.W. Role of GABA(B) receptors in learning and memory and neurological disorders. Neurosci Biobehav Rev. 2016;63:1–28.
    1. Lee M., Schwab C., Mcgeer P.L. Astrocytes are GABAergic cells that modulate microglial activity. Glia. 2011;59:152–165.
    1. Kuhn S.A., van Landeghem F.K., Zacharias R., Färber K., Rappert A., Pavlovic S. Microglia express GABA B receptors to modulate interleukin release. Mol Cell Neurosci. 2004;25:312–322.
    1. Carson M.J., Thrash J.C., Walter B. The cellular response in neuroinflammation: The role of leukocytes, microglia and astrocytes in neuronal death and survival. Clin Neurosci Res. 2006;6:237–245.
    1. Karve I.P., Taylor J.M., Crack P.J. The contribution of astrocytes and microglia to traumatic brain injury. Br J Pharmacol. 2016;173:692–702.
    1. Yoon B.-E., Woo J., Chun Y.-E., Chun H., Jo S., Bae J.Y. Glial GABA, synthesized by monoamine oxidase B, mediates tonic inhibition. J Physiol. 2014;592:4951–4968.
    1. Le Meur K., Mendizabal-Zubiaga J., Grandes P., Audinat E. GABA release by hippocampal astrocytes. Front Comput Neurosci. 2012;6
    1. Fillit H., Ding W.H., Buee L., Kalman J., Altstiel L., Lawlor B. Elevated circulating tumor necrosis factor levels in Alzheimer's disease. Neurosci Lett. 1991;129:318–320.
    1. Perry R. The role of TNF and its receptors in Alzheimer's disease. Neurobiol Aging. 2001;22:873–883.
    1. Granic I., Dolga A.M., Nijholt I.M., van Dijk G., Eisel U.L.M. Inflammation and NF-kappaB in Alzheimer's disease and diabetes. J Alzheimers Dis. 2009;16:809–821.
    1. Li R., Yang L., Lindholm K., Konishi Y., Yue X., Hampel H. Tumor necrosis factor death receptor signaling cascade is required for amyloid-beta protein-induced neuron death. J Neurosci. 2004;24:1760–1771.
    1. He P., Zhong Z., Lindholm K., Berning L., Lee W., Lemere C. Deletion of tumor necrosis factor death receptor inhibits amyloid β generation and prevents learning and memory deficits in Alzheimer's mice. J Cell Biol. 2007;178:829–841.
    1. Buchhave P., Zetterberg H., Blennow K., Minthon L., Janciauskiene S., Hansson O. Soluble TNF receptors are associated with AÎo2 metabolism and conversion to dementia in subjects with mild cognitive impairment. Neurobiol Aging. 2010;31:1877–1884.
    1. Chang R., Yee K.-L., Sumbria R.K. Tumor necrosis factor α Inhibition for Alzheimer's Disease. J Cent Nervous Syst Dis. 2017;9 117957351770927.
    1. Combs C.K., Karlo J.C., Kao S.C., Landreth G.E. β-Amyloid stimulation of microglia and monocytes results in TNFalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J Neurosci. 2001;21:1179–1188.
    1. Yamamoto M., Kiyota T., Horiba M., Buescher J.L., Walsh S.M., Gendelman H.E. Interferon-gamma and tumor necrosis factor-alpha regulate amyloid-beta plaque deposition and beta-secretase expression in Swedish mutant APP transgenic mice. Am J Pathol. 2007;170:680–692.
    1. Basu A., Krady J.K., Levison S.W. Interleukin-1: A master regulator of neuroinflammation. J Neurosci Res. 2004;78:151–156.
    1. Forlenza O.V., Diniz B.S., Talib L.L., Mendonça V.A., Ojopi E.B., Gattaz W.F. Increased serum IL-1beta level in Alzheimer's disease and mild cognitive impairment. Demen Geriatr Cogn Disord. 2009;28:507–512.
    1. Di Bona D., Plaia A., Vasto S., Cavallone L., Lescai F., Franceschi C. Association between the interleukin-1β polymorphisms and Alzheimer's disease: A systematic review and meta-analysis. Brain Res Rev. 2008;59:155–163.
    1. Cacabelos R., Alvarez X.A., Fernández-Novoa L., Franco A., Mangues R., Pellicer A. Brain interleukin-1 beta in Alzheimer's disease and vascular dementia. Methods Findings Exp Clin Pharmacol. 1994;16:141–151.
    1. Farrar W.L., Kilian P.L., Ruff M.R., Hill J.M., Pert C.B. Visualization and characterization of interleukin 1 receptors in brain. J Immunol. 1987;139:459–463.
    1. Buxbaum J.D., Oishi M., Chen H.I., Pinkas-Kramarski R., Jaffe E.A., Gandy S.E. Cholinergic agonists and interleukin 1 regulate processing and secretion of the Alzheimer beta/A4 amyloid protein precursor. Proc Natl Acad Sci U S A. 1992;89:10075–10078.
    1. Chong Y. Effect of a carboxy-terminal fragment of the Alzheimer's amyloid precursor protein on expression of proinflammatory cytokines in rat glial cells. Life Sci. 1997;61:2323–2333.
    1. Barger S.W., Harmon A.D. Microglial activation by Alzheimer amyloid precursor protein and modulation by apolipoprotein E. Nature. 1997;388:878–881.
    1. Scheller J., Chalaris A., Schmidt-Arras D., Rose-John S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta. 2011;1813:878–888.
    1. Rothaug M., Becker-Pauly C., Rose-John S. The role of interleukin-6 signaling in nervous tissue. Biochim Biophys Acta. 2016;1863:1218–1227.
    1. Singh-Manoux A., Dugravot A., Brunner E., Kumari M., Shipley M., Elbaz A. Interleukin-6 and C-reactive protein as predictors of cognitive decline in late midlife. Neurology. 2014;83:486–493.
    1. Blum-Degena D., Müller T., Kuhn W., Gerlach M., Przuntek H., Riederer P. Interleukin-1β and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer“s and de novo Parkinson's disease patients. Neurosci Lett. 1995;202:17–20.
    1. Dursun E., Gezen-Ak D., Hanağası H., Bilgiç B., Lohmann E., Ertan S. The interleukin 1 alpha, interleukin 1 beta, interleukin 6 and alpha-2-macroglobulin serum levels in patients with early or late onset Alzheimer's disease, mild cognitive impairment or Parkinson”s disease. J Neuroimmunol. 2015;283:50–57.
    1. Hampel H., Haslinger A., Scheloske M., Padberg F., Fischer P., Unger J. Pattern of interleukin-6 receptor complex immunoreactivity between cortical regions of rapid autopsy normal and Alzheimer's disease brain. Eur Arch Psychiatry Clin Neurosci. 2005;255:269–278.
    1. Huell M., Strauss S., Volk B., Berger M., Bauer J. Interleukin-6 is present in early stages of plaque formation and is restricted to the brains of Alzheimers disease patients. Acta Neuropathol. 1995;89:544–551.
    1. Ringheim G.E., Szczepanik A.M., Petko W., Burgher K.L., Zhu S.Z., Chao C.C. Enhancement of beta-amyloid precursor protein transcription and expression by the soluble interleukin-6 receptor/interleukin-6 complex. Brain Research. Mol Brain Res. 1998;55:35–44.
    1. Hayden M.S., West A.P., Ghosh S. NF-κB and the immune response. Oncogene. 2006;25:6758–6780.
    1. Kaltschmidt B., Uherek M., Volk B., Baeuerle P.A., Kaltschmidt C. Transcription factor NF-κB is activated in primary neurons by amyloid β peptides and in neurons surrounding early plaques from patients with Alzheimer disease. Proc Natl Acad Sci U S A. 1997;94:2642–2647.
    1. Sambamurti K., Kinsey R., Maloney B., Ge Y.-W., Lahiri D.K. Gene structure and organization of the human beta-secretase (BACE) promoter. FASEB J. 2004;18:1034–1036.
    1. Tobe M., Isobe Y., Tomizawa H., Nagasaki T., Takahashi H., Fukazawa T. Discovery of quinazolines as a novel structural class of potent inhibitors of NF-kappa B activation. Bioorg Med Chem. 2003;11:383–391.
    1. Eriksen J.L., Sagi S.A., Smith T.E., Weggen S., Das P., McLendon D.C. NSAIDs and enantiomers of flurbiprofen target gamma-secretase and lower Abeta 42 in vivo. J Clin Invest. 2003;112:440–449.
    1. Sung S., Yang H., Uryu K., Lee E.B., Zhao L., Shineman D. Modulation of nuclear factor-kappa B activity by indomethacin influences A beta levels but not A beta precursor protein metabolism in a model of Alzheimer's disease. Am J Pathol. 2004;165:2197–2206.
    1. Szczepanik A.M., Funes S., Petko W., Ringheim G.E. IL-4, IL-10 and IL-13 modulate A beta(1--42)-induced cytokine and chemokine production in primary murine microglia and a human monocyte cell line. J Neuroimmunol. 2001;113:49–62.
    1. D'Anna L., Abu-Rumeileh S., Fabris M., Pistis C., Baldi A., Sanvilli N. Serum Interleukin-10 Levels Correlate with Cerebrospinal Fluid Amyloid Beta Deposition in Alzheimer Disease Patients. Neuro-Degenerative Dis. 2017;17:227–234.
    1. Michaud J.-P., Rivest S. Anti-inflammatory Signaling in Microglia Exacerbates Alzheimer's Disease-Related Pathology. Neuron. 2015;85:450–452.
    1. Guillot-Sestier M.-V., Doty K.R., Gate D., Rodriguez J., Yan Leung B.P., Rezai-Zadeh K. Il10 deficiency re-balances innate immunity to mitigate Alzheimer-like pathology. Neuron. 2015;85:534–548.
    1. Lio D., Licastro F., Scola L., Chiappelli M., Grimaldi L.M., Crivello A. Interleukin-10 promoter polymorphism in sporadic Alzheimer's disease. Genes Immun. 2003;4:234–238.
    1. Zhang Y., Zhang J., Tian C., Xiao Y., Li X., He C. The -1082G/A polymorphism in IL-10 gene is associated with risk of Alzheimer's disease: a meta-analysis. J Neurol Sci. 2011;303:133–138.
    1. Chao C.C., Hu S., Frey W.H., Ala T.A., Tourtellotte W.W., Peterson P.K. Transforming growth factor beta in Alzheimer's disease. Clin Diagn Lab Immunol. 1994;1:109–110.
    1. Grammas P., Ovase R. Cerebrovascular Transforming Growth Factor-β Contributes to Inflammation in the Alzheimer's Disease Brain. Am J Pathol. 2002;160:1583–1587.
    1. Masliah E., Ho G., Wyss-Coray T. Functional role of TGF beta in Alzheimer's disease microvascular injury: lessons from transgenic mice. Neurochem Int. 2001;39:393–400.
    1. Caraci F., Spampinato S., Sortino M.A., Bosco P., Battaglia G., Bruno V. Dysfunction of TGF-β1 signaling in Alzheimer's disease: perspectives for neuroprotection. Cell Tissue Res. 2012;347:291–301.
    1. Juraskova B., Andrys C., Holmerova I., Solichova D., Hrnciarikova D., Vankova H. Transforming growth factor beta and soluble endoglin in the healthy senior and in Alzheimer's disease patients. J Nutr Health Aging. 2010;14:758–761.
    1. Mocali A., Cedrola S., Della Malva N., Bontempelli M., Mitidieri V.A.M., Bavazzano A. Increased plasma levels of soluble CD40, together with the decrease of TGFβ1, as possible differential markers of Alzheimer disease. Exp Gerontol. 2004;39:1555–1561.
    1. Diniz L.P., Tortelli V., Matias I., Morgado J., Araujo A.P.B., Melo H.M. Astrocyte transforming growth factor beta 1 protects synapses against Aβ Oligomers in Alzheimer's disease model. J Neurosci. 2017;37:6797–6809.
    1. Lindsay J., Laurin D., Verreault R., Hebert R., Helliwell B., Hill G.B. Risk factors for Alzheimer's disease: a prospective analysis from the Canadian study of health and aging. Am J Epidemiol. 2002;156:445–453.
    1. Kivipelto M.1, Helkala E.L., Laakso M.P., Hänninen T., Hallikainen M., Alhainen K. Midlife vascular risk factors and Alzheimer's disease in later life: longitudinal, population based study. BMJ. 2001;322:1447–1451.
    1. Mortimer J.A., Van Duiin C.M., Chandra V., Fratiglioni L., Graves A.B., Heyman A. Head trauma as a risk factor for Alzheimer's disease: A collaborative re-analysis of case-control studies. Int J Epidemiol. 1991;20:S28–S35.
    1. Fleminger S., Oliver D.L., Lovestone S., Rabe-Hesketh S., Giora A. Head injury as a risk factor for Alzheimer's disease: the evidence 10 years on; a partial replication. J Neurol Neurosurg Psychiatry. 2003;74:857–862.
    1. Thakur M.K., Sivanandam T.M. Traumatic brain injury: A risk factor of Alzheimer's disease. Neurosci Biobehav Rev. 2012;36:1376–1381.
    1. Djordievic J., Sabbir M.G., Albensi B.C. Traumatic brain injury as a risk factor for Alzheimer's disease: is inflammatory signaling a key player? Curr Alzheimer Res. 2016;13:730–738.
    1. Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer?s disease. Eur J Nucl Med Mol Imaging. 2005;32:486–510.
    1. Cunnane S., Nugent S., Roy M., Courchesne-Loyer A., Croteau E., Tremblay S. Brain fuel metabolism, aging, and Alzheimer's disease. Nutrition. 2011;27:3–20.
    1. Chen Z., Zhong C. Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: Implications for diagnostic and therapeutic strategies. Prog Neurobiol. 2013;108:21–43.
    1. Janson J., Laedtke T., Parisi J.E., O'Brien P., Petersen R.C., Butler P.C. Increased risk of type 2 diabetes in Alzheimer disease. Diabetes. 2004;53:474–481.
    1. Biessels G.J., Staekenborg S., Brunner E., Brayne C., Scheltens P. Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol. 2006;5:64–74.
    1. Kloppenborg R.P., van den Berg E., Kappelle L.J., Biessels G.J. Diabetes and other vascular risk factors for dementia: Which factor matters most? A systematic review. Eur J Pharmacol. 2008;585:97–108.
    1. Ott A., Stolk R.P., van Harskamp F., Pols H.A., Hofman A., Breteler M.M. Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology. 1999;53:1937–1942.
    1. Ohara T., Doi Y., Ninomiya T., Hirakawa Y., Hata J., Iwaki T. Glucose tolerance status and risk of dementia in the community: the Hisayama study. Neurology. 2011;77:1126–1134.
    1. Huang C.-C., Chung C.-M., Leu H.-B., Lin L.-Y., Chiu C.-C., Hsu C.-Y. Diabetes Mellitus and the Risk of Alzheimer's Disease: A Nationwide Population-Based Study. PLoS One. 2014;9:e87095–e87097.
    1. Akomolafe A., Beiser A., Meigs J.B., Au R., Green R.C., Farrer L.A. Diabetes Mellitus and Risk of Developing Alzheimer Disease Results From the Framingham Study. Arch Neurol. 2006;63:1551.
    1. Cheng D., Noble J., Tang M.X., Schupf N., Mayeux R., Luchsinger J.A. Type 2 diabetes and late-onset Alzheimer's disease. Dement Geriatr Cogn Disord. 2011;31:424–430.
    1. Yalow R.S., Berson S.A. Immunoassay of endogenous plasma insulin in man. J Clin Invest. 1960;39:1157–1175.
    1. Bonadonna R.C., De Fronzo R.A. Glucose metabolism in obesity and type 2 diabetes. Diabete & Metabolisme. 1991;17:112–135.
    1. Rivera E.J., Goldin A., Fulmer N., Tavares R., Wands J.R., la Monte de S.M. Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer's disease: link to brain reductions in acetylcholine. J Alzheimer's Dis. 2005;8:247–268.
    1. Steen E., Terry B.M., J Rivera E., Cannon J.L., Neely T.R., Tavares R. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease – is this type 3 diabetes? J Alzheimer's Dis. 2005;7:63–80.
    1. la Monte de S.M., Neely T.R., Cannon J., Wands J.R. Ethanol impairs insulin-stimulated mitochondrial function in cerebellar granule neurons. Cell Mol Life Sci. 2001;58:1950–1960.
    1. Lester-Coll N., Rivera E.J., Soscia S.J., Doiron K., Wands J.R., la Monte de S.M. Intracerebral streptozotocin model of type 3 diabetes: Relevance to sporadic Alzheimer's disease. J Alzheimer's Dis. 2006;9:13–33.
    1. De Felice F.G., Vieira M.N.N., Bomfim T.R., Decker H., Velasco P.T., Lambert M.P. Protection of synapses against Alzheimer's-linked toxins: insulin signaling prevents the pathogenic binding of Abeta oligomers. Proc Natl Acad Sci U S A. 2009;106:1971–1976.
    1. Li W., Risacher S.L., Gao S., Boehm S.L., II, Elmendorf J.S., Saykin A.J. Type 2 diabetes mellitus and cerebrospinal fluid Alzheimer's disease biomarker Aβ1-42 in Alzheimer's Disease Neuroimaging Initiative participants. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring. 2017;10:94–98.
    1. Hotamisligil G.S., Shargill N.S., Spiegelman B.M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science (New York, N.Y.) 1993;259:87–91.
    1. Roytblat L., Rachinsky M., Fisher A., Greemberg L., Shapira Y., Douvdevani A. Raised interleukin-6 levels in obese patients. Obes Res. 2000;8:673–675.
    1. Koenig W., Khuseyinova N., Baumert J., Thorand B., Loewel H., Chambless L. Increased concentrations of C-reactive protein and IL-6 but not IL-18 are independently associated with incident coronary events in middle-aged men and women: results from the MONICA/KORA Augsburg case-cohort study, 1984-2002. Arterioscler Thromb Vasc Biol. 2006;26:2745–2751.
    1. Nieto-Vazquez I., Fernández-Veledo S., Krämer D.K., Vila-Bedmar R., Garcia-Guerra L., Lorenzo M. Insulin resistance associated to obesity: the link TNF-alpha. Arch Physiol Biochem. 2008;114:183–194.
    1. Bermejo P., Martín-Aragón S., Benedí J., Susín C., Felici E., Gil P. Differences of peripheral inflammatory markers between mild cognitive impairment and Alzheimer's disease. Immunol Lett. 2008;117:198–202.
    1. van Himbergen T.M. Biomarkers for Insulin Resistance and Inflammation and the Risk for All-Cause Dementia and Alzheimer Disease. Arch Neurol. 2012;69:594–617.
    1. Swardfager W., Lanctôt K., Rothenburg L., Wong A., Cappell J., Herrmann N. A Meta-Analysis of Cytokines in Alzheimer's Disease. Biol Psychiatry. 2010;68:930–941.
    1. Gutierrez E.G., Banks W.A., Kastin A.J. Murine tumor necrosis factor alpha is transported from blood to brain in the mouse. J Neuroimmunol. 1993;47:169–176.
    1. Banks W.A., Kastin A.J., Broadwell R.D. Passage of Cytokines across the Blood-Brain Barrier. Neuroimmunomodulation. 1995;2:241–248.
    1. Davidson T.L., Monnot A., Neal A.U., Martin A.A., Horton J.J., Zheng W. The effects of a high-energy diet on hippocampal-dependent discrimination performance and blood–brain barrier integrity differ for diet-induced obese and diet-resistant rats. Physiol Behav. 2012;107:26–33.
    1. Freeman L.R., Granholm A.-C.E. Vascular changes in rat hippocampus following a high saturated fat and cholesterol diet. J Cereb Blood Flow Metab. 2011;32:643–653.
    1. Tucsek Z., Toth P., Sosnowska D., Gautam T., Mitschelen M., Koller A. Obesity in Aging Exacerbates Blood-Brain Barrier Disruption, Neuroinflammation, and Oxidative Stress in the Mouse Hippocampus: Effects on Expression of Genes Involved in Beta-Amyloid Generation and Alzheimer's Disease. J Gerontol Ser A Biol Sci Med Sci. 2014;69:1212–1226.
    1. Perry V.H., Holmes C. Microglial priming in neurodegenerative disease. Nat Publishing Group. 2014;10:217–224.
    1. Kim D.-G., Krenz A., Toussaint L.E., Maurer K.J., Robinson S.-A., Yan A. Non-alcoholic fatty liver disease induces signs of Alzheimer's disease (AD) in wild-type mice and accelerates pathological signs of AD in an AD model. J Neuroinflammation. 2016;13:1.
    1. Ledo J.H., Azevedo E.P., Beckman D., Ribeiro F.C., Santos L.E., Razolli D.S. Cross talk between brain innate immunity and serotonin signaling underlies depressive-like behavior induced by Alzheimer's amyloid- oligomers in mice. J Neurosci. 2016;36:12106–12116.
    1. Liu C.-C., Kanekiyo T., Xu H., Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol. 2013;9:106–118.
    1. Dorey E., Chang N., Liu Q.Y., Yang Z., Zhang W. Apolipoprotein E, amyloid-beta, and neuroinflammation in Alzheimer's disease. Neurosci Bull. 2014;30:317–330.
    1. Farrer L.A., Cupples L.A., Haines J.L., Hyman B., Kukull W.A., Mayeux R. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA. 1997;278:1349–1356.
    1. Krasemann S., Madore C., Cialic R., Baufeld C., Calcagno N., El Fatimy R. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity. 2017;47:566–581.e9.
    1. Haan M.N., Shemanski L., Jagust W.J., Manolio T.A., Kuller L. The role of APOE ε4 in modulating effects of other risk factors for cognitive decline in elderly persons. JAMA. 1999;282:40–46.

Source: PubMed

3
Abonneren