Update on Inflammatory Biomarkers and Treatments in Ischemic Stroke

Aldo Bonaventura, Luca Liberale, Alessandra Vecchié, Matteo Casula, Federico Carbone, Franco Dallegri, Fabrizio Montecucco, Aldo Bonaventura, Luca Liberale, Alessandra Vecchié, Matteo Casula, Federico Carbone, Franco Dallegri, Fabrizio Montecucco

Abstract

After an acute ischemic stroke (AIS), inflammatory processes are able to concomitantly induce both beneficial and detrimental effects. In this narrative review, we updated evidence on the inflammatory pathways and mediators that are investigated as promising therapeutic targets. We searched for papers on PubMed and MEDLINE up to August 2016. The terms searched alone or in combination were: ischemic stroke, inflammation, oxidative stress, ischemia reperfusion, innate immunity, adaptive immunity, autoimmunity. Inflammation in AIS is characterized by a storm of cytokines, chemokines, and Damage-Associated Molecular Patterns (DAMPs) released by several cells contributing to exacerbate the tissue injury both in the acute and reparative phases. Interestingly, many biomarkers have been studied, but none of these reflected the complexity of systemic immune response. Reperfusion therapies showed a good efficacy in the recovery after an AIS. New therapies appear promising both in pre-clinical and clinical studies, but still need more detailed studies to be translated in the ordinary clinical practice. In spite of clinical progresses, no beneficial long-term interventions targeting inflammation are currently available. Our knowledge about cells, biomarkers, and inflammatory markers is growing and is hoped to better evaluate the impact of new treatments, such as monoclonal antibodies and cell-based therapies.

Keywords: auto-antibodies; biomarkers; inflammation; injury; ischemic stroke; neutrophils.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Mechanisms of neuronal death in acute ischemic stroke. After brain ischemia occurs, a reduction in the oxygen and glucose supply is carried out leading to the depolarization of membranes and finally to a great increase in intracellular calcium concentration and release of glutamate. Glutamate receptors, once activated, are responsible for the further increase in calcium concentration. The detrimental effects of this huge calcium concentration are proteolysis, lipolysis, mitochondrial damage, and increase in nitric oxide synthase activity. Despite the re-oxygenation should favor the recovery, it triggers reactive oxygen species production, amplifying the damage, ultimately leading to death of neuronal cells. Ca2+: calcium. NOS: nitrix oxide synthase. ROS: reactive oxygen species.
Figure 2
Figure 2
Inflammatory cells in post-ischemic brain injury and reparation. Inflammatory mediators released by the ischemic zone promote neutrophil activation and recruitment with a resulting effect on the blood-brain barrier and brain parenchyma. Resident macrophages of the brain (microglia) and circulating monocytes are early involved in the inflammatory response through an M1-switching with production of inflammatory mediators, such as reactive oxygen species, matrix metalloproteinases (MMPs), cytokines, and chemokines. Both neutrophils and macrophages (in particular M2 phenotype) are involved in late resolution through the production of anti-inflammatory and pro-angiogenic mediators. The adaptive immunity contribution is partly mediated by lymphocytes. CD4+, CD8+, and γδ T cells play a detrimental role, while Treg and Breg lymphocytes are involved in the resolution phase. IL: interleukin; TNF-α: tumour necrosis factor α; CCL: C-C motif chemokine ligand; VEGF: vascular endothelial growth factor; TGF-β: transforming growth factor β; IFN-γ: interferon γ.
Figure 3
Figure 3
Estimated pathways mediated by oxidative stress. ROS can activate a great variety of cell signaling pathways within a neuronal cells with contrasting properties. Pathways involved in the promoting of cell death are represented by p38, c-Jun N-terminal kinase, p53, and extracellular signal-regulated kinase, while protective pathways are those mediated by phosphoinositide 3-kinase/Akt, hypoxia-inducible factor 1, and heat shock transcription factor 1. ROS: reactive oxygen species. JNK: c-Jun N-terminal kinase. ERK: extracellular signal-regulated kinase. MAPK: mitogen-activated protein kinase. ASK-1: apoptosis signal-regulating kinase-1. PKC: protein kinase C. JAK: Janus kinase. STAT: signal transducer and activator of transcription. ATM: ataxia telangectasia mutated. PI3K: phosphatidylinositol 3-kinase. NFκB: nuclear factor kappa-light-chain-enhancer of activated B cell. PCLγ1: phospholipase C gamma 1. HSF1: heat shock transcription factor 1. HIF1: hypoxia-inducible factor 1.
Figure 4
Figure 4
Diagnostic and prognostic markers in ischemic stroke. APN: adiponectin. CRP: C-reactive protein. H-FABP: heart-type fatty acid binding protein. HMGB: high mobility group box. IL: interleukin. MDA: malonildyaldeide. MMP: matrix metalloproteinase. MPO: myeloperoxidase. NSE: neuron-specific enolase. PCT: procalcitonin. TBARS: thiobarbituric acid reactive substances. VCAM: vascular cell adhesion molecule. “?” stands for putative or uncertain role.
Figure 5
Figure 5
Anti-inflammatory treatments in stroke pathophysiology. Inflammatory and immune-mediated mechanisms of neuronal injury have been fully investigated in last years. As a result, many drugs modulating these pathways have been tested initially in animal models of stroke and then in humans. Neuronal depolarization and excitotoxicity are main targets for citalopram and donepezil. Edaravone mainly acts as a reactive oxygen species scavenger, while statins share several mechanisms with other drugs and furthermore promote angiogenesis. BBB: blood-brain barrier; CD: cluster of differentiation; COX: cyclooxygenase; IL: interleukin; O2−: superoxyde ion; TNF: tumor necrosis factor; Ra: receptor agonist.

References

    1. Warlow C., Sudlow C., Dennis M., Wardlaw J., Sandercock P. Stroke. Lancet. 2003;362:1211–1224. doi: 10.1016/S0140-6736(03)14544-8.
    1. Writing Group Members. Lloyd-Jones D., Adams R.J., Brown T.M., Carnethon M., Dai S., de Simone G., Ferguson T.B., Ford E., Furie K., et al. Heart disease and stroke statistics—2010 Update: A report from the american heart association. Circulation. 2010;121:e46–e215.
    1. Jin R., Yang G., Li G. Inflammatory mechanisms in ischemic stroke: Role of inflammatory cells. J. Leukoc. Biol. 2010;87:779–789. doi: 10.1189/jlb.1109766.
    1. Petrovic-Djergovic D., Goonewardena S.N., Pinsky D.J. Inflammatory disequilibrium in stroke. Circ. Res. 2016;119:142–158. doi: 10.1161/CIRCRESAHA.116.308022.
    1. Yellon D.M., Hausenloy D.J. Myocardial reperfusion injury. N. Engl. J. Med. 2007;357:1121–1135. doi: 10.1056/NEJMra071667.
    1. Eltzschig H.K., Eckle T. Ischemia and reperfusion—From mechanism to translation. Nat. Med. 2011;17:1391–1401. doi: 10.1038/nm.2507.
    1. Chen G.Y., Nunez G. Sterile inflammation: Sensing and reacting to damage. Nat. Rev. Immunol. 2010;10:826–837. doi: 10.1038/nri2873.
    1. Kim J., Song T.J., Park J.H., Lee H.S., Nam C.M., Nam H.S., Kim Y.D., Heo J.H. Different prognostic value of white blood cell subtypes in patients with acute cerebral infarction. Atherosclerosis. 2012;222:464–467. doi: 10.1016/j.atherosclerosis.2012.02.042.
    1. Tsai N.W., Chang W.N., Shaw C.F., Jan C.R., Lu C.H. Leucocyte apoptosis in patients with acute ischaemic stroke. Clin. Exp. Pharmacol. Physiol. 2010;37:884–888. doi: 10.1111/j.1440-1681.2010.05398.x.
    1. Garcia J.H., Liu K.F., Bree M.P. Effects of CD11b/18 monoclonal antibody on rats with permanent middle cerebral artery occlusion. Am. J. Pathol. 1996;148:241–248.
    1. Lopes Pinheiro M.A., Kooij G., Mizee M.R., Kamermans A., Enzmann G., Lyck R., Schwaninger M., Engelhardt B., de Vries H.E. Immune cell trafficking across the barriers of the central nervous system in multiple sclerosis and stroke. Biochim. Biophys. Acta. 2016;1862:461–471. doi: 10.1016/j.bbadis.2015.10.018.
    1. Perez-de-Puig I., Miro-Mur F., Ferrer-Ferrer M., Gelpi E., Pedragosa J., Justicia C., Urra X., Chamorro A., Planas A.M. Neutrophil recruitment to the brain in mouse and human ischemic stroke. Acta Neuropathol. 2015;129:239–257. doi: 10.1007/s00401-014-1381-0.
    1. Enzmann G., Mysiorek C., Gorina R., Cheng Y.J., Ghavampour S., Hannocks M.J., Prinz V., Dirnagl U., Endres M., Prinz M., et al. The neurovascular unit as a selective barrier to polymorphonuclear granulocyte (PMN) infiltration into the brain after ischemic injury. Acta Neuropathol. 2013;125:395–412. doi: 10.1007/s00401-012-1076-3.
    1. Taichman N.S., Young S., Cruchley A.T., Taylor P., Paleolog E. Human neutrophils secrete vascular endothelial growth factor. J. Leukoc. Biol. 1997;62:397–400.
    1. Christoffersson G., Vagesjo E., Vandooren J., Liden M., Massena S., Reinert R.B., Brissova M., Powers A.C., Opdenakker G., Phillipson M. VEGF-A recruits a proangiogenic MMP-9-delivering neutrophil subset that induces angiogenesis in transplanted hypoxic tissue. Blood. 2012;120:4653–4662. doi: 10.1182/blood-2012-04-421040.
    1. Cauwe B., Martens E., Proost P., Opdenakker G. Multidimensional degradomics identifies systemic autoantigens and intracellular matrix proteins as novel gelatinase B/MMP-9 substrates. Integr. Biol. 2009;1:404–426. doi: 10.1039/b904701h.
    1. Segel G.B., Halterman M.W., Lichtman M.A. The paradox of the neutrophil’s role in tissue injury. J. Leukoc. Biol. 2011;89:359–372. doi: 10.1189/jlb.0910538.
    1. Akopov S.E., Simonian N.A., Grigorian G.S. Dynamics of polymorphonuclear leukocyte accumulation in acute cerebral infarction and their correlation with brain tissue damage. Stroke. 1996;27:1739–1743. doi: 10.1161/01.STR.27.10.1739.
    1. Hernandez L.A., Grisham M.B., Twohig B., Arfors K.E., Harlan J.M., Granger D.N. Role of neutrophils in ischemia-reperfusion-induced microvascular injury. Am. J. Physiol. 1987;253:H699–H703.
    1. Rorvig S., Honore C., Larsson L.I., Ohlsson S., Pedersen C.C., Jacobsen L.C., Cowland J.B., Garred P., Borregaard N. Ficolin-1 is present in a highly mobilizable subset of human neutrophil granules and associates with the cell surface after stimulation with fmlp. J. Leukoc. Biol. 2009;86:1439–1449. doi: 10.1189/jlb.1008606.
    1. Jickling G.C., Liu D., Ander B.P., Stamova B., Zhan X., Sharp F.R. Targeting neutrophils in ischemic stroke: Translational insights from experimental studies. J. Cereb. Blood Flow Metab. 2015;35:888–901. doi: 10.1038/jcbfm.2015.45.
    1. Davalos D., Grutzendler J., Yang G., Kim J.V., Zuo Y., Jung S., Littman D.R., Dustin M.L., Gan W.B. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 2005;8:752–758. doi: 10.1038/nn1472.
    1. Prinz M., Priller J. Microglia and brain macrophages in the molecular age: From origin to neuropsychiatric disease. Nat. Rev. Neurosci. 2014;15:300–312. doi: 10.1038/nrn3722.
    1. Liu Z., Fan Y., Won S.J., Neumann M., Hu D., Zhou L., Weinstein P.R., Liu J. Chronic treatment with minocycline preserves adult new neurons and reduces functional impairment after focal cerebral ischemia. Stroke. 2007;38:146–152. doi: 10.1161/.
    1. Hoehn B.D., Palmer T.D., Steinberg G.K. Neurogenesis in rats after focal cerebral ischemia is enhanced by indomethacin. Stroke. 2005;36:2718–2724. doi: 10.1161/.
    1. Kim B.J., Kim M.J., Park J.M., Lee S.H., Kim Y.J., Ryu S., Kim Y.H., Yoon B.W. Reduced neurogenesis after suppressed inflammation by minocycline in transient cerebral ischemia in rat. J. Neurol. Sci. 2009;279:70–75. doi: 10.1016/j.jns.2008.12.025.
    1. Faustino J.V., Wang X., Johnson C.E., Klibanov A., Derugin N., Wendland M.F., Vexler Z.S. Microglial cells contribute to endogenous brain defenses after acute neonatal focal stroke. J. Neurosci. 2011;31:12992–13001. doi: 10.1523/JNEUROSCI.2102-11.2011.
    1. Breckwoldt M.O., Chen J.W., Stangenberg L., Aikawa E., Rodriguez E., Qiu S., Moskowitz M.A., Weissleder R. Tracking the inflammatory response in stroke in vivo by sensing the enzyme myeloperoxidase. Proc. Natl. Acad. Sci. USA. 2008;105:18584–18589. doi: 10.1073/pnas.0803945105.
    1. Kaito M., Araya S., Gondo Y., Fujita M., Minato N., Nakanishi M., Matsui M. Relevance of distinct monocyte subsets to clinical course of ischemic stroke patients. PLoS ONE. 2013;8:e69409. doi: 10.1371/journal.pone.0069409.
    1. Swirski F.K., Nahrendorf M., Etzrodt M., Wildgruber M., Cortez-Retamozo V., Panizzi P., Figueiredo J.L., Kohler R.H., Chudnovskiy A., Waterman P., et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science. 2009;325:612–616. doi: 10.1126/science.1175202.
    1. Offner H., Subramanian S., Parker S.M., Wang C., Afentoulis M.E., Lewis A., Vandenbark A.A., Hurn P.D. Splenic atrophy in experimental stroke is accompanied by increased regulatory T cells and circulating macrophages. J. Immunol. 2006;176:6523–6531. doi: 10.4049/jimmunol.176.11.6523.
    1. Vendrame M., Gemma C., Pennypacker K.R., Bickford P.C., Davis Sanberg C., Sanberg P.R., Willing A.E. Cord blood rescues stroke-induced changes in splenocyte phenotype and function. Exp. Neurol. 2006;199:191–200. doi: 10.1016/j.expneurol.2006.03.017.
    1. Ajmo C.T., Jr., Vernon D.O., Collier L., Hall A.A., Garbuzova-Davis S., Willing A., Pennypacker K.R. The spleen contributes to stroke-induced neurodegeneration. J. Neurosci. Res. 2008;86:2227–2234. doi: 10.1002/jnr.21661.
    1. Dotson A.L., Wang J., Saugstad J., Murphy S.J., Offner H. Splenectomy reduces infarct volume and neuroinflammation in male but not female mice in experimental stroke. J. Neuroimmunol. 2015;278:289–298. doi: 10.1016/j.jneuroim.2014.11.020.
    1. Ostrowski R.P., Schulte R.W., Nie Y., Ling T., Lee T., Manaenko A., Gridley D.S., Zhang J.H. Acute splenic irradiation reduces brain injury in the rat focal ischemic stroke model. Transl. Stroke Res. 2012;3:473–481. doi: 10.1007/s12975-012-0206-5.
    1. Kim E., Yang J., Beltran C.D., Cho S. Role of spleen-derived monocytes/macrophages in acute ischemic brain injury. J. Cereb. Blood Flow Metab. 2014;34:1411–1419. doi: 10.1038/jcbfm.2014.101.
    1. Perego C., Fumagalli S., de Simoni M.G. Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J. Neuroinflamm. 2011;8:174. doi: 10.1186/1742-2094-8-174.
    1. Gliem M., Mausberg A.K., Lee J.I., Simiantonakis I., van Rooijen N., Hartung H.P., Jander S. Macrophages prevent hemorrhagic infarct transformation in murine stroke models. Ann. Neurol. 2012;71:743–752. doi: 10.1002/ana.23529.
    1. Chu H.X., Broughton B.R., Kim H.A., Lee S., Drummond G.R., Sobey C.G. Evidence that Ly6Chi monocytes are protective in acute ischemic stroke by promoting M2 macrophage polarization. Stroke. 2015;46:1929–1937. doi: 10.1161/STROKEAHA.115.009426.
    1. Kleinschnitz C., Schwab N., Kraft P., Hagedorn I., Dreykluft A., Schwarz T., Austinat M., Nieswandt B., Wiendl H., Stoll G. Early detrimental T-cell effects in experimental cerebral ischemia are neither related to adaptive immunity nor thrombus formation. Blood. 2010;115:3835–3842. doi: 10.1182/blood-2009-10-249078.
    1. Becker K., Kindrick D., McCarron R., Hallenbeck J., Winn R. Adoptive transfer of myelin basic protein-tolerized splenocytes to naive animals reduces infarct size: A role for lymphocytes in ischemic brain injury? Stroke. 2003;34:1809–1815. doi: 10.1161/01.STR.0000078308.77727.EA.
    1. Schroeter M., Jander S., Witte O.W., Stoll G. Local immune responses in the rat cerebral cortex after middle cerebral artery occlusion. J. Neuroimmunol. 1994;55:195–203. doi: 10.1016/0165-5728(94)90010-8.
    1. Yilmaz G., Arumugam T.V., Stokes K.Y., Granger D.N. Role of T lymphocytes and interferon-γ in ischemic stroke. Circulation. 2006;113:2105–2112. doi: 10.1161/CIRCULATIONAHA.105.593046.
    1. Shichita T., Sugiyama Y., Ooboshi H., Sugimori H., Nakagawa R., Takada I., Iwaki T., Okada Y., Iida M., Cua D.J., et al. Pivotal role of cerebral interleukin-17-producing gammadeltat cells in the delayed phase of ischemic brain injury. Nat. Med. 2009;15:946–950. doi: 10.1038/nm.1999.
    1. Li G.Z., Zhong D., Yang L.M., Sun B., Zhong Z.H., Yin Y.H., Cheng J., Yan B.B., Li H.L. Expression of interleukin-17 in ischemic brain tissue. Scand. J. Immunol. 2005;62:481–486. doi: 10.1111/j.1365-3083.2005.01683.x.
    1. Liesz A., Suri-Payer E., Veltkamp C., Doerr H., Sommer C., Rivest S., Giese T., Veltkamp R. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat. Med. 2009;15:192–199. doi: 10.1038/nm.1927.
    1. Ren X., Akiyoshi K., Dziennis S., Vandenbark A.A., Herson P.S., Hurn P.D., Offner H. Regulatory B cells limit cns inflammation and neurologic deficits in murine experimental stroke. J. Neurosci. 2011;31:8556–8563. doi: 10.1523/JNEUROSCI.1623-11.2011.
    1. Lambertsen K.L., Biber K., Finsen B. Inflammatory cytokines in experimental and human stroke. J. Cereb. Blood Flow Metab. 2012;32:1677–1698. doi: 10.1038/jcbfm.2012.88.
    1. Lambertsen K.L., Meldgaard M., Ladeby R., Finsen B. A quantitative study of microglial-macrophage synthesis of tumor necrosis factor during acute and late focal cerebral ischemia in mice. J. Cereb. Blood Flow Metab. 2005;25:119–135. doi: 10.1038/sj.jcbfm.9600014.
    1. Clausen B.H., Lambertsen K.L., Meldgaard M., Finsen B. A quantitative in situ hybridization and polymerase chain reaction study of microglial-macrophage expression of interleukin-1β mRNA following permanent middle cerebral artery occlusion in mice. Neuroscience. 2005;132:879–892. doi: 10.1016/j.neuroscience.2005.01.031.
    1. Lambertsen K.L., Clausen B.H., Babcock A.A., Gregersen R., Fenger C., Nielsen H.H., Haugaard L.S., Wirenfeldt M., Nielsen M., Dagnaes-Hansen F., et al. Microglia protect neurons against ischemia by synthesis of tumor necrosis factor. J. Neurosci. 2009;29:1319–1330. doi: 10.1523/JNEUROSCI.5505-08.2009.
    1. Murray K.N., Parry-Jones A.R., Allan S.M. Interleukin-1 and acute brain injury. Front. Cell. Neurosci. 2015;9:18. doi: 10.3389/fncel.2015.00018.
    1. Luheshi N.M., Kovacs K.J., Lopez-Castejon G., Brough D., Denes A. Interleukin-1α expression precedes IL-1β after ischemic brain injury and is localised to areas of focal neuronal loss and penumbral tissues. J. Neuroinflamm. 2011;8:186. doi: 10.1186/1742-2094-8-186.
    1. Herx L.M., Yong V.W. Interleukin-1β is required for the early evolution of reactive astrogliosis following CNS lesion. J. Neuropathol. Exp. Neurol. 2001;60:961–971. doi: 10.1093/jnen/60.10.961.
    1. Thornton P., Pinteaux E., Allan S.M., Rothwell N.J. Matrix metalloproteinase-9 and urokinase plasminogen activator mediate interleukin-1-induced neurotoxicity. Mol. Cell. Neurosci. 2008;37:135–142. doi: 10.1016/j.mcn.2007.09.002.
    1. Allen C., Thornton P., Denes A., McColl B.W., Pierozynski A., Monestier M., Pinteaux E., Rothwell N.J., Allan S.M. Neutrophil cerebrovascular transmigration triggers rapid neurotoxicity through release of proteases associated with decondensed DNA. J. Immunol. 2012;189:381–392. doi: 10.4049/jimmunol.1200409.
    1. Amantea D., Micieli G., Tassorelli C., Cuartero M.I., Ballesteros I., Certo M., Moro M.A., Lizasoain I., Bagetta G. Rational modulation of the innate immune system for neuroprotection in ischemic stroke. Front. Neurosci. 2015;9:147. doi: 10.3389/fnins.2015.00147.
    1. Grilli M., Barbieri I., Basudev H., Brusa R., Casati C., Lozza G., Ongini E. Interleukin-10 modulates neuronal threshold of vulnerability to ischaemic damage. Eur. J. Neurosci. 2000;12:2265–2272. doi: 10.1046/j.1460-9568.2000.00090.x.
    1. Frenkel D., Huang Z., Maron R., Koldzic D.N., Moskowitz M.A., Weiner H.L. Neuroprotection by IL-10-producing MOG CD4+ T cells following ischemic stroke. J. Neurol. Sci. 2005;233:125–132. doi: 10.1016/j.jns.2005.03.022.
    1. Yan J., Greer J.M., McCombe P.A. Prolonged elevation of cytokine levels after human acute ischaemic stroke with evidence of individual variability. J. Neuroimmunol. 2012;246:78–84. doi: 10.1016/j.jneuroim.2012.02.013.
    1. Doyle K.P., Cekanaviciute E., Mamer L.E., Buckwalter M.S. TGFβ signaling in the brain increases with aging and signals to astrocytes and innate immune cells in the weeks after stroke. J. Neuroinflamm. 2010;7:62. doi: 10.1186/1742-2094-7-62.
    1. Zaremba J., Losy J. Early TNF-α levels correlate with ischaemic stroke severity. Acta Neurol. Scand. 2001;104:288–295. doi: 10.1034/j.1600-0404.2001.00053.x.
    1. Beridze M., Sanikidze T., Shakarishvili R., Intskirveli N., Bornstein N.M. Selected acute phase CSF factors in ischemic stroke: Findings and prognostic value. BMC Neurol. 2011;11:41. doi: 10.1186/1471-2377-11-41.
    1. Waje-Andreassen U., Krakenes J., Ulvestad E., Thomassen L., Myhr K.M., Aarseth J., Vedeler C.A. IL-6: An early marker for outcome in acute ischemic stroke. Acta Neurol. Scand. 2005;111:360–365. doi: 10.1111/j.1600-0404.2005.00416.x.
    1. Huang J., Li Y., Tang Y., Tang G., Yang G.Y., Wang Y. CXCR4 antagonist AMD3100 protects blood-brain barrier integrity and reduces inflammatory response after focal ischemia in mice. Stroke. 2013;44:190–197. doi: 10.1161/STROKEAHA.112.670299.
    1. Ruscher K., Kuric E., Liu Y., Walter H.L., Issazadeh-Navikas S., Englund E., Wieloch T. Inhibition of CXCL12 signaling attenuates the postischemic immune response and improves functional recovery after stroke. J. Cereb. Blood Flow Metab. 2013;33:1225–1234. doi: 10.1038/jcbfm.2013.71.
    1. Wang Y., Huang J., Li Y., Yang G.Y. Roles of chemokine CXCL12 and its receptors in ischemic stroke. Curr. Drug Targets. 2012;13:166–172. doi: 10.2174/138945012799201603.
    1. Shyu W.C., Lin S.Z., Yen P.S., Su C.Y., Chen D.C., Wang H.J., Li H. Stromal cell-derived factor-1α promotes neuroprotection, angiogenesis, and mobilization/homing of bone marrow-derived cells in stroke rats. J. Pharmacol. Exp. Ther. 2008;324:834–849. doi: 10.1124/jpet.107.127746.
    1. Denes A., Ferenczi S., Halasz J., Kornyei Z., Kovacs K.J. Role of CX3CR1 (fractalkine receptor) in brain damage and inflammation induced by focal cerebral ischemia in mouse. J. Cereb. Blood Flow Metab. 2008;28:1707–1721. doi: 10.1038/jcbfm.2008.64.
    1. Cipriani R., Villa P., Chece G., Lauro C., Paladini A., Micotti E., Perego C., de Simoni M.G., Fredholm B.B., Eusebi F., et al. CX3CL1 is neuroprotective in permanent focal cerebral ischemia in rodents. J. Neurosci. 2011;31:16327–16335. doi: 10.1523/JNEUROSCI.3611-11.2011.
    1. Tang Z., Gan Y., Liu Q., Yin J.X., Liu Q., Shi J., Shi F.D. CX3CR1 deficiency suppresses activation and neurotoxicity of microglia/macrophage in experimental ischemic stroke. J. Neuroinflamm. 2014;11:26. doi: 10.1186/1742-2094-11-26.
    1. Donohue M.M., Cain K., Zierath D., Shibata D., Tanzi P.M., Becker K.J. Higher plasma fractalkine is associated with better 6-month outcome from ischemic stroke. Stroke. 2012;43:2300–2306. doi: 10.1161/STROKEAHA.112.657411.
    1. Rosito M., Lauro C., Chece G., Porzia A., Monaco L., Mainiero F., Catalano M., Limatola C., Trettel F. Trasmembrane chemokines CX3CL1 and CXCL16 drive interplay between neurons, microglia and astrocytes to counteract pMCAO and excitotoxic neuronal death. Front. Cell. Neurosci. 2014;8:193. doi: 10.3389/fncel.2014.00193.
    1. Schilling M., Strecker J.K., Ringelstein E.B., Schabitz W.R., Kiefer R. The role of cc chemokine receptor 2 on microglia activation and blood-borne cell recruitment after transient focal cerebral ischemia in mice. Brain Res. 2009;1289:79–84. doi: 10.1016/j.brainres.2009.06.054.
    1. Che X., Ye W., Panga L., Wu D.C., Yang G.Y. Monocyte chemoattractant protein-1 expressed in neurons and astrocytes during focal ischemia in mice. Brain Res. 2001;902:171–177. doi: 10.1016/S0006-8993(01)02328-9.
    1. Strecker J.K., Minnerup J., Schutte-Nutgen K., Gess B., Schabitz W.R., Schilling M. Monocyte chemoattractant protein-1-deficiency results in altered blood-brain barrier breakdown after experimental stroke. Stroke. 2013;44:2536–2544. doi: 10.1161/STROKEAHA.111.000528.
    1. Yan Y.P., Sailor K.A., Lang B.T., Park S.W., Vemuganti R., Dempsey R.J. Monocyte chemoattractant protein-1 plays a critical role in neuroblast migration after focal cerebral ischemia. J. Cereb. Blood Flow Metab. 2007;27:1213–1224. doi: 10.1038/sj.jcbfm.9600432.
    1. Strecker J.K., Minnerup J., Gess B., Ringelstein E.B., Schabitz W.R., Schilling M. Monocyte chemoattractant protein-1-deficiency impairs the expression of IL-6, IL-1β and G-CSF after transient focal ischemia in mice. PLoS ONE. 2011;6:e25863. doi: 10.1371/journal.pone.0025863.
    1. Schuette-Nuetgen K., Strecker J.K., Minnerup J., Ringelstein E.B., Schilling M. MCP-1/CCR-2-double-deficiency severely impairs the migration of hematogenous inflammatory cells following transient cerebral ischemia in mice. Exp. Neurol. 2012;233:849–858. doi: 10.1016/j.expneurol.2011.12.011.
    1. Carbone F., Teixeira P.C., Braunersreuther V., Mach F., Vuilleumier N., Montecucco F. Pathophysiology and treatments of oxidative injury in ischemic stroke: Focus on the phagocytic NADPH oxidase 2. Antioxid. Redox Signal. 2015;23:460–489. doi: 10.1089/ars.2013.5778.
    1. Lambeth J.D. Nox enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 2004;4:181–189. doi: 10.1038/nri1312.
    1. Wang Q., Tang X.N., Yenari M.A. The inflammatory response in stroke. J. Neuroimmunol. 2007;184:53–68. doi: 10.1016/j.jneuroim.2006.11.014.
    1. Vallet P., Charnay Y., Steger K., Ogier-Denis E., Kovari E., Herrmann F., Michel J.P., Szanto I. Neuronal expression of the NADPH oxidase NOX4, and its regulation in mouse experimental brain ischemia. Neuroscience. 2005;132:233–238. doi: 10.1016/j.neuroscience.2004.12.038.
    1. Drummond G.R., Sobey C.G. Endothelial NADPH oxidases: Which NOX to target in vascular disease? Trends Endocrinol. Metab. 2014;25:452–463. doi: 10.1016/j.tem.2014.06.012.
    1. Douglas G., Bendall J.K., Crabtree M.J., Tatham A.L., Carter E.E., Hale A.B., Channon K.M. Endothelial-specific NOX2 overexpression increases vascular superoxide and macrophage recruitment in ApoE−/− mice. Cardiovasc. Res. 2012;94:20–29. doi: 10.1093/cvr/cvs026.
    1. Ray R., Murdoch C.E., Wang M., Santos C.X., Zhang M., Alom-Ruiz S., Anilkumar N., Ouattara A., Cave A.C., Walker S.J., et al. Endothelial NOX4 NADPH oxidase enhances vasodilatation and reduces blood pressure in vivo. Arterioscler. Thromb. Vasc. Biol. 2011;31:1368–1376. doi: 10.1161/ATVBAHA.110.219238.
    1. Walder C.E., Green S.P., Darbonne W.C., Mathias J., Rae J., Dinauer M.C., Curnutte J.T., Thomas G.R. Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase. Stroke. 1997;28:2252–2258. doi: 10.1161/01.STR.28.11.2252.
    1. Thomas S.R., Witting P.K., Drummond G.R. Redox control of endothelial function and dysfunction: Molecular mechanisms and therapeutic opportunities. Antioxid. Redox Signal. 2008;10:1713–1765. doi: 10.1089/ars.2008.2027.
    1. Craige S.M., Chen K., Pei Y., Li C., Huang X., Chen C., Shibata R., Sato K., Walsh K., Keaney J.F., Jr. NADPH oxidase 4 promotes endothelial angiogenesis through endothelial nitric oxide synthase activation. Circulation. 2011;124:731–740. doi: 10.1161/CIRCULATIONAHA.111.030775.
    1. Kleinschnitz C., Grund H., Wingler K., Armitage M.E., Jones E., Mittal M., Barit D., Schwarz T., Geis C., Kraft P., et al. Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biol. 2010;8:e1000479. doi: 10.1371/journal.pbio.1000479.
    1. Lakhan S.E., Kirchgessner A., Hofer M. Inflammatory mechanisms in ischemic stroke: Therapeutic approaches. J. Transl. Med. 2009;7:97. doi: 10.1186/1479-5876-7-97.
    1. Yang Z.J., Xie Y., Bosco G.M., Chen C., Camporesi E.M. Hyperbaric oxygenation alleviates MCAO-induced brain injury and reduces hydroxyl radical formation and glutamate release. Eur. J. Appl. Physiol. 2010;108:513–522. doi: 10.1007/s00421-009-1229-9.
    1. Cheret C., Gervais A., Lelli A., Colin C., Amar L., Ravassard P., Mallet J., Cumano A., Krause K.H., Mallat M. Neurotoxic activation of microglia is promoted by a NOX1-dependent NADPH oxidase. J. Neurosci. 2008;28:12039–12051. doi: 10.1523/JNEUROSCI.3568-08.2008.
    1. Kim H.S., Cho I.H., Kim J.E., Shin Y.J., Jeon J.H., Kim Y., Yang Y.M., Lee K.H., Lee J.W., Lee W.J., et al. Ethyl pyruvate has an anti-inflammatory effect by inhibiting ROS-dependent STAT signaling in activated microglia. Free Radic. Biol. Med. 2008;45:950–963. doi: 10.1016/j.freeradbiomed.2008.06.009.
    1. Kaspar J.W., Niture S.K., Jaiswal A.K. Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic. Biol. Med. 2009;47:1304–1309. doi: 10.1016/j.freeradbiomed.2009.07.035.
    1. Rizzo M.T., Leaver H.A. Brain endothelial cell death: Modes, signaling pathways, and relevance to neural development, homeostasis, and disease. Mol. Neurobiol. 2010;42:52–63. doi: 10.1007/s12035-010-8132-6.
    1. Liesz A., Dalpke A., Mracsko E., Antoine D.J., Roth S., Zhou W., Yang H., Na S.Y., Akhisaroglu M., Fleming T., et al. DAMP signaling is a key pathway inducing immune modulation after brain injury. J. Neurosci. 2015;35:583–598. doi: 10.1523/JNEUROSCI.2439-14.2015.
    1. Zhang Q., Raoof M., Chen Y., Sumi Y., Sursal T., Junger W., Brohi K., Itagaki K., Hauser C.J. Circulating mitochondrial damps cause inflammatory responses to injury. Nature. 2010;464:104–107. doi: 10.1038/nature08780.
    1. Maeda A., Fadeel B. Mitochondria released by cells undergoing TNF-α-induced necroptosis act as danger signals. Cell Death Dis. 2014;5:e1312. doi: 10.1038/cddis.2014.277.
    1. Kawai T., Akira S. The role of pattern-recognition receptors in innate immunity: Update on toll-like receptors. Nat. Immunol. 2010;11:373–384. doi: 10.1038/ni.1863.
    1. Hyakkoku K., Hamanaka J., Tsuruma K., Shimazawa M., Tanaka H., Uematsu S., Akira S., Inagaki N., Nagai H., Hara H. Toll-like receptor 4 (TLR4), but not TLR3 or TLR9, knock-out mice have neuroprotective effects against focal cerebral ischemia. Neuroscience. 2010;171:258–267. doi: 10.1016/j.neuroscience.2010.08.054.
    1. Ceruti S., Villa G., Genovese T., Mazzon E., Longhi R., Rosa P., Bramanti P., Cuzzocrea S., Abbracchio M.P. The P2Y-like receptor GPR17 as a sensor of damage and a new potential target in spinal cord injury. Brain. 2009;132:2206–2218. doi: 10.1093/brain/awp147.
    1. Yang F., Wang Z., Wei X., Han H., Meng X., Zhang Y., Shi W., Li F., Xin T., Pang Q., et al. NLRP3 deficiency ameliorates neurovascular damage in experimental ischemic stroke. J. Cereb. Blood Flow Metab. 2014;34:660–667. doi: 10.1038/jcbfm.2013.242.
    1. Weismann D., Binder C.J. The innate immune response to products of phospholipid peroxidation. Biochim. Biophys. Acta. 2012;1818:2465–2475. doi: 10.1016/j.bbamem.2012.01.018.
    1. Abe T., Shimamura M., Jackman K., Kurinami H., Anrather J., Zhou P., Iadecola C. Key role of CD36 in toll-like receptor 2 signaling in cerebral ischemia. Stroke. 2010;41:898–904. doi: 10.1161/STROKEAHA.109.572552.
    1. Zhong Z., Zhai Y., Liang S., Mori Y., Han R., Sutterwala F.S., Qiao L. TRPM2 links oxidative stress to NLRP3 inflammasome activation. Nat. Commun. 2013;4:1611. doi: 10.1038/ncomms2608.
    1. Iyer S.S., He Q., Janczy J.R., Elliott E.I., Zhong Z., Olivier A.K., Sadler J.J., Knepper-Adrian V., Han R., Qiao L., et al. Mitochondrial cardiolipin is required for NLRP3 inflammasome activation. Immunity. 2013;39:311–323. doi: 10.1016/j.immuni.2013.08.001.
    1. Lotze M.T., Tracey K.J. High-mobility group box 1 protein (HMGB1): Nuclear weapon in the immune arsenal. Nat. Rev. Immunol. 2005;5:331–342. doi: 10.1038/nri1594.
    1. Rouhiainen A., Kuja-Panula J., Wilkman E., Pakkanen J., Stenfors J., Tuominen R.K., Lepantalo M., Carpen O., Parkkinen J., Rauvala H. Regulation of monocyte migration by amphoterin (HMGB1) Blood. 2004;104:1174–1182. doi: 10.1182/blood-2003-10-3536.
    1. Hu J., Liu B., Zhao Q., Jin P., Hua F., Zhang Z., Liu Y., Zan K., Cui G., Ye X. Bone marrow stromal cells inhibits HMGB1-mediated inflammation after stroke in type 2 diabetic rats. Neuroscience. 2016;324:11–19. doi: 10.1016/j.neuroscience.2016.02.058.
    1. Shichita T., Hasegawa E., Kimura A., Morita R., Sakaguchi R., Takada I., Sekiya T., Ooboshi H., Kitazono T., Yanagawa T., et al. Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat. Med. 2012;18:911–917. doi: 10.1038/nm.2749.
    1. Loser K., Vogl T., Voskort M., Lueken A., Kupas V., Nacken W., Klenner L., Kuhn A., Foell D., Sorokin L., et al. The Toll-like receptor 4 ligands Mrp8 and Mrp14 are crucial in the development of autoreactive CD8+ T cells. Nat. Med. 2010;16:713–717. doi: 10.1038/nm.2150.
    1. Qiang X., Yang W.L., Wu R., Zhou M., Jacob A., Dong W., Kuncewitch M., Ji Y., Yang H., Wang H., et al. Cold-inducible RNA-binding protein (CIRP) triggers inflammatory responses in hemorrhagic shock and sepsis. Nat. Med. 2013;19:1489–1495. doi: 10.1038/nm.3368.
    1. Yang Y., Liu B., Dai J., Srivastava P.K., Zammit D.J., Lefrancois L., Li Z. Heat shock protein GP96 is a master chaperone for toll-like receptors and is important in the innate function of macrophages. Immunity. 2007;26:215–226. doi: 10.1016/j.immuni.2006.12.005.
    1. Ehrenstein M.R., Notley C.A. The importance of natural IgM: Scavenger, protector and regulator. Nat. Rev. Immunol. 2010;10:778–786. doi: 10.1038/nri2849.
    1. Vargas M.E., Watanabe J., Singh S.J., Robinson W.H., Barres B.A. Endogenous antibodies promote rapid myelin clearance and effective axon regeneration after nerve injury. Proc. Natl. Acad. Sci. USA. 2010;107:11993–11998. doi: 10.1073/pnas.1001948107.
    1. Bornstein N.M., Aronovich B., Korczyn A.D., Shavit S., Michaelson D.M., Chapman J. Antibodies to brain antigens following stroke. Neurology. 2001;56:529–530. doi: 10.1212/WNL.56.4.529.
    1. Soussan L., Tchernakov K., Bachar-Lavi O., Yuvan T., Wertman E., Michaelson D.M. Antibodies to different isoforms of the heavy neurofilament protein (NF-H) in normal aging and Alzheimer’s disease. Mol. Neurobiol. 1994;9:83–91. doi: 10.1007/BF02816107.
    1. Dambinova S.A., Khounteev G.A., Izykenova G.A., Zavolokov I.G., Ilyukhina A.Y., Skoromets A.A. Blood test detecting autoantibodies to N-methyl-d-aspartate neuroreceptors for evaluation of patients with transient ischemic attack and stroke. Clin. Chem. 2003;49:1752–1762. doi: 10.1373/49.10.1752.
    1. Kimura A., Sakurai T., Yamada M., Koumura A., Hayashi Y., Tanaka Y., Hozumi I., Takemura M., Seishima M., Inuzuka T. Elevated anti-heat shock protein 60 antibody titer is related to white matter hyperintensities. J. Stroke Cerebrovasc. Dis. 2012;21:305–309. doi: 10.1016/j.jstrokecerebrovasdis.2010.09.003.
    1. Becker K.J., Kalil A.J., Tanzi P., Zierath D.K., Savos A.V., Gee J.M., Hadwin J., Carter K.T., Shibata D., Cain K.C. Autoimmune responses to the brain after stroke are associated with worse outcome. Stroke. 2011;42:2763–2769. doi: 10.1161/STROKEAHA.111.619593.
    1. Shibata D., Cain K., Tanzi P., Zierath D., Becker K. Myelin basic protein autoantibodies, white matter disease and stroke outcome. J. Neuroimmunol. 2012;252:106–112. doi: 10.1016/j.jneuroim.2012.08.006.
    1. Schoppet M., Sattler A.M., Schaefer J.R., Herzum M., Maisch B., Hofbauer L.C. Increased osteoprotegerin serum levels in men with coronary artery disease. J. Clin. Endocrinol. Metab. 2003;88:1024–1028. doi: 10.1210/jc.2002-020775.
    1. Osako M.K., Nakagami H., Koibuchi N., Shimizu H., Nakagami F., Koriyama H., Shimamura M., Miyake T., Rakugi H., Morishita R. Estrogen inhibits vascular calcification via vascular RANKL system: Common mechanism of osteoporosis and vascular calcification. Circ. Res. 2010;107:466–475. doi: 10.1161/CIRCRESAHA.110.216846.
    1. Maruyama K., Takada Y., Ray N., Kishimoto Y., Penninger J.M., Yasuda H., Matsuo K. Receptor activator of NF-κB ligand and osteoprotegerin regulate proinflammatory cytokine production in mice. J. Immunol. 2006;177:3799–3805. doi: 10.4049/jimmunol.177.6.3799.
    1. Ferrari-Lacraz S., Ferrari S. Do RANKL inhibitors (denosumab) affect inflammation and immunity? Osteoporos. Int. 2011;22:435–446. doi: 10.1007/s00198-010-1326-y.
    1. Ustundag M., Orak M., Guloglu C., Tamam Y., Sayhan M.B., Kale E. The role of serum osteoprotegerin and S-100 protein levels in patients with acute ischaemic stroke: Determination of stroke subtype, severity and mortality. J. Int. Med. Res. 2011;39:780–789. doi: 10.1177/147323001103900310.
    1. Jensen J.K., Ueland T., Atar D., Gullestad L., Mickley H., Aukrust P., Januzzi J.L. Osteoprotegerin concentrations and prognosis in acute ischaemic stroke. J. Intern. Med. 2010;267:410–417. doi: 10.1111/j.1365-2796.2009.02163.x.
    1. Guldiken B., Guldiken S., Turgut B., Turgut N., Demir M., Celik Y., Arikan E., Tugrul A. Serum osteoprotegerin levels in patients with acute atherothrombotic stroke and lacunar infarct. Thromb. Res. 2007;120:511–516. doi: 10.1016/j.thromres.2006.12.004.
    1. Kim B.J., Lee S.H., Ryu W.S., Kim C.K., Yoon B.W. Adipocytokines and ischemic stroke: Differential associations between stroke subtypes. J. Neurol. Sci. 2012;312:117–122. doi: 10.1016/j.jns.2011.08.007.
    1. Zhang F., Wang S., Signore A.P., Chen J. Neuroprotective effects of leptin against ischemic injury induced by oxygen-glucose deprivation and transient cerebral ischemia. Stroke. 2007;38:2329–2336. doi: 10.1161/STROKEAHA.107.482786.
    1. Carbone F., Burger F., Roversi G., Tamborino C., Casetta I., Seraceni S., Trentini A., Padroni M., Bertolotto M., Dallegri F., et al. Leptin/adiponectin ratio predicts poststroke neurological outcome. Eur. J. Clin. Investig. 2015;45:1184–1191. doi: 10.1111/eci.12538.
    1. Valerio A., Dossena M., Bertolotti P., Boroni F., Sarnico I., Faraco G., Chiarugi A., Frontini A., Giordano A., Liou H.C., et al. Leptin is induced in the ischemic cerebral cortex and exerts neuroprotection through NF-κB/c-Rel-dependent transcription. Stroke. 2009;40:610–617. doi: 10.1161/STROKEAHA.108.528588.
    1. Zhang J., Deng Z., Liao J., Song C., Liang C., Xue H., Wang L., Zhang K., Yan G. Leptin attenuates cerebral ischemia injury through the promotion of energy metabolism via the PI3K/Akt pathway. J. Cereb. Blood Flow Metab. 2013;33:567–574. doi: 10.1038/jcbfm.2012.202.
    1. Avraham Y., Davidi N., Lassri V., Vorobiev L., Kabesa M., Dayan M., Chernoguz D., Berry E., Leker R.R. Leptin induces neuroprotection neurogenesis and angiogenesis after stroke. Curr. Neurovasc. Res. 2011;8:313–322. doi: 10.2174/156720211798120954.
    1. Zhang J.Y., Jr., Si Y.L., Liao J., Yan G.T., Deng Z.H., Xue H., Wang L.H., Zhang K. Leptin administration alleviates ischemic brain injury in mice by reducing oxidative stress and subsequent neuronal apoptosis. J. Trauma Acute Care Surg. 2012;72:982–991. doi: 10.1097/TA.0b013e3182405459.
    1. Efstathiou S.P., Tsioulos D.I., Tsiakou A.G., Gratsias Y.E., Pefanis A.V., Mountokalakis T.D. Plasma adiponectin levels and five-year survival after first-ever ischemic stroke. Stroke. 2005;36:1915–1919. doi: 10.1161/01.STR.0000177874.29849.f0.
    1. Shen L., Miao J., Yuan F., Zhao Y., Tang Y., Wang Y., Zhao Y., Yang G.Y. Overexpression of adiponectin promotes focal angiogenesis in the mouse brain following middle cerebral artery occlusion. Gene Ther. 2013;20:93–101. doi: 10.1038/gt.2012.7.
    1. Miao J., Shen L.H., Tang Y.H., Wang Y.T., Tao M.X., Jin K.L., Zhao Y.J., Yang G.Y. Overexpression of adiponectin improves neurobehavioral outcomes after focal cerebral ischemia in aged mice. CNS Neurosci. Ther. 2013;19:969–977. doi: 10.1111/cns.12198.
    1. Scatena M., Liaw L., Giachelli C.M. Osteopontin: A multifunctional molecule regulating chronic inflammation and vascular disease. Arterioscler. Thromb. Vasc. Biol. 2007;27:2302–2309. doi: 10.1161/ATVBAHA.107.144824.
    1. Mendioroz M., Fernandez-Cadenas I., Rosell A., Delgado P., Domingues-Montanari S., Ribo M., Penalba A., Quintana M., Alvarez-Sabin J., Montaner J. Osteopontin predicts long-term functional outcome among ischemic stroke patients. J. Neurol. 2011;258:486–493. doi: 10.1007/s00415-010-5785-z.
    1. Carbone F., Vuilleumier N., Burger F., Roversi G., Tamborino C., Casetta I., Seraceni S., Trentini A., Padroni M., Dallegri F., et al. Serum osteopontin levels are upregulated and predict disability after an ischaemic stroke. Eur. J. Clin. Investig. 2015;45:579–586. doi: 10.1111/eci.12446.
    1. Meller R., Stevens S.L., Minami M., Cameron J.A., King S., Rosenzweig H., Doyle K., Lessov N.S., Simon R.P., Stenzel-Poore M.P. Neuroprotection by osteopontin in stroke. J. Cereb. Blood Flow Metab. 2005;25:217–225. doi: 10.1038/sj.jcbfm.9600022.
    1. Doyle K.P., Yang T., Lessov N.S., Ciesielski T.M., Stevens S.L., Simon R.P., King J.S., Stenzel-Poore M.P. Nasal administration of osteopontin peptide mimetics confers neuroprotection in stroke. J. Cereb. Blood Flow Metab. 2008;28:1235–1248. doi: 10.1038/jcbfm.2008.17.
    1. Gliem M., Krammes K., Liaw L., van Rooijen N., Hartung H.P., Jander S. Macrophage-derived osteopontin induces reactive astrocyte polarization and promotes re-establishment of the blood brain barrier after ischemic stroke. Glia. 2015;63:2198–2207. doi: 10.1002/glia.22885.
    1. Dassan P., Keir G., Brown M.M. Criteria for a clinically informative serum biomarker in acute ischaemic stroke: A review of S100B. Cerebrovasc. Dis. 2009;27:295–302. doi: 10.1159/000199468.
    1. Ye H., Wang L., Yang X.K., Fan L.P., Wang Y.G., Guo L. Serum S100B levels may be associated with cerebral infarction: A meta-analysis. J. Neurol. Sci. 2015;348:81–88. doi: 10.1016/j.jns.2014.11.010.
    1. Kazmierski R., Michalak S., Wencel-Warot A., Nowinski W.L. Serum tight-junction proteins predict hemorrhagic transformation in ischemic stroke patients. Neurology. 2012;79:1677–1685. doi: 10.1212/WNL.0b013e31826e9a83.
    1. Tsai N.W., Chang Y.T., Huang C.R., Lin Y.J., Lin W.C., Cheng B.C., Su C.M., Chiang Y.F., Chen S.F., Huang C.C., et al. Association between oxidative stress and outcome in different subtypes of acute ischemic stroke. BioMed Res. Int. 2014;2014:256879. doi: 10.1155/2014/256879.
    1. Lorente L., Martin M.M., Abreu-Gonzalez P., Ramos L., Argueso M., Sole-Violan J., Riano-Ruiz M., Jimenez A. Serum malondialdehyde levels in patients with malignant middle cerebral artery infarction are associated with mortality. PLoS ONE. 2015;10:e0125893. doi: 10.1371/journal.pone.0125893.
    1. Bharosay A., Bharosay V.V., Varma M., Saxena K., Sodani A., Saxena R. Correlation of brain biomarker neuron specific enolase (NSE) with degree of disability and neurological worsening in cerebrovascular stroke. Indian J. Clin. Biochem. 2012;27:186–190. doi: 10.1007/s12291-011-0172-9.
    1. Singh H.V., Pandey A., Shrivastava A.K., Raizada A., Singh S.K., Singh N. Prognostic value of neuron specific enolase and IL-10 in ischemic stroke and its correlation with degree of neurological deficit. Clin. Chim. Acta. 2013;419:136–138. doi: 10.1016/j.cca.2013.02.014.
    1. Zaheer S., Beg M., Rizvi I., Islam N., Ullah E., Akhtar N. Correlation between serum neuron specific enolase and functional neurological outcome in patients of acute ischemic stroke. Ann. Indian Acad. Neurol. 2013;16:504–508.
    1. Park S.Y., Kim M.H., Kim O.J., Ahn H.J., Song J.Y., Jeong J.Y., Oh S.H. Plasma heart-type fatty acid binding protein level in acute ischemic stroke: Comparative analysis with plasma S100B level for diagnosis of stroke and prediction of long-term clinical outcome. Clin. Neurol. Neurosurg. 2013;115:405–410. doi: 10.1016/j.clineuro.2012.06.004.
    1. Kim B.J., Kim Y.J., Ahn S.H., Kim N.Y., Kang D.W., Kim J.S., Kwon S.U. The second elevation of neuron-specific enolase peak after ischemic stroke is associated with hemorrhagic transformation. J. Stroke Cerebrovasc. Dis. 2014;23:2437–2443. doi: 10.1016/j.jstrokecerebrovasdis.2014.05.020.
    1. Lu K., Xu X., Cui S., Wang F., Zhang B., Zhao Y. Serum neuron specific enolase level as a predictor of prognosis in acute ischemic stroke patients after intravenous thrombolysis. J. Neurol. Sci. 2015;359:202–206. doi: 10.1016/j.jns.2015.10.034.
    1. Haupt W.F., Chopan G., Sobesky J., Liu W.C., Dohmen C. Prognostic value of somatosensory evoked potentials, neuron-specific enolase, and S100 for short-term outcome in ischemic stroke. J. Neurophysiol. 2016;115:1273–1278. doi: 10.1152/jn.01012.2015.
    1. Ozkan A.K., Yemisci O.U., Saracgil Cosar S.N., Oztop P., Turhan N. Can high-sensitivity C-reactive protein and ferritin predict functional outcome in acute ischemic stroke? A prospective study. Top. Stroke Rehabil. 2013;20:528–536. doi: 10.1310/tsr2006-528.
    1. Taheraghdam A., Aminnejad S., Pashapour A., Rikhtegar R., Ghabili K. Is there a correlation between hs-CRP levels and functional outcome of ischemic stroke? Pak. J. Med. Sci. 2013;29:166–169.
    1. VanGilder R.L., Davidov D.M., Stinehart K.R., Huber J.D., Turner R.C., Wilson K.S., Haney E., Davis S.M., Chantler P.D., Theeke L., et al. C-reactive protein and long-term ischemic stroke prognosis. J. Clin. Neurosci. 2014;21:547–553. doi: 10.1016/j.jocn.2013.06.015.
    1. Karlinski M., Bembenek J., Grabska K., Kobayashi A., Baranowska A., Litwin T., Czlonkowska A. Routine serum C-reactive protein and stroke outcome after intravenous thrombolysis. Acta Neurol. Scand. 2014;130:305–311. doi: 10.1111/ane.12227.
    1. Pandey A., Shrivastava A.K., Saxena K. Neuron specific enolase and c-reactive protein levels in stroke and its subtypes: Correlation with degree of disability. Neurochem. Res. 2014;39:1426–1432. doi: 10.1007/s11064-014-1328-9.
    1. Li Y.M., Liu X.Y. Serum levels of procalcitonin and high sensitivity C-reactive protein are associated with long-term mortality in acute ischemic stroke. J. Neurol. Sci. 2015;352:68–73. doi: 10.1016/j.jns.2015.03.032.
    1. Rocco A., Ringleb P.A., Grittner U., Nolte C.H., Schneider A., Nagel S. Follow-up C-reactive protein level is more strongly associated with outcome in stroke patients than admission levels. Neurol. Sci. 2015;36:2235–2241. doi: 10.1007/s10072-015-2342-7.
    1. Deng W.J., Shen R.L., Li M., Teng J.F. Relationship between procalcitonin serum levels and functional outcome in stroke patients. Cell Mol. Neurobiol. 2015;35:355–361. doi: 10.1007/s10571-014-0131-0.
    1. Wang C., Gao L., Zhang Z.G., Li Y.Q., Yang Y.L., Chang T., Zheng L.L., Zhang X.Y., Man M.H., Li L.H. Procalcitonin is a stronger predictor of long-term functional outcome and mortality than high-sensitivity C-reactive protein in patients with ischemic stroke. Mol. Neurobiol. 2016;53:1509–1517. doi: 10.1007/s12035-015-9112-7.
    1. Matsuo R., Ago T., Hata J., Wakisaka Y., Kuroda J., Kuwashiro T., Kitazono T., Kamouchi M. Fukuoka Stroke Registry Investigators. Plasma C-reactive protein and clinical outcomes after acute ischemic stroke: A prospective observational study. PLoS ONE. 2016;11:e0156790. doi: 10.1371/journal.pone.0156790.
    1. Geng H.H., Wang X.W., Fu R.L., Jing M.J., Huang L.L., Zhang Q., Wang X.X., Wang P.X. The relationship between C-reactive protein level and discharge outcome in patients with acute ischemic stroke. Int. J. Environ. Res. Public Health. 2016;13:636. doi: 10.3390/ijerph13070636.
    1. Whiteley W., Jackson C., Lewis S., Lowe G., Rumley A., Sandercock P., Wardlaw J., Dennis M., Sudlow C. Inflammatory markers and poor outcome after stroke: A prospective cohort study and systematic review of interleukin-6. PLoS Med. 2009;6:e1000145. doi: 10.1371/journal.pmed.1000145.
    1. Park S.Y., Kim J., Kim O.J., Kim J.K., Song J., Shin D.A., Oh S.H. Predictive value of circulating interleukin-6 and heart-type fatty acid binding protein for three months clinical outcome in acute cerebral infarction: Multiple blood markers profiling study. Crit. Care. 2013;17:R45. doi: 10.1186/cc12564.
    1. Bustamante A., Sobrino T., Giralt D., Garcia-Berrocoso T., Llombart V., Ugarriza I., Espadaler M., Rodriguez N., Sudlow C., Castellanos M., et al. Prognostic value of blood interleukin-6 in the prediction of functional outcome after stroke: A systematic review and meta-analysis. J. Neuroimmunol. 2014;274:215–224. doi: 10.1016/j.jneuroim.2014.07.015.
    1. Pusch G., Debrabant B., Molnar T., Feher G., Papp V., Banati M., Kovacs N., Szapary L., Illes Z. Early dynamics of P-selectin and interleukin 6 predicts outcomes in ischemic stroke. J. Stroke Cerebrovasc. Dis. 2015;24:1938–1947. doi: 10.1016/j.jstrokecerebrovasdis.2015.05.005.
    1. Lehmann M.F., Kallaur A.P., Oliveira S.R., Alfieri D.F., Delongui F., de Sousa Parreira J., de Araujo M.C., Rossato C., de Almeida J.T., Pelegrino L.M., et al. Inflammatory and metabolic markers and short-time outcome in patients with acute ischemic stroke in relation to toast subtypes. Metab. Brain Dis. 2015;30:1417–1428. doi: 10.1007/s11011-015-9731-8.
    1. Worthmann H., Tryc A.B., Dirks M., Schuppner R., Brand K., Klawonn F., Lichtinghagen R., Weissenborn K. Lipopolysaccharide binding protein, interleukin-10, interleukin-6 and C-reactive protein blood levels in acute ischemic stroke patients with post-stroke infection. J. Neuroinflamm. 2015;12:13. doi: 10.1186/s12974-014-0231-2.
    1. Fahmi R.M., Elsaid A.F. Infarction size, interleukin-6, and their interaction are predictors of short-term stroke outcome in young egyptian adults. J. Stroke Cerebrovasc. Dis. 2016;25:2475–2481. doi: 10.1016/j.jstrokecerebrovasdis.2016.06.021.
    1. Rodriguez-Yanez M., Castellanos M., Sobrino T., Brea D., Ramos-Cabrer P., Pedraza S., Castineiras J.A., Serena J., Davalos A., Castillo J., et al. Interleukin-10 facilitates the selection of patients for systemic thrombolysis. BMC Neurol. 2013;13:62. doi: 10.1186/1471-2377-13-62.
    1. Ashour W., Al-Anwar A.D., Kamel A.E., Aidaros M.A. Predictors of early infection in cerebral ischemic stroke. J. Med. Life. 2016;9:163–169.
    1. Carbone F., Vuilleumier N., Bertolotto M., Burger F., Galan K., Roversi G., Tamborino C., Casetta I., Seraceni S., Trentini A., et al. Treatment with recombinant tissue plasminogen activator (r-TPA) induces neutrophil degranulation in vitro via defined pathways. Vasc. Pharmacol. 2015;64:16–27. doi: 10.1016/j.vph.2014.11.007.
    1. Inzitari D., Giusti B., Nencini P., Gori A.M., Nesi M., Palumbo V., Piccardi B., Armillis A., Pracucci G., Bono G., et al. MMP9 variation after thrombolysis is associated with hemorrhagic transformation of lesion and death. Stroke. 2013;44:2901–2903. doi: 10.1161/STROKEAHA.113.002274.
    1. Wiseman S., Marlborough F., Doubal F., Webb D.J., Wardlaw J. Blood markers of coagulation, fibrinolysis, endothelial dysfunction and inflammation in lacunar stroke versus non-lacunar stroke and non-stroke: Systematic review and meta-analysis. Cerebrovasc. Dis. 2014;37:64–75. doi: 10.1159/000356789.
    1. Liu L.B., Li M., Zhuo W.Y., Zhang Y.S., Xu A.D. The role of hs-CRP, d-dimer and fibrinogen in differentiating etiological subtypes of ischemic stroke. PLoS ONE. 2015;10:e0118301. doi: 10.1371/journal.pone.0118301.
    1. Yuan W., Shi Z.H. The relationship between plasma D-dimer levels and outcome of Chinese acute ischemic stroke patients in different stroke subtypes. J. Neural Transm. 2014;121:409–413. doi: 10.1007/s00702-013-1113-y.
    1. Yang X.Y., Gao S., Ding J., Chen Y., Zhou X.S., Wang J.E. Plasma d-dimer predicts short-term poor outcome after acute ischemic stroke. PLoS ONE. 2014;9:e89756. doi: 10.1371/journal.pone.0089756.
    1. Richard S., Lagerstedt L., Burkhard P.R., Debouverie M., Turck N., Sanchez J.C. E-selectin and vascular cell adhesion molecule-1 as biomarkers of 3-month outcome in cerebrovascular diseases. J. Inflamm. 2015;12:61. doi: 10.1186/s12950-015-0106-z.
    1. Wang J., Ning R., Wang Y. Plasma d-dimer level, the promising prognostic biomarker for the acute cerebral infarction patients. J. Stroke Cerebrovasc. Dis. 2016;25:2011–2015. doi: 10.1016/j.jstrokecerebrovasdis.2015.12.031.
    1. Hsu P.J., Chen C.H., Yeh S.J., Tsai L.K., Tang S.C., Jeng J.S. High plasma d-dimer indicates unfavorable outcome of acute ischemic stroke patients receiving intravenous thrombolysis. Cerebrovasc. Dis. 2016;42:117–121. doi: 10.1159/000445037.
    1. Jin R., Yang G., Li G. Molecular insights and therapeutic targets for blood-brain barrier disruption in ischemic stroke: Critical role of matrix metalloproteinases and tissue-type plasminogen activator. Neurobiol. Dis. 2010;38:376–385. doi: 10.1016/j.nbd.2010.03.008.
    1. Kapural M., Krizanac-Bengez L., Barnett G., Perl J., Masaryk T., Apollo D., Rasmussen P., Mayberg M.R., Janigro D. Serum S-100β as a possible marker of blood-brain barrier disruption. Brain Res. 2002;940:102–104. doi: 10.1016/S0006-8993(02)02586-6.
    1. Steiner J., Bernstein H.G., Bielau H., Berndt A., Brisch R., Mawrin C., Keilhoff G., Bogerts B. Evidence for a wide extra-astrocytic distribution of S100B in human brain. BMC Neurosci. 2007;8:2. doi: 10.1186/1471-2202-8-2.
    1. Cherubini A., Ruggiero C., Polidori M.C., Mecocci P. Potential markers of oxidative stress in stroke. Free Radic. Biol. Med. 2005;39:841–852. doi: 10.1016/j.freeradbiomed.2005.06.025.
    1. Wunderlich M.T., Hanhoff T., Goertler M., Spener F., Glatz J.F., Wallesch C.W., Pelsers M.M. Release of brain-type and heart-type fatty acid-binding proteins in serum after acute ischaemic stroke. J. Neurol. 2005;252:718–724. doi: 10.1007/s00415-005-0725-z.
    1. Wunderlich M.T., Lins H., Skalej M., Wallesch C.W., Goertler M. Neuron-specific enolase and tau protein as neurobiochemical markers of neuronal damage are related to early clinical course and long-term outcome in acute ischemic stroke. Clin. Neurol. Neurosurg. 2006;108:558–563. doi: 10.1016/j.clineuro.2005.12.006.
    1. Isgro M.A., Bottoni P., Scatena R. Neuron-specific enolase as a biomarker: Biochemical and clinical aspects. Adv. Exp. Med. Biol. 2015;867:125–143.
    1. Emerging Risk Factors Collaboration. Kaptoge S., di Angelantonio E., Lowe G., Pepys M.B., Thompson S.G., Collins R., Danesh J. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: An individual participant meta-analysis. Lancet. 2010;375:132–140.
    1. Di Napoli M., Schwaninger M., Cappelli R., Ceccarelli E., di Gianfilippo G., Donati C., Emsley H.C., Forconi S., Hopkins S.J., Masotti L., et al. Evaluation of C-reactive protein measurement for assessing the risk and prognosis in ischemic stroke: A statement for health care professionals from the crp pooling project members. Stroke. 2005;36:1316–1329. doi: 10.1161/01.STR.0000165929.78756.ed.
    1. Bustamante A., Simats A., Vilar-Bergua A., Garcia-Berrocoso T., Montaner J. Blood/brain biomarkers of inflammation after stroke and their association with outcome: From C-reactive protein to damage-associated molecular patterns. Neurotherapeutics. 2016;13:671–684. doi: 10.1007/s13311-016-0470-2.
    1. Doll D.N., Barr T.L., Simpkins J.W. Cytokines: Their role in stroke and potential use as biomarkers and therapeutic targets. Aging Dis. 2014;5:294–306.
    1. Perini F., Morra M., Alecci M., Galloni E., Marchi M., Toso V. Temporal profile of serum anti-inflammatory and pro-inflammatory interleukins in acute ischemic stroke patients. Neurol. Sci. 2001;22:289–296. doi: 10.1007/s10072-001-8170-y.
    1. Turner R.J., Sharp F.R. Implications of MMP9 for blood brain barrier disruption and hemorrhagic transformation following ischemic stroke. Front. Cell. Neurosci. 2016;10:56. doi: 10.3389/fncel.2016.00056.
    1. Singh V., Roth S., Veltkamp R., Liesz A. HMGB1 as a key mediator of immune mechanisms in ischemic stroke. Antioxid. Redox Signal. 2016;24:635–651. doi: 10.1089/ars.2015.6397.
    1. Schulze J., Zierath D., Tanzi P., Cain K., Shibata D., Dressel A., Becker K. Severe stroke induces long-lasting alterations of high-mobility group box 1. Stroke. 2013;44:246–248. doi: 10.1161/STROKEAHA.112.676072.
    1. Huang J.M., Hu J., Chen N., Hu M.L. Relationship between plasma high-mobility group box-1 levels and clinical outcomes of ischemic stroke. J. Crit. Care. 2013;28:792–797. doi: 10.1016/j.jcrc.2012.10.003.
    1. Sapojnikova N., Kartvelishvili T., Asatiani N., Zinkevich V., Kalandadze I., Gugutsidze D., Shakarishvili R., Tsiskaridze A. Correlation between MMP-9 and extracellular cytokine HMGB1 in prediction of human ischemic stroke outcome. Biochim. Biophys. Acta. 2014;1842:1379–1384. doi: 10.1016/j.bbadis.2014.04.031.
    1. Marousi S.G., Theodorou G.L., Karakantza M., Zampakis P., Papathanasopoulos P., Ellul J. Acute post-stroke adiponectin in relation to stroke severity, progression and 6 month functional outcome. Neurol. Res. 2010;32:841–844. doi: 10.1179/016164109X12581096796477.
    1. Kuwashiro T., Ago T., Kamouchi M., Matsuo R., Hata J., Kuroda J., Fukuda K., Sugimori H., Fukuhara M., Awano H., et al. Significance of plasma adiponectin for diagnosis, neurological severity and functional outcome in ischemic stroke—Research for biomarkers in ischemic stroke (REBIOS) Metabolism. 2014;63:1093–1103. doi: 10.1016/j.metabol.2014.04.012.
    1. Vogelgesang A., May V.E., Grunwald U., Bakkeboe M., Langner S., Wallaschofski H., Kessler C., Broker B.M., Dressel A. Functional status of peripheral blood T-cells in ischemic stroke patients. PLoS ONE. 2010;5:e8718. doi: 10.1371/journal.pone.0008718.
    1. Yang Q.W., Lu F.L., Zhou Y., Wang L., Zhong Q., Lin S., Xiang J., Li J.C., Fang C.Q., Wang J.Z. HMBG1 mediates ischemia—Reperfusion injury by TRIF-adaptor independent toll-like receptor 4 signaling. J. Cereb. Blood Flow Metab. 2011;31:593–605. doi: 10.1038/jcbfm.2010.129.
    1. Kanhai D.A., Kranendonk M.E., Uiterwaal C.S., van der Graaf Y., Kappelle L.J., Visseren F.L. Adiponectin and incident coronary heart disease and stroke. A systematic review and meta-analysis of prospective studies. Obes. Rev. 2013;14:555–567. doi: 10.1111/obr.12027.
    1. Arregui M., Buijsse B., Fritsche A., di Giuseppe R., Schulze M.B., Westphal S., Isermann B., Boeing H., Weikert C. Adiponectin and risk of stroke: Prospective study and meta-analysis. Stroke. 2014;45:10–17. doi: 10.1161/STROKEAHA.113.001851.
    1. Akasofu S., Sawada K., Kosasa T., Hihara H., Ogura H., Akaike A. Donepezil attenuates excitotoxic damage induced by membrane depolarization of cortical neurons exposed to veratridine. Eur. J. Pharmacol. 2008;588:189–197. doi: 10.1016/j.ejphar.2008.03.064.
    1. Amin-Hanjani S., Stagliano N.E., Yamada M., Huang P.L., Liao J.K., Moskowitz M.A. Mevastatin, an HMG-CoA reductase inhibitor, reduces stroke damage and upregulates endothelial nitric oxide synthase in mice. Stroke. 2001;32:980–986. doi: 10.1161/01.STR.32.4.980.
    1. Asahi M., Huang Z., Thomas S., Yoshimura S., Sumii T., Mori T., Qiu J., Amin-Hanjani S., Huang P.L., Liao J.K., et al. Protective effects of statins involving both eNOS and tPA in focal cerebral ischemia. J. Cereb. Blood Flow Metab. 2005;25:722–729. doi: 10.1038/sj.jcbfm.9600070.
    1. Becker K., Kindrick D., Relton J., Harlan J., Winn R. Antibody to the α4 integrin decreases infarct size in transient focal cerebral ischemia in rats. Stroke. 2001;32:206–211. doi: 10.1161/01.STR.32.1.206.
    1. Campos F., Qin T., Castillo J., Seo J.H., Arai K., Lo E.H., Waeber C. Fingolimod reduces hemorrhagic transformation associated with delayed tissue plasminogen activator treatment in a mouse thromboembolic model. Stroke. 2013;44:505–511. doi: 10.1161/STROKEAHA.112.679043.
    1. Chen J., Zhang Z.G., Li Y., Wang Y., Wang L., Jiang H., Zhang C., Lu M., Katakowski M., Feldkamp C.S., et al. Statins induce angiogenesis, neurogenesis, and synaptogenesis after stroke. Ann. Neurol. 2003;53:743–751. doi: 10.1002/ana.10555.
    1. Chen W., Guo Y., Yang W., Zheng P., Zeng J., Tong W. Protective effect of ginsenoside Rb1 on integrity of blood-brain barrier following cerebral ischemia. Exp. Brain Res. 2015;233:2823–2831. doi: 10.1007/s00221-015-4352-3.
    1. Cho T.H., Aguettaz P., Campuzano O., Charriaut-Marlangue C., Riou A., Berthezene Y., Nighoghossian N., Ovize M., Wiart M., Chauveau F. Pre- and post-treatment with cyclosporine A in a rat model of transient focal cerebral ischaemia with multimodal MRI screening. Int. J. Stroke. 2013;8:669–674. doi: 10.1111/j.1747-4949.2012.00849.x.
    1. Dong X., Zheng L., Lu S., Yang Y. Neuroprotective effects of pretreatment of ginsenoside Rb1 on severe cerebral ischemia-induced injuries in aged mice: Involvement of anti-oxidant signaling. Geriatr. Gerontol. Int. 2015 doi: 10.1111/ggi.12699.
    1. Endres M., Laufs U., Huang Z., Nakamura T., Huang P., Moskowitz M.A., Liao J.K. Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. Proc. Natl. Acad. Sci. USA. 1998;95:8880–8885. doi: 10.1073/pnas.95.15.8880.
    1. Espinera A.R., Ogle M.E., Gu X., Wei L. Citalopram enhances neurovascular regeneration and sensorimotor functional recovery after ischemic stroke in mice. Neuroscience. 2013;247:1–11. doi: 10.1016/j.neuroscience.2013.04.011.
    1. Fujiwara N., Som A.T., Pham L.D., Lee B.J., Mandeville E.T., Lo E.H., Arai K. A free radical scavenger edaravone suppresses systemic inflammatory responses in a rat transient focal ischemia model. Neurosci. Lett. 2016;633:7–13. doi: 10.1016/j.neulet.2016.08.048.
    1. Kawashima S., Yamashita T., Miwa Y., Ozaki M., Namiki M., Hirase T., Inoue N., Hirata K., Yokoyama M. HMG-CoA reductase inhibitor has protective effects against stroke events in stroke-prone spontaneously hypertensive rats. Stroke. 2003;34:157–163. doi: 10.1161/01.STR.0000048213.18751.52.
    1. Kronenberg G., Balkaya M., Prinz V., Gertz K., Ji S., Kirste I., Heuser I., Kampmann B., Hellmann-Regen J., Gass P., et al. Exofocal dopaminergic degeneration as antidepressant target in mouse model of poststroke depression. Biol. Psychiatry. 2012;72:273–281. doi: 10.1016/j.biopsych.2012.02.026.
    1. Langhauser F., Kraft P., Gob E., Leinweber J., Schuhmann M.K., Lorenz K., Gelderblom M., Bittner S., Meuth S.G., Wiendl H., et al. Blocking of α4 integrin does not protect from acute ischemic stroke in mice. Stroke. 2014;45:1799–1806. doi: 10.1161/STROKEAHA.114.005000.
    1. Lee J.H., Park S.Y., Shin Y.W., Kim C.D., Lee W.S., Hong K.W. Concurrent administration of cilostazol with donepezil effectively improves cognitive dysfunction with increased neuroprotection after chronic cerebral hypoperfusion in rats. Brain Res. 2007;1185:246–255. doi: 10.1016/j.brainres.2007.09.016.
    1. Liesz A., Zhou W., Mracsko E., Karcher S., Bauer H., Schwarting S., Sun L., Bruder D., Stegemann S., Cerwenka A., et al. Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke. Brain. 2011;134:704–720. doi: 10.1093/brain/awr008.
    1. Lin M., Sun W., Gong W., Ding Y., Zhuang Y., Hou Q. Ginsenoside Rg1 protects against transient focal cerebral ischemic injury and suppresses its systemic metabolic changes in cerabral injury rats. Acta Pharm. Sin. B. 2015;5:277–284. doi: 10.1016/j.apsb.2015.02.001.
    1. Liu L., Zhu L., Zou Y., Liu W., Zhang X., Wei X., Hu B., Chen J. Panax notoginseng saponins promotes stroke recovery by influencing expression of Nogo-A, NgR and p75NGF, in vitro and in vivo. Biol. Pharm. Bull. 2014;37:560–568. doi: 10.1248/bpb.b13-00770.
    1. Liu X.Y., Zhou X.Y., Hou J.C., Zhu H., Wang Z., Liu J.X., Zheng Y.Q. Ginsenoside Rd promotes neurogenesis in rat brain after transient focal cerebral ischemia via activation of PI3K/Akt pathway. Acta Pharmacol. Sin. 2015;36:421–428. doi: 10.1038/aps.2014.156.
    1. Llovera G., Hofmann K., Roth S., Salas-Perdomo A., Ferrer-Ferrer M., Perego C., Zanier E.R., Mamrak U., Rex A., Party H., et al. Results of a preclinical randomized controlled multicenter trial (pRCT): Anti-CD49d treatment for acute brain ischemia. Sci. Transl. Med. 2015;7:299ra121. doi: 10.1126/scitranslmed.aaa9853.
    1. Min D., Mao X., Wu K., Cao Y., Guo F., Zhu S., Xie N., Wang L., Chen T., Shaw C., et al. Donepezil attenuates hippocampal neuronal damage and cognitive deficits after global cerebral ischemia in gerbils. Neurosci. Lett. 2012;510:29–33. doi: 10.1016/j.neulet.2011.12.064.
    1. Neumann J., Riek-Burchardt M., Herz J., Doeppner T.R., Konig R., Hutten H., Etemire E., Mann L., Klingberg A., Fischer T., et al. Very-late-antigen-4 (VLA-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke. Acta Neuropathol. 2015;129:259–277. doi: 10.1007/s00401-014-1355-2.
    1. Onetti Y., Dantas A.P., Perez B., Cugota R., Chamorro A., Planas A.M., Vila E., Jimenez-Altayo F. Middle cerebral artery remodeling following transient brain ischemia is linked to early postischemic hyperemia: A target of uric acid treatment. Am. J. Physiol. Heart Circ. Physiol. 2015;308:H862–H874. doi: 10.1152/ajpheart.00001.2015.
    1. Pradillo J.M., Denes A., Greenhalgh A.D., Boutin H., Drake C., McColl B.W., Barton E., Proctor S.D., Russell J.C., Rothwell N.J., et al. Delayed administration of interleukin-1 receptor antagonist reduces ischemic brain damage and inflammation in comorbid rats. J. Cereb. Blood Flow Metab. 2012;32:1810–1819. doi: 10.1038/jcbfm.2012.101.
    1. Prinz V., Laufs U., Gertz K., Kronenberg G., Balkaya M., Leithner C., Lindauer U., Endres M. Intravenous rosuvastatin for acute stroke treatment: An animal study. Stroke. 2008;39:433–438. doi: 10.1161/STROKEAHA.107.492470.
    1. Relton J.K., Martin D., Thompson R.C., Russell D.A. Peripheral administration of interleukin-1 receptor antagonist inhibits brain damage after focal cerebral ischemia in the rat. Exp. Neurol. 1996;138:206–213. doi: 10.1006/exnr.1996.0059.
    1. Relton J.K., Sloan K.E., Frew E.M., Whalley E.T., Adams S.P., Lobb R.R. Inhibition of α4 integrin protects against transient focal cerebral ischemia in normotensive and hypertensive rats. Stroke. 2001;32:199–205. doi: 10.1161/01.STR.32.1.199.
    1. Reuter B., Rodemer C., Grudzenski S., Meairs S., Bugert P., Hennerici M.G., Fatar M. Effect of simvastatin on mmps and timps in human brain endothelial cells and experimental stroke. Transl. Stroke Res. 2015;6:156–159. doi: 10.1007/s12975-014-0381-7.
    1. Rolland W.B., Lekic T., Krafft P.R., Hasegawa Y., Altay O., Hartman R., Ostrowski R., Manaenko A., Tang J., Zhang J.H. Fingolimod reduces cerebral lymphocyte infiltration in experimental models of rodent intracerebral hemorrhage. Exp. Neurol. 2013;241:45–55. doi: 10.1016/j.expneurol.2012.12.009.
    1. Romanos E., Planas A.M., Amaro S., Chamorro A. Uric acid reduces brain damage and improves the benefits of rt-PA in a rat model of thromboembolic stroke. J. Cereb. Blood Flow Metab. 2007;27:14–20. doi: 10.1038/sj.jcbfm.9600312.
    1. Shi X., Yu W., Liu L., Liu W., Zhang X., Yang T., Chai L., Lou L., Gao Y., Zhu L. Panax notoginseng saponins administration modulates pro-/anti-inflammatory factor expression and improves neurologic outcome following permanent MCAO in rats. Metab. Brain Dis. 2016 doi: 10.1007/s11011-016-9901-3.
    1. Sironi L., Cimino M., Guerrini U., Calvio A.M., Lodetti B., Asdente M., Balduini W., Paoletti R., Tremoli E. Treatment with statins after induction of focal ischemia in rats reduces the extent of brain damage. Arterioscler. Thromb. Vasc. Biol. 2003;23:322–327. doi: 10.1161/01.ATV.0000044458.23905.3B.
    1. Uchino H., Elmer E., Uchino K., Li P.A., He Q.P., Smith M.L., Siesjo B.K. Amelioration by cyclosporin A of brain damage in transient forebrain ischemia in the rat. Brain Res. 1998;812:216–226. doi: 10.1016/S0006-8993(98)00902-0.
    1. Wang T., Lv P., Jin W., Zhang H., Lang J., Fan M. Protective effect of donepezil hydrochloride on cerebral ischemia/reperfusion injury in mice. Mol. Med. Rep. 2014;9:509–514.
    1. Wu H.Y., Tang Y., Gao L.Y., Sun W.X., Hua Y., Yang S.B., Zhang Z.P., Liao G.Y., Zhou Q.G., Luo C.X., et al. The synergetic effect of edaravone and borneol in the rat model of ischemic stroke. Eur. J. Pharmacol. 2014;740:522–531. doi: 10.1016/j.ejphar.2014.06.035.
    1. Xie C.L., Li J.H., Wang W.W., Zheng G.Q., Wang L.X. Neuroprotective effect of ginsenoside-Rg1 on cerebral ischemia/reperfusion injury in rats by downregulating protease-activated receptor-1 expression. Life Sci. 2015;121:145–151. doi: 10.1016/j.lfs.2014.12.002.
    1. Yamasaki Y., Matsuura N., Shozuhara H., Onodera H., Itoyama Y., Kogure K. Interleukin-1 as a pathogenetic mediator of ischemic brain damage in rats. Stroke. 1995;26:676–681. doi: 10.1161/01.STR.26.4.676.
    1. Yamashita T., Sato T., Sakamoto K., Ishii H., Yamamoto J. The free-radical scavenger edaravone accelerates thrombolysis with alteplase in an experimental thrombosis model. Thromb. Res. 2015;135:1209–1213. doi: 10.1016/j.thromres.2015.04.011.
    1. Yang L.X., Zhang X., Zhao G. Ginsenoside Rd attenuates DNA damage by increasing expression of DNA glycosylase endonuclease VIII-like proteins after focal cerebral ischemia. Chin. Med. J. 2016;129:1955–1962.
    1. Yu G., Hess D.C., Borlongan C.V. Combined cyclosporine-a and methylprednisolone treatment exerts partial and transient neuroprotection against ischemic stroke. Brain Res. 2004;1018:32–37. doi: 10.1016/j.brainres.2004.05.056.
    1. Yu Z.F., Bruce-Keller A.J., Goodman Y., Mattson M.P. Uric acid protects neurons against excitotoxic and metabolic insults in cell culture, and against focal ischemic brain injury in vivo. J. Neurosci. Res. 1998;53:613–625. doi: 10.1002/(SICI)1097-4547(19980901)53:5<613::AID-JNR11>;2-1.
    1. Yuan H., Wang W.P., Feng N., Wang L., Wang X.L. Donepezil attenuated oxygen-glucose deprivation insult by blocking Kv2.1 potassium channels. Eur. J. Pharmacol. 2011;657:76–83. doi: 10.1016/j.ejphar.2011.01.054.
    1. Yuen C.M., Sun C.K., Lin Y.C., Chang L.T., Kao Y.H., Yen C.H., Chen Y.L., Tsai T.H., Chua S., Shao P.L., et al. Combination of cyclosporine and erythropoietin improves brain infarct size and neurological function in rats after ischemic stroke. J. Transl. Med. 2011;9:141. doi: 10.1186/1479-5876-9-141.
    1. Sobowale O.A., Parry-Jones A.R., Smith C.J., Tyrrell P.J., Rothwell N.J., Allan S.M. Interleukin-1 in stroke: From bench to bedside. Stroke. 2016;47:2160–2167. doi: 10.1161/STROKEAHA.115.010001.
    1. Relton J.K., Rothwell N.J. Interleukin-1 receptor antagonist inhibits ischaemic and excitotoxic neuronal damage in the rat. Brain Res. Bull. 1992;29:243–246. doi: 10.1016/0361-9230(92)90033-T.
    1. Garcia J.H., Liu K.F., Relton J.K. Interleukin-1 receptor antagonist decreases the number of necrotic neurons in rats with middle cerebral artery occlusion. Am. J. Pathol. 1995;147:1477–1486.
    1. Loddick S.A., Rothwell N.J. Neuroprotective effects of human recombinant interleukin-1 receptor antagonist in focal cerebral ischaemia in the rat. J. Cereb. Blood Flow Metab. 1996;16:932–940. doi: 10.1097/00004647-199609000-00017.
    1. Boutin H., LeFeuvre R.A., Horai R., Asano M., Iwakura Y., Rothwell N.J. Role of IL-1α and IL-1β in ischemic brain damage. J. Neurosci. 2001;21:5528–5534.
    1. Banwell V., Sena E.S., Macleod M.R. Systematic review and stratified meta-analysis of the efficacy of interleukin-1 receptor antagonist in animal models of stroke. J. Stroke Cerebrovasc. Dis. 2009;18:269–276. doi: 10.1016/j.jstrokecerebrovasdis.2008.11.009.
    1. McCann S.K., Cramond F., Macleod M.R., Sena E.S. Systematic review and meta-analysis of the efficacy of interleukin-1 receptor antagonist in animal models of stroke: An update. Transl. Stroke Res. 2016;7:395–406. doi: 10.1007/s12975-016-0489-z.
    1. Maysami S., Wong R., Pradillo J.M., Denes A., Dhungana H., Malm T., Koistinaho J., Orset C., Rahman M., Rubio M., et al. A cross-laboratory preclinical study on the effectiveness of interleukin-1 receptor antagonist in stroke. J. Cereb. Blood Flow Metab. 2016;36:596–605. doi: 10.1177/0271678X15606714.
    1. Singh N., Hopkins S.J., Hulme S., Galea J.P., Hoadley M., Vail A., Hutchinson P.J., Grainger S., Rothwell N.J., King A.T., et al. The effect of intravenous interleukin-1 receptor antagonist on inflammatory mediators in cerebrospinal fluid after subarachnoid haemorrhage: A phase II randomised controlled trial. J. Neuroinflamm. 2014;11:1. doi: 10.1186/1742-2094-11-1.
    1. Laufs U., Gertz K., Dirnagl U., Bohm M., Nickenig G., Endres M. Rosuvastatin, a new HMG-CoA reductase inhibitor, upregulates endothelial nitric oxide synthase and protects from ischemic stroke in mice. Brain Res. 2002;942:23–30. doi: 10.1016/S0006-8993(02)02649-5.
    1. Baryan H.K., Allan S.M., Vail A., Smith C.J. Systematic review and meta-analysis of the efficacy of statins in experimental stroke. Int. J. Stroke. 2012;7:150–156. doi: 10.1111/j.1747-4949.2011.00740.x.
    1. Krauth D., Anglemyer A., Philipps R., Bero L. Nonindustry-sponsored preclinical studies on statins yield greater efficacy estimates than industry-sponsored studies: A meta-analysis. PLoS Biol. 2014;12:e1001770. doi: 10.1371/journal.pbio.1001770.
    1. Cohen J.A., Chun J. Mechanisms of fingolimod’s efficacy and adverse effects in multiple sclerosis. Ann. Neurol. 2011;69:759–777. doi: 10.1002/ana.22426.
    1. Liu J., Zhang C., Tao W., Liu M. Systematic review and meta-analysis of the efficacy of sphingosine-1-phosphate (S1P) receptor agonist FTY720 (fingolimod) in animal models of stroke. Int. J. Neurosci. 2013;123:163–169. doi: 10.3109/00207454.2012.749255.
    1. Smith C.J., Denes A., Tyrrell P.J., di Napoli M. Phase II anti-inflammatory and immune-modulating drugs for acute ischaemic stroke. Expert Opin. Investig. Drugs. 2015;24:623–643. doi: 10.1517/13543784.2015.1020110.
    1. Yoshiyama Y., Kojima A., Ishikawa C., Arai K. Anti-inflammatory action of donepezil ameliorates tau pathology, synaptic loss, and neurodegeneration in a tauopathy mouse model. J. Alzheimers Dis. 2010;22:295–306.
    1. Wang S.S., Wang Y.G., Chen H.Y., Wu Z.P., Xie H.G. Expression of genes encoding cytokines and corticotropin releasing factor are altered by citalopram in the hypothalamus of post-stroke depression rats. Neuroendocrinol. Lett. 2013;34:773–779.
    1. Dhami K.S., Churchward M.A., Baker G.B., Todd K.G. Fluoxetine and citalopram decrease microglial release of glutamate and d-serine to promote cortical neuronal viability following ischemic insult. Mol. Cell. Neurosci. 2013;56:365–374. doi: 10.1016/j.mcn.2013.07.006.
    1. Osman M.M., Lulic D., Glover L., Stahl C.E., Lau T., van Loveren H., Borlongan C.V. Cyclosporine-A as a neuroprotective agent against stroke: Its translation from laboratory research to clinical application. Neuropeptides. 2011;45:359–368. doi: 10.1016/j.npep.2011.04.002.
    1. Chauhan A., Sharma U., Jagannathan N.R., Reeta K.H., Gupta Y.K. Rapamycin protects against middle cerebral artery occlusion induced focal cerebral ischemia in rats. Behav. Brain Res. 2011;225:603–609. doi: 10.1016/j.bbr.2011.08.035.
    1. Okamura K., Tsubokawa T., Johshita H., Miyazaki H., Shiokawa Y. Edaravone, a free radical scavenger, attenuates cerebral infarction and hemorrhagic infarction in rats with hyperglycemia. Neurol. Res. 2014;36:65–69. doi: 10.1179/1743132813Y.0000000259.
    1. Sun Y.Y., Morozov Y.M., Yang D., Li Y., Dunn R.S., Rakic P., Chan P.H., Abe K., Lindquist D.M., Kuan C.Y. Synergy of combined tPA-edaravone therapy in experimental thrombotic stroke. PLoS ONE. 2014;9:e98807. doi: 10.1371/journal.pone.0098807.
    1. Dohare P., Hyzinski-Garcia M.C., Vipani A., Bowens N.H., Nalwalk J.W., Feustel P.J., Keller R.W., Jr., Jourd’heuil D., Mongin A.A. The neuroprotective properties of the superoxide dismutase mimetic tempol correlate with its ability to reduce pathological glutamate release in a rodent model of stroke. Free Radic. Biol. Med. 2014;77:168–182. doi: 10.1016/j.freeradbiomed.2014.08.029.
    1. Scandinavian Simvastatin Survival Study Group Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: The Scandinavian simvastatin survival study (4S) Lancet. 1994;344:1383–1389.
    1. Amarenco P., Bogousslavsky J., Callahan A., III, Goldstein L.B., Hennerici M., Rudolph A.E., Sillesen H., Simunovic L., Szarek M., Welch K.M., et al. High-dose atorvastatin after stroke or transient ischemic attack. N. Engl. J. Med. 2006;355:549–559.
    1. Amaro S., Obach V., Cervera A., Urra X., Gomez-Choco M., Planas A.M., Chamorro A. Course of matrix metalloproteinase-9 isoforms after the administration of uric acid in patients with acute stroke: A proof-of-concept study. J. Neurol. 2009;256:651–656. doi: 10.1007/s00415-009-0153-6.
    1. Barrett K.M., Brott T.G., Brown R.D., Jr., Carter R.E., Geske J.R., Graff-Radford N.R., McNeil R.B., Meschia J.F. Mayo Acute Stroke Trial for Enhancing Recovery Study Group. Enhancing recovery after acute ischemic stroke with donepezil as an adjuvant therapy to standard medical care: Results of a phase IIA clinical trial. J. Stroke Cerebrovasc. Dis. 2011;20:177–182. doi: 10.1016/j.jstrokecerebrovasdis.2010.12.009.
    1. Chamorro A., Amaro S., Castellanos M., Segura T., Arenillas J., Marti-Fabregas J., Gallego J., Krupinski J., Gomis M., Canovas D., et al. Safety and efficacy of uric acid in patients with acute stroke (URICO-ICTUS): A randomised, double-blind phase 2b/3 trial. Lancet Neurol. 2014;13:453–460. doi: 10.1016/S1474-4422(14)70054-7.
    1. Edaravone Acute Infarction Study Group Effect of a novel free radical scavenger, edaravone (MCI-186), on acute brain infarction. Randomized, placebo-controlled, double-blind study at multicenters. Cerebrovasc. Dis. 2003;15:222–229.
    1. Emsley H.C., Smith C.J., Georgiou R.F., Vail A., Hopkins S.J., Rothwell N.J., Tyrrell P.J., Acute Stroke I. A randomised phase II study of interleukin-1 receptor antagonist in acute stroke patients. J. Neurol. Neurosurg. Psychiatry. 2005;76:1366–1372. doi: 10.1136/jnnp.2004.054882.
    1. Kaste M., Murayama S., Ford G.A., Dippel D.W., Walters M.R., Tatlisumak T. MCI-186 study group. Safety, tolerability and pharmacokinetics of MCI-186 in patients with acute ischemic stroke: New formulation and dosing regimen. Cerebrovasc. Dis. 2013;36:196–204. doi: 10.1159/000353680.
    1. Liu X., Wang L., Wen A., Yang J., Yan Y., Song Y., Liu X., Ren H., Wu Y., Li Z., et al. Ginsenoside-rd improves outcome of acute ischaemic stroke—A randomized, double-blind, placebo-controlled, multicenter trial. Eur. J. Neurol. 2012;19:855–863. doi: 10.1111/j.1468-1331.2011.03634.x.
    1. Liu X., Xia J., Wang L., Song Y., Yang J., Yan Y., Ren H., Zhao G. Efficacy and safety of ginsenoside-Rd for acute ischaemic stroke: A randomized, double-blind, placebo-controlled, phase II multicenter trial. Eur. J. Neurol. 2009;16:569–575. doi: 10.1111/j.1468-1331.2009.02534.x.
    1. Llull L., Laredo C., Renu A., Perez B., Vila E., Obach V., Urra X., Planas A., Amaro S., Chamorro A. Uric acid therapy improves clinical outcome in women with acute ischemic stroke. Stroke. 2015;46:2162–2167. doi: 10.1161/STROKEAHA.115.009960.
    1. Montaner J., Chacon P., Krupinski J., Rubio F., Millan M., Molina C.A., Hereu P., Quintana M., Alvarez-Sabin J. Simvastatin in the acute phase of ischemic stroke: A safety and efficacy pilot trial. Eur. J. Neurol. 2008;15:82–90. doi: 10.1111/j.1468-1331.2007.02015.x.
    1. Nighoghossian N., Berthezene Y., Mechtouff L., Derex L., Cho T.H., Ritzenthaler T., Rheims S., Chauveau F., Bejot Y., Jacquin A., et al. Cyclosporine in acute ischemic stroke. Neurology. 2015;84:2216–2223. doi: 10.1212/WNL.0000000000001639.
    1. Plehn J.F., Davis B.R., Sacks F.M., Rouleau J.L., Pfeffer M.A., Bernstein V., Cuddy T.E., Moye L.A., Piller L.B., Rutherford J., et al. Reduction of stroke incidence after myocardial infarction with pravastatin: The Cholesterol and Recurrent Events (CARE) study. The care investigators. Circulation. 1999;99:216–223. doi: 10.1161/01.CIR.99.2.216.
    1. Ridker P.M., Danielson E., Fonseca F.A., Genest J., Gotto A.M., Jr., Kastelein J.J., Koenig W., Libby P., Lorenzatti A.J., MacFadyen J.G., et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med. 2008;359:2195–2207. doi: 10.1056/NEJMoa0807646.
    1. Sever P.S., Dahlof B., Poulter N.R., Wedel H., Beevers G., Caulfield M., Collins R., Kjeldsen S.E., Kristinsson A., McInnes G.T., et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial—Lipid Lowering Arm (ASCOT-LLA): A multicentre randomised controlled trial. Lancet. 2003;361:1149–1158.
    1. Shepherd J., Blauw G.J., Murphy M.B., Bollen E.L., Buckley B.M., Cobbe S.M., Ford I., Gaw A., Hyland M., Jukema J.W., et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): A randomised controlled trial. Lancet. 2002;360:1623–1630. doi: 10.1016/S0140-6736(02)11600-X.
    1. Smith C.J., Emsley H.C., Udeh C.T., Vail A., Hoadley M.E., Rothwell N.J., Tyrrell P.J., Hopkins S.J. Interleukin-1 receptor antagonist reverses stroke-associated peripheral immune suppression. Cytokine. 2012;58:384–389. doi: 10.1016/j.cyto.2012.02.016.
    1. Takenaka K., Kato M., Yamauti K., Hayashi K. Simultaneous administration of recombinant tissue plasminogen activator and edaravone in acute cerebral ischemic stroke patients. J. Stroke Cerebrovasc. Dis. 2014;23:2748–2752. doi: 10.1016/j.jstrokecerebrovasdis.2014.06.016.
    1. Ridker P.M., Thuren T., Zalewski A., Libby P. Interleukin-1β inhibition and the prevention of recurrent cardiovascular events: Rationale and design of the canakinumab anti-inflammatory thrombosis outcomes study (CANTOS) Am. Heart J. 2011;162:597–605. doi: 10.1016/j.ahj.2011.06.012.
    1. Montecucco F., Mach F. Update on statin-mediated anti-inflammatory activities in atherosclerosis. Semin. Immunopathol. 2009;31:127–142. doi: 10.1007/s00281-009-0150-y.
    1. Collins R., Armitage J., Parish S., Sleight P., Peto R. Heart Protection Study Collaborative Group. Effects of cholesterol-lowering with simvastatin on stroke and other major vascular events in 20,536 people with cerebrovascular disease or other high-risk conditions. Lancet. 2004;363:757–767.
    1. Montaner J., Bustamante A., Garcia-Matas S., Martinez-Zabaleta M., Jimenez C., de la Torre J., Rubio F.R., Segura T., Masjuan J., Canovas D., et al. Combination of thrombolysis and statins in acute stroke is safe: Results of the STARS randomized trial (stroke treatment with acute reperfusion and simvastatin) Stroke. 2016;47:2870–2873. doi: 10.1161/STROKEAHA.116.014600.
    1. White H.D., Simes R.J., Anderson N.E., Hankey G.J., Watson J.D., Hunt D., Colquhoun D.M., Glasziou P., MacMahon S., Kirby A.C., et al. Pravastatin therapy and the risk of stroke. N. Engl. J. Med. 2000;343:317–326. doi: 10.1056/NEJM200008033430502.
    1. Waters D.D., Schwartz G.G., Olsson A.G., Zeiher A., Oliver M.F., Ganz P., Ezekowitz M., Chaitman B.R., Leslie S.J., Stern T., et al. Effects of atorvastatin on stroke in patients with unstable angina or non-q-wave myocardial infarction: A myocardial ischemia reduction with aggressive cholesterol lowering (MIRACL) substudy. Circulation. 2002;106:1690–1695. doi: 10.1161/01.CIR.0000031568.40630.1C.
    1. Athyros V.G., Tziomalos K., Gossios T.D., Griva T., Anagnostis P., Kargiotis K., Pagourelias E.D., Theocharidou E., Karagiannis A., Mikhailidis D.P., et al. Safety and efficacy of long-term statin treatment for cardiovascular events in patients with coronary heart disease and abnormal liver tests in the Greek Atorvastatin and Coronary Heart Disease Evaluation (GREACE) study: A post-hoc analysis. Lancet. 2010;376:1916–1922. doi: 10.1016/S0140-6736(10)61272-X.
    1. Byington R.P., Jukema J.W., Salonen J.T., Pitt B., Bruschke A.V., Hoen H., Furberg C.D., Mancini G.B. Reduction in cardiovascular events during pravastatin therapy. Pooled analysis of clinical events of the pravastatin atherosclerosis intervention program. Circulation. 1995;92:2419–2425. doi: 10.1161/01.CIR.92.9.2419.
    1. Heo J.H., Song D., Nam H.S., Kim E.Y., Kim Y.D., Lee K.Y., Lee K.J., Yoo J., Kim Y.N., Lee B.C., et al. Effect and safety of rosuvastatin in acute ischemic stroke. J. Stroke. 2016;18:87–95. doi: 10.5853/jos.2015.01578.
    1. Chung J.W., Hwang J., Lee M.J., Cha J., Bang O.Y. Previous statin use and high-resolution magnetic resonance imaging characteristics of intracranial atherosclerotic plaque: The intensive statin treatment in acute ischemic stroke patients with intracranial atherosclerosis study. Stroke. 2016;47:1789–1796. doi: 10.1161/STROKEAHA.116.013495.
    1. Moonis M., Kane K., Schwiderski U., Sandage B.W., Fisher M. HMG-CoA reductase inhibitors improve acute ischemic stroke outcome. Stroke. 2005;36:1298–1300. doi: 10.1161/01.STR.0000165920.67784.58.
    1. Stead L.G., Vaidyanathan L., Kumar G., Bellolio M.F., Brown R.D., Jr., Suravaram S., Enduri S., Gilmore R.M., Decker W.W. Statins in ischemic stroke: Just low-density lipoprotein lowering or more? J. Stroke Cerebrovasc. Dis. 2009;18:124–127. doi: 10.1016/j.jstrokecerebrovasdis.2008.09.016.
    1. Ni Chroinin D., Asplund K., Asberg S., Callaly E., Cuadrado-Godia E., Diez-Tejedor E., di Napoli M., Engelter S.T., Furie K.L., Giannopoulos S., et al. Statin therapy and outcome after ischemic stroke: Systematic review and meta-analysis of observational studies and randomized trials. Stroke. 2013;44:448–456. doi: 10.1161/STROKEAHA.112.668277.
    1. Blanco M., Nombela F., Castellanos M., Rodriguez-Yanez M., Garcia-Gil M., Leira R., Lizasoain I., Serena J., Vivancos J., Moro M.A., et al. Statin treatment withdrawal in ischemic stroke: A controlled randomized study. Neurology. 2007;69:904–910. doi: 10.1212/01.wnl.0000269789.09277.47.
    1. Squizzato A., Romualdi E., Dentali F., Ageno W. Statins for acute ischemic stroke. Cochrane Database Syst. Rev. 2011;8:CD007551.
    1. Hong K.S., Lee J.S. Statins in acute ischemic stroke: A systematic review. J. Stroke. 2015;17:282–301. doi: 10.5853/jos.2015.17.3.282.
    1. Bonaventura A., Montecucco F., Dallegri F. Update on the effects of treatment with recombinant tissue-type plasminogen activator (rt-PA) in acute ischemic stroke. Expert Opin. Biol. Ther. 2016;16:1323–1340. doi: 10.1080/14712598.2016.1227779.
    1. Meseguer E., Mazighi M., Lapergue B., Labreuche J., Sirimarco G., Gonzalez-Valcarcel J., Lavallee P.C., Cabrejo L., Guidoux C., Klein I.F., et al. Outcomes after thrombolysis in AIS according to prior statin use: A registry and review. Neurology. 2012;79:1817–1823. doi: 10.1212/WNL.0b013e318270400b.
    1. Martinez-Ramirez S., Delgado-Mederos R., Marin R., Suarez-Calvet M., Sainz M.P., Alejaldre A., Vidal-Jordana A., Marti-Vilalta J.L., Marti-Fabregas J. Statin pretreatment may increase the risk of symptomatic intracranial haemorrhage in thrombolysis for ischemic stroke: Results from a case-control study and a meta-analysis. J. Neurol. 2012;259:111–118. doi: 10.1007/s00415-011-6137-3.
    1. Ward M.D., Jones D.E., Goldman M.D. Overview and safety of fingolimod hydrochloride use in patients with multiple sclerosis. Expert Opin. Drug Saf. 2014;13:989–998. doi: 10.1517/14740338.2014.920820.
    1. Yoon S.Y., Kim J.K., An Y.S., Kim Y.W. Effect of donepezil on wernicke aphasia after bilateral middle cerebral artery infarction: Subtraction analysis of brain F-18 fluorodeoxyglucose positron emission tomographic images. Clin. Neuropharmacol. 2015;38:147–150. doi: 10.1097/WNF.0000000000000089.
    1. Chang W.H., Park Y.H., Ohn S.H., Park C.H., Lee P.K., Kim Y.H. Neural correlates of donepezil-induced cognitive improvement in patients with right hemisphere stroke: A pilot study. Neuropsychol. Rehabil. 2011;21:502–514. doi: 10.1080/09602011.2011.582708.
    1. Kraglund K.L., Mortensen J.K., Grove E.L., Johnsen S.P., Andersen G. Talos: A multicenter, randomized, double-blind, placebo-controlled trial to test the effects of citalopram in patients with acute stroke. Int. J. Stroke. 2015;10:985–987. doi: 10.1111/ijs.12485.
    1. Simats A., Garcia-Berrocoso T., Montaner J. Natalizumab: A new therapy for acute ischemic stroke? Expert Rev. Neurother. 2016;16:1013–1021. doi: 10.1080/14737175.2016.1219252.
    1. Kern R., Nagayama M., Toyoda K., Steiner T., Hennerici M.G., Shinohara Y. Comparison of the European and Japanese guidelines for the management of ischemic stroke. Cerebrovasc. Dis. 2013;35:402–418. doi: 10.1159/000351753.
    1. Shinohara Y., Saito I., Kobayashi S., Uchiyama S. Edaravone (radical scavenger) versus sodium ozagrel (antiplatelet agent) in acute noncardioembolic ischemic stroke (EDO trial) Cerebrovasc. Dis. 2009;27:485–492. doi: 10.1159/000210190.
    1. Isahaya K., Yamada K., Yamatoku M., Sakurai K., Takaishi S., Kato B., Hirayama T., Hasegawa Y. Effects of edaravone, a free radical scavenger, on serum levels of inflammatory biomarkers in acute brain infarction. J. Stroke Cerebrovasc. Dis. 2012;21:102–107. doi: 10.1016/j.jstrokecerebrovasdis.2010.05.009.
    1. Tsuruoka A., Atsumi C., Mizukami H., Imai T., Hagiwara Y., Hasegawa Y. Effects of edaravone, a free radical scavenger, on circulating levels of MMP-9 and hemorrhagic transformation in patients with intravenous thrombolysis using low-dose alteplase. J. Stroke Cerebrovasc. Dis. 2014;23:2894–2899. doi: 10.1016/j.jstrokecerebrovasdis.2014.07.022.
    1. Zheng J., Chen X. Edaravone offers neuroprotection for acute diabetic stroke patients. Ir. J. Med. Sci. 2016;185:819–824. doi: 10.1007/s11845-015-1371-9.
    1. Satani N., Savitz S.I. Is immunomodulation a principal mechanism underlying how cell-based therapies enhance stroke recovery? Neurotherapeutics. 2016;13:775–782. doi: 10.1007/s13311-016-0468-9.
    1. Azodi S., Jacobson S. Cytokine therapies in neurological disease. Neurotherapeutics. 2016;13:555–561. doi: 10.1007/s13311-016-0455-1.

Source: PubMed

3
Abonneren