Tau deletion impairs intracellular β-amyloid-42 clearance and leads to more extracellular plaque deposition in gene transfer models

Irina Lonskaya, Michaeline Hebron, Wenqiang Chen, Joel Schachter, Charbel Moussa, Irina Lonskaya, Michaeline Hebron, Wenqiang Chen, Joel Schachter, Charbel Moussa

Abstract

Background: Tau is an axonal protein that binds to and regulates microtubule function. Hyper-phosphorylation of Tau reduces its binding to microtubules and it is associated with β-amyloid deposition in Alzheimer's disease. Paradoxically, Tau reduction may prevent β-amyloid pathology, raising the possibility that Tau mediates intracellular Aβ clearance. The current studies investigated the role of Tau in autophagic and proteasomal intracellular Aβ1-42 clearance and the subsequent effect on plaque deposition.

Results: Tau deletion impaired Aβ clearance via autophagy, but not the proteasome, while introduction of wild type human Tau into Tau-/- mice partially restored autophagic clearance of Aβ1-42, suggesting that exogenous Tau expression can support autophagic Aβ1-42 clearance. Tau deletion impaired autophagic flux and resulted in Aβ1-42 accumulation in pre-lysosomal autophagic vacuoles, affecting Aβ1-42 deposition into the lysosome. This autophagic defect was associated with decreased intracellular Aβ1-42 and increased plaque load in Tau-/- mice, which displayed less cell death. Nilotinib, an Abl tyrosine kinase inhibitor that promotes autophagic clearance mechanisms, reduced Aβ1-42 only when exogenous human Tau was expressed in Tau-/- mice.

Conclusions: These studies demonstrate that Tau deletion affects intracellular Aβ1-42 clearance, leading to extracellular plaque.

Figures

Figure 1
Figure 1
Inhibition of the proteasome or autophagy partially affects Aβ1-42 and p-Tau clearance. To dissect out the contribution of the proteasome from autophagy-lysosome in amyloid clearance, primary hippocampal neurons (DIV14) were infected with lentivirus plasmids, and then treated with 1 μl DMSO or autophagy modulators (Nilotinib or Bafilomycin-A1) and/or proteasome inhibitor (MG132). Histograms represent ELISA concentrations of A) Aβ1-42 and time course showing the distribution of intracellular and media B) Aβ1-42 and C) p-Tau Ser 396. D) p-Tau Ser 396 in the presence of modulators of autophagy and the proteasome. Insert). WB analysis on 4-12% NuPAGE SDS gel showing expression of the lentiviral tag V5, Aβ1-42, human Tau (HT7) and total Tau relative to actin. E) WB analysis on 10% NuPAGE SDS gel showing AT8 levels relative to actin. F) Histograms represent 20S proteasome activity assay in human M17 neuroblastoma cells. G) RT-PCR showing the effects of Nilotinib on lentiviral gene expression relative to GAPDH. # indicates significantly different to LacZ, Asterisk is significantly different to Aβ1-42 + DMSO or as indicated, bars are mean ± SEM, two-way ANOVA.
Figure 2
Figure 2
Tau deletion impairs autophagic clearance. Primary hippocampal neurons from WT and Tau−/− mice were infected with lentivirus plasmids and then treated with 1 μl DMSO or autophagy modulators (Nilotinib or Bafilomycin-A1) and/or proteasome inhibitor (MG132). Histograms represent ELISA concentrations of soluble and insoluble brain extracts of A) human Aβ1-42 and B) p-Tau Ser 396. WT (C57BL/6) and Tau−/− mice were injected with 1×106 multiplicity of infection (MOI) of lentiviral human Tau, Aβ1-42, Tau ± Aβ1-42 and adjusted with LacZ. All animals were treated 3 weeks post-injection with daily 10 mg/kg IP injection or 30 μL DMSO once a day for 3 (additional) consecutive weeks. Histograms represent ELISA concentrations of total brain extracts of C) human Aβ1-42 and D) p-Tau Ser 396. Asterisk is significantly different to Aβ1-42 + DMSO or as indicated, # indicates significantly different to Aβ1-42 + DMSO in WT mice. Bars are mean ± SEM, two-way ANOVA.
Figure 3
Figure 3
Boosting autophagy leads to Aβ1-42 clearance in WT but not Tau−/−mice. WT and Tau−/− mice were injected with lentiviral Tau ± Aβ1-42 for 3 weeks and treated I.P. with 10 mg/kg Nilotinib or DMSO once a day for 3 weeks. Brain tissues were fractionated to isolate AVs and human specific ELISA was performed. Histograms represent concentration of A) Aβ1-42, insert is WB on 4-12% SDS NuPAGE gel showing LC3 and LAMP-2a as AV markers, B) Aβ1-42 in AV20, and C) Aβ1-42 in lysosomal fractions in WT and Tau−/− mice. ELISA concentrations of Ser 396 Tau in D) AV10, E) AV20, and F) lysosomal fractions in WT and Tau−/− mice. WB analysis on 4-12% SDS NuPAGE gel of total brain extracts from WT mice showing G) V5 to verify equal expression of all lentiviruses, human Tau (HT7), total Tau, AT8 and AT180 relative to actin. H) shows p-Tau Ser 262, Ser 396 and autophagic markers Beclin-1 and LC3-I/II relative to actin. WB analysis on 4-12% SDS NuPAGE gel of total brain extracts from Tau−/− mice showing I) V5, human Tau (HT7), total Tau, AT8, and AT180 relative to tubulin. J) shows p-Tau Ser 262, Ser 396 and autophagic markers Beclin-1, LC3-I and LC3-II relative to actin. Asterisk indicates significantly different to Aβ1-42 + DMSO, bars are mean ± SEM, two-way ANOVA.
Figure 4
Figure 4
Aβ1-42 is more efficiently cleared in WT than Tau−/−mice. Staining of 20 μm thick coronal sections with p-Tau (AT8) and counterstained with DAB in A) LacZ + DMSO, B) Tau + DMSO, C) Tau + Nilotinib, D) Tau and Aβ1-42 + DMSO and E) Tau and Aβ1-42 + Nilotinib. Staining of hippocampus with AT8 and DAB in F) LacZ + DMSO, G) Tau + DMSO, H) Tau + Nilotinib, I) Tau and Aβ1-42 + DMSO and J) Tau and Aβ1-42 + Nilotinib in Tau−/− mice. Staining of 20 μm thick coronal sections with p-Tau (AT180) and DAB in K) LacZ + DMSO, L) Tau + DMSO, M) Tau + Nilotinib, N) Tau and Aβ1-42 + DMSO and O) Tau and Aβ1-42 + Nilotinib in WT mice. Staining of cortical sections in P) LacZ + DMSO, Q) Tau + DMSO, R) Tau + Nilotinib, S) Tau and Aβ1-42 + DMSO and T) Tau and Aβ1-42 + Nilotinib in Tau−/− mice. U) Histograms represent stereological quantification of p-Tau. Asterisk indicates significantly different to Aβ1-42 + DMSO, bars are mean ± SEM, two-way ANOVA.
Figure 5
Figure 5
Increased Aβ1-42 plaque deposition in Tau−/−mice. Staining of 20 μm thick coronal sections with 6E10 and DAB in wild type mice injected with lentiviral A) Aβ1-42 + DMSO, B) Aβ1-42 + Nilo, C) Aβ1-42 + Tau + DMSO, D) Aβ1-42 + Tau + Nilo and E) LacZ + DMSO in the hippocampus. Staining of 20 μm thick coronal sections with 6E10 and DAB in Tau−/− mice injected with lentiviral F) Aβ1-42 + DMSO, G) Aβ1-42 + Nilo, H) Aβ1-42 + Tau + DMSO, I) Aβ1-42 + Tau + Nilo and J) LacZ + DMSO in the cortex. Staining of 20 μm thick coronal sections with 6E10 and DAB in wild type mice injected with lentiviral K) Aβ1-42 + DMSO, L) Aβ1-42 + Nilo, M) Aβ1-42 + Tau + DMSO, N) Aβ1-42 + Tau + Nilo and O) LacZ + DMSO in the cortex. Staining of 20 μm thick coronal sections with 6E10 and DAB in Tau−/− mice injected with lentiviral P) Aβ1-42 + DMSO, Q) Aβ1-42 + Nilo, R) Aβ1-42 + Tau + DMSO, S) Aβ1-42 + Tau + Nilo and T) LacZ + DMSO in the cortex. Histograms represent U) stereological counting of Aβ1-42 positive cells and V) plaque number/mm2 in total brain. Asterisk is significantly different to control (Aβ1-42 + DMSO) or as indicated, bars are mean ± SEM, two-way ANOVA.
Figure 6
Figure 6
Tau deletion attenuates Aβ1-42-induced cell death. Cupric silver staining of 20 μm thick coronal sections in WT mice injected with lentiviral A) Aβ1-42 + DMSO, B) Aβ1-42 + Nilo, C) Aβ1-42 + Tau + DMSO, D) Aβ1-42 + Tau + Nilo and E) LacZ + DMSO. Silver staining in Tau−/− mice injected with lentiviral F) Aβ1-42 + DMSO, G) Aβ1-42 + Nilo, H) Aβ1-42 + Tau + DMSO, I) Aβ1-42 + Tau + Nilo and J) LacZ + DMSO. Histograms represent K) stereological quantification of silver-positive cells and L) caspase-3 activity. Asterisk is significantly different to Aβ1-42 + DMSO or as indicated, bars are mean ± SEM, two-way ANOVA.

References

    1. Selkoe DJ. Alzheimer's disease: genes, proteins, and therapy. Physiol Rev. 2001;81:741–766.
    1. Gotz J, Chen F, van Dorpe J, Nitsch RM. Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science. 2001;293:1491–1495. doi: 10.1126/science.1062097.
    1. King ME, Kan HM, Baas PW, Erisir A, Glabe CG, Bloom GS. Tau-dependent microtubule disassembly initiated by prefibrillar beta-amyloid. J Cell Biol. 2006;175:541–546. doi: 10.1083/jcb.200605187.
    1. Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ, Mucke L. Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer's disease mouse model. Science. 2007;316:750–754. doi: 10.1126/science.1141736.
    1. Vossel KA, Zhang K, Brodbeck J, Daub AC, Sharma P, Finkbeiner S, Cui B, Mucke L. Tau reduction prevents Abeta-induced defects in axonal transport. Science. 2010;330:198. doi: 10.1126/science.1194653.
    1. See TM, LaMarre AK, Lee SE, Miller BL. Genetic causes of frontotemporal degeneration. J Geriatr Psychiatry Neurol. 2010;23:260–268. doi: 10.1177/0891988710383574.
    1. Short RA, Graff-Radford NR, Adamson J, Baker M, Hutton M. Differences in tau and apolipoprotein E polymorphism frequencies in sporadic frontotemporal lobar degeneration syndromes. Arch Neurol. 2002;59:611–615. doi: 10.1001/archneur.59.4.611.
    1. Giannakopoulos P, Herrmann FR, Bussiere T, Bouras C, Kovari E, Perl DP, Morrison JH, Gold G, Hof PR. Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer's disease. Neurology. 2003;60:1495–1500. doi: 10.1212/01.WNL.0000063311.58879.01.
    1. Ethell DW. An amyloid-notch hypothesis for Alzheimer's disease. Neuroscientist. 2010;16:614–617. doi: 10.1177/1073858410366162.
    1. Balasubramanian AB, Kawas CH, Peltz CB, Brookmeyer R, Corrada MM. Alzheimer disease pathology and longitudinal cognitive performance in the oldest-old with no dementia. Neurology. 2012;79:915–921. doi: 10.1212/WNL.0b013e318266fc77.
    1. Kawas CH, Greenia DE, Bullain SS, Clark CM, Pontecorvo MJ, Joshi AD, Corrada MM. Amyloid imaging and cognitive decline in nondemented oldest-old: the 90+ Study. Alzheimers Dement. 2013;9:199–203. doi: 10.1016/j.jalz.2012.06.005.
    1. Robinson JL, Geser F, Corrada MM, Berlau DJ, Arnold SE, Lee VM, Kawas CH, Trojanowski JQ. Neocortical and hippocampal amyloid-beta and tau measures associate with dementia in the oldest-old. Brain. 2011;134:3708–3715. doi: 10.1093/brain/awr308.
    1. Rebeck GW, Hoe HS, Moussa CE. Beta-amyloid1-42 gene transfer model exhibits intraneuronal amyloid, gliosis, tau phosphorylation, and neuronal loss. J Biol Chem. 2010;285:7440–7446. doi: 10.1074/jbc.M109.083915.
    1. Lonskaya I, Hebron ML, Desforges NM, Franjie A, Moussa CE. Tyrosine kinase inhibition increases functional parkin-Beclin-1 interaction and enhances amyloid clearance and cognitive performance. EMBO Mol Med. 2013;5:1247–1262. doi: 10.1002/emmm.201302771.
    1. Burns MP, Zhang L, Rebeck GW, Querfurth HW, Moussa CE. Parkin promotes intracellular Abeta1-42 clearance. Hum Mol Genet. 2009;18:3206–3216. doi: 10.1093/hmg/ddp258.
    1. Lonskaya I, Hebron ML, Desforges NM, Schachter JB, Moussa CE. Nilotinib-induced autophagic changes increase endogenous parkin level and ubiquitination, leading to amyloid clearance. J Mol Med (Berl) 2014;92(4):373–386. doi: 10.1007/s00109-013-1112-3.
    1. Lonskaya I, Shekoyan AR, Hebron ML, Desforges N, Algarzae NK, Moussa CE. Diminished parkin solubility and co-localization with intraneuronal amyloid-beta are associated with autophagic defects in Alzheimer's disease. J Alzheimers Dis. 2013;33:231–247.
    1. Khandelwal PJ, Herman AM, Hoe HS, Rebeck GW, Moussa CE. Parkin mediates beclin-dependent autophagic clearance of defective mitochondria and ubiquitinated Abeta in AD models. Hum Mol Genet. 2011;20:2091–2102. doi: 10.1093/hmg/ddr091.
    1. Khandelwal PJ, Dumanis SB, Herman AM, Rebeck GW, Moussa CE. Wild type and P301L mutant Tau promote neuro-inflammation and alpha-Synuclein accumulation in lentiviral gene delivery models. Mol Cell Neurosci. 2012;49:44–53. doi: 10.1016/j.mcn.2011.09.002.
    1. Dawson HN, Cantillana V, Jansen M, Wang H, Vitek MP, Wilcock DM, Lynch JR, Laskowitz DT. Loss of tau elicits axonal degeneration in a mouse model of Alzheimer's disease. Neuroscience. 2010;169:516–531. doi: 10.1016/j.neuroscience.2010.04.037.
    1. Jimenez-Mateos EM, Gonzalez-Billault C, Dawson HN, Vitek MP, Avila J. Role of MAP1B in axonal retrograde transport of mitochondria. Biochem J. 2006;397:53–59. doi: 10.1042/BJ20060205.
    1. Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M, Agostinis P, Aguirre-Ghiso JA, Ahn HJ, Ait-Mohamed O, Ait-Si-Ali S, Akematsu T, Akira S, Al-Younes HM, Al-Zeer MA, Albert ML, Albin RL, Alegre-Abarrategui J, Aleo MF, Alirezaei M, Almasan A, Almonte-Becerril M, Amano A, Amaravadi R, Amarnath S, Amer AO, Andrieu-Abadie N, Anantharam V, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012;8:445–544. doi: 10.4161/auto.19496.
    1. Hebron ML, Lonskaya I, Moussa CE. Tyrosine kinase inhibition facilitates autophagic SNCA/alpha-synuclein clearance. Autophagy. 2013;9:1249–1250. doi: 10.4161/auto.25368.
    1. Nilsson P, Loganathan K, Sekiguchi M, Matsuba Y, Hui K, Tsubuki S, Tanaka M, Iwata N, Saito T, Saido TC. Abeta secretion and plaque formation depend on autophagy. Cell reports. 2013;5:61–69. doi: 10.1016/j.celrep.2013.08.042.
    1. Maday S, Wallace KE, Holzbaur EL. Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J Cell Biol. 2012;196:407–417. doi: 10.1083/jcb.201106120.
    1. Pacheco CD, Elrick MJ, Lieberman AP. Tau normal function influences Niemann-Pick type C disease pathogenesis in mice and modulates autophagy in NPC1-deficient cells. Autophagy. 2009;5:548–550. doi: 10.4161/auto.5.4.8364.
    1. Pacheco CD, Elrick MJ, Lieberman AP. Tau deletion exacerbates the phenotype of Niemann-Pick type C mice and implicates autophagy in pathogenesis. Hum Mol Genet. 2009;18:956–965.
    1. Hebron ML, Algarzae NK, Lonskaya I, Moussa C. Fractalkine signaling and Tau hyper-phosphorylation are associated with autophagic alterations in lentiviral Tau and Abeta1-42 gene transfer models. Exp Neurol. 2014;251:127–138. doi: 10.1016/j.expneurol.2013.01.009.
    1. Ghazi A, Henis-Korenblit S, Kenyon C. Regulation of Caenorhabditis elegans lifespan by a proteasomal E3 ligase complex. Proc Natl Acad Sci U S A. 2007;104:5947–5952. doi: 10.1073/pnas.0700638104.
    1. Simonsen A, Cumming RC, Brech A, Isakson P, Schubert DR, Finley KD. Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy. 2008;4:176–184. doi: 10.4161/auto.5269.
    1. Korolchuk VI, Mansilla A, Menzies FM, Rubinsztein DC. Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol Cell. 2009;33:517–527. doi: 10.1016/j.molcel.2009.01.021.
    1. Bloom GS. Amyloid-beta and Tau: The Trigger and Bullet in Alzheimer Disease Pathogenesis. JAMA Neurol. 2014;71(4):505–508. doi: 10.1001/jamaneurol.2013.5847.
    1. Congdon EE, Wu JW, Myeku N, Figueroa YH, Herman M, Marinec PS, Gestwicki JE, Dickey CA, Yu WH, Duff KE. Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo. Autophagy. 2012;8:609–622. doi: 10.4161/auto.19048.
    1. Kruger U, Wang Y, Kumar S, Mandelkow EM. Autophagic degradation of tau in primary neurons and its enhancement by trehalose. Neurobiol Aging. 2012;33:2291–2305. doi: 10.1016/j.neurobiolaging.2011.11.009.
    1. Rodriguez-Navarro JA, Rodriguez L, Casarejos MJ, Solano RM, Gomez A, Perucho J, Cuervo AM, Garcia de Yebenes J, Mena MA. Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation. Neurobiol Dis. 2010;39:423–438. doi: 10.1016/j.nbd.2010.05.014.
    1. Schaeffer V, Lavenir I, Ozcelik S, Tolnay M, Winkler DT, Goedert M. Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. Brain. 2012;135:2169–2177. doi: 10.1093/brain/aws143.
    1. Hebron ML, Lonskaya I, Moussa CE. Nilotinib reverses loss of dopamine neurons and improves motor behavior via autophagic degradation of alpha-synuclein in Parkinson's disease models. Hum Mol Genet. 2013;22:3315–3328. doi: 10.1093/hmg/ddt192.
    1. Marzella L, Ahlberg J, Glaumann H. Isolation of autophagic vacuoles from rat liver: morphological and biochemical characterization. J Cell Biol. 1982;93:144–154. doi: 10.1083/jcb.93.1.144.

Source: PubMed

3
Abonneren