Resetting microbiota by Lactobacillus reuteri inhibits T reg deficiency-induced autoimmunity via adenosine A2A receptors

Baokun He, Thomas K Hoang, Ting Wang, Michael Ferris, Christopher M Taylor, Xiangjun Tian, Meng Luo, Dat Q Tran, Jain Zhou, Nina Tatevian, Fayong Luo, Jose G Molina, Michael R Blackburn, Thomas H Gomez, Stefan Roos, J Marc Rhoads, Yuying Liu, Baokun He, Thomas K Hoang, Ting Wang, Michael Ferris, Christopher M Taylor, Xiangjun Tian, Meng Luo, Dat Q Tran, Jain Zhou, Nina Tatevian, Fayong Luo, Jose G Molina, Michael R Blackburn, Thomas H Gomez, Stefan Roos, J Marc Rhoads, Yuying Liu

Abstract

Regulatory T (T reg) cell deficiency causes lethal, CD4+ T cell-driven autoimmune diseases. Stem cell transplantation is used to treat these diseases, but this procedure is limited by the availability of a suitable donor. The intestinal microbiota drives host immune homeostasis by regulating the differentiation and expansion of T reg, Th1, and Th2 cells. It is currently unclear if T reg cell deficiency-mediated autoimmune disorders can be treated by targeting the enteric microbiota. Here, we demonstrate that Foxp3+ T reg cell deficiency results in gut microbial dysbiosis and autoimmunity over the lifespan of scurfy (SF) mouse. Remodeling microbiota with Lactobacillus reuteri prolonged survival and reduced multiorgan inflammation in SF mice. L. reuteri changed the metabolomic profile disrupted by T reg cell deficiency, and a major effect was to restore levels of the purine metabolite inosine. Feeding inosine itself prolonged life and inhibited multiorgan inflammation by reducing Th1/Th2 cells and their associated cytokines. Mechanistically, the inhibition of inosine on the differentiation of Th1 and Th2 cells in vitro depended on adenosine A2A receptors, which were also required for the efficacy of inosine and of L. reuteri in vivo. These results reveal that the microbiota-inosine-A2A receptor axis might represent a potential avenue for combatting autoimmune diseases mediated by T reg cell dysfunction.

© 2017 He et al.

Figures

Figure 1.
Figure 1.
Dynamics of autoimmunity development and microbiota dysbiosis over 22 d of life in T reg cell-deficient scurfy (SF) mice. (A) Percentage of IFN-γ– or IL-4–producing-CD4+ T cells in spleen of WT and SF mice at the indicated age (two-way ANOVA; n = 6–12 per group). (B) Plasma IFN-γ and IL-4 levels at the indicated age (two-way ANOVA; n = 6–12 per group). (C) Gut microbial Shannon diversity analysis (two-way ANOVA; n = 6–12 per group). (D) Gut microbial analysis of weighted unifrac-based three-dimensional PCoA plots of WT and SF mice at the indicated age (n = 6–12 per group). (E and F) Relative abundance of predominant bacteria (>1% in any sample) at the genus level (E) and relative abundance of total bacteria at the genus level (F; two-way ANOVA; n = 6–12 per group). **, P < 0.01; ***, P < 0.001. SF versus WT. Error bars represent mean ± SEM.
Figure 2.
Figure 2.
L. reuteri early treatment modulates the intestinal microbiota in SF mice. (A) Gut microbial Shannon diversity analysis, comparing groups of WT, SF, and SF treated with L. reuteri (SFL; one-way ANOVA; n = 10–12 per group). (B) Weighted UniFrac-based three-dimensional PCoA analysis of gut microbiota of WT, SF, and SFL mice (n = 10–12 per group). (C) Nonparametric multiple dimensional scaling analysis of gut microbiota of WT, SF, and SFL mice (n = 10–12 per group). (D–F) Relative abundance of predominant bacteria (>1% in any sample) at the phylum level [D], and at the genus level (E), and relative abundance of total bacteria at genus level (F) in feces (one-way ANOVA; n = 10–12 per group). (G) Relative abundance of Lactobacillus at the species level in feces (one-way ANOVA; n = 10–12 per group). **, P < 0.01; ***, P < 0.001. SF versus WT. #, P < 0.05; ##, P < 0.01; and ###, P < 0.001. SFL versus SF. Error bars represent mean ± SEM.
Figure 3.
Figure 3.
L. reuteri early treatment increases survival and suppresses autoimmunity in SF mice. (A) Scheme for L. reuteri early treatment on WT or SF mice for sample analysis and survival observation. (B) Survival curves of SF and SFL mice (Kaplan-Meier survival curves and log-rank test; n = 10–17 per group). (C) Representative H&E staining of liver and lung from WT, WTL, SF, and SFL mice. Bars, 200 µm (n = 6–12 per group). (D) Quantitation of inflammatory infiltrates in liver and lung of WT, WTL, SF, and SFL (one-way ANOVA; n = 6–12 per group). (E and F) The frequency of IFN-γ or IL-4–producing-CD4+ T cells in spleen (E) and MLNs (F) of mice (one-way ANOVA; n = 6–12 per group). (G) Plasma levels of IFN-γ and IL-4 in WT, WTL, SF, and SFL mice (one-way ANOVA; n = 6–12 per group). *, P < 0.05; ***, P < 0.001. SF versus WT. #, P < 0.05; ##, P < 0.01; ###, P < 0.001. SFL versus SF. Error bars represent mean ± SEM.
Figure 4.
Figure 4.
Plasma metabolomic profiles are modulated by L. reuteri early treatment of SF mice. (A) PCA clustering from plasma metabolites of WT, SF, and SFL (n = 5–6 per group). (B) Heat map of 525 metabolites in plasma of WT, SF, and SFL mice. Each lane represents a different mouse. The scale bar indicates fold change of SF versus WT or SFL versus SF (n = 5–6 per group). (C) Numbers of plasma metabolites affected, either up-regulated (↑) or down-regulated (↓; P < 0.05), by SF versus WT or SFL versus SF mice (n = 5–6 per group). (D) Heat map showing the levels of 29 plasma metabolites that were significantly altered by L. reuteri treatment in SF mice. Colors indicate fold changes with P < 0.05 (SF vs. WT or SFL vs. SF). (E) Relative quantification of metabolites related to inosine pathway in plasma (one-way ANOVA; n = 5–6 per group). *, P < 0.05; **, P < 0.01. SF versus WT. #, P < 0.05. SFL versus SF. Error bars represent mean ± SEM.
Figure 5.
Figure 5.
Inosine suppresses Th1/Th2 cell differentiation via adenosine A2A receptor in vitro. (A) mRNA expression of IFN-γ in Th1 cells with 2 mM of inosine treatment for 24 or 72 h (one-way ANOVA; n = 4 independent experiments). (B) mRNA expression of IL-4 in Th2 cells with 2 mM of inosine treatment for 24 or 72 h (one-way ANOVA; n = 4 independent experiments). (C and D) Effect of inosine on Th1 (C) or Th2 (D) cell differentiation from WT, A1−/−, A2A−/−, A2B−/−, and A3−/− mice (n = 3 independent experiments). (E and F) cAMP level in Th1 cells (E) or cAMP level in Th2 cells (F) of WT or A2A−/− mice after inosine and A2A receptor-selective agonist CGS31680 treatment (one-way ANOVA; n = 4 independent experiments). ***, P < 0.001. Error bars represent mean ± SEM.
Figure 6.
Figure 6.
Inosine inhibits autoimmunity in SF mice via adenosine A2A receptors. (A) Scheme of WT or SF mice treated with inosine (WTI or SFI) or inosine in combination with an A2A receptor-selective antagonist SCH58261 (WTIS or SFIS) or SF mice treated with only SCH58261 (SFS) for sample analysis and survival observation. (B) Survival curves to compare inosine-fed SF (SFI) with SF without inosine feeding (Kaplan-Meier survival curves and log-rank test; n = 8–17 per group). (C) Representative H&E staining of liver and lung from WT, WTI, WTIS, SF, SFI, SFS, and SFIS; bar, 200 µm (n = 6–12 per group). (D) Quantification of inflammatory infiltrates in liver and lung of WT, WTI, WTIS, SF, SFI, SFS, and SFIS (one-way ANOVA; n = 6–12 per group). (E) The frequency of IFN-γ or IL-4–producing CD4+ T cells in spleen of mice (one-way ANOVA; n = 6–12 per group). (F) Plasma levels of IFN-γ and IL-4 in WT, WTI, WTIS, SF, SFI, SFS, and SFIS mice (one-way ANOVA; n = 6–12 per group). ***, P < 0.001. SF versus WT. †††, P < 0.001. SFI versus SF. ‡‡‡, P < 0.001. SFIS versus SFI. Error bars represent mean ± SEM.
Figure 7.
Figure 7.
Inhibition of autoimmunity by L. reuteri is mediated by adenosine A2A receptors. (A) Scheme of SF mice treated with L. reuteri (SFL) in the combination with an A2A receptor-selective antagonist SCH58261 (SFLS) or SCH58261 alone (SFS) for sample analysis. (B) Representative H&E staining of liver and lung from SF, SFL, SFS, and SFLS mice; bar, 200 µm (n = 6–12 per group). (C) Quantification of inflammatory infiltrates in liver and lung of SF, SFL, SFS, and SFLS mice (one-way ANOVA; n = 6–12 per group). (D) The frequency of IFN-γ or IL-4–producing CD4+ T cells in spleen of mice (one-way ANOVA; n = 6–12 per group). (E) Plasma levels of IFN-γ and IL-4 in SF, SFL, SFS, and SFLS mice (one-way ANOVA; n = 6–12 per group). ##, P < 0.01; ###, P < 0.001. SFL versus SF. ‡, P < 0.05; ‡‡, P < 0.01. SFLS versus SFL. Error bars represent mean ± SEM.
Figure 8.
Figure 8.
Mechanisms of Lactobacillus reuteri protection against T reg cell deficiency–mediated autoimmunity. T reg cell deficiency shapes gut microbiota and induces autoimmunity resulting in multiorgan inflammation and early death (left). L. reuteri remodels gut microbiota, alters the metabolites, and protects against T reg cell deficiency–induced autoimmunity by suppressing Th1/Th2 cells via inosine–adenosine A2A interaction (right).

References

    1. Antonioli L., Pacher P., Vizi E.S., and Haskó G.. 2013. CD39 and CD73 in immunity and inflammation. Trends Mol. Med. 19:355–367. 10.1016/j.molmed.2013.03.005
    1. Arpaia N., Campbell C., Fan X., Dikiy S., van der Veeken J., deRoos P., Liu H., Cross J.R., Pfeffer K., Coffer P.J., and Rudensky A.Y.. 2013. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 504:451–455. 10.1038/nature12726
    1. Baris S., Schulze I., Ozen A., Karakoç Aydıner E., Altuncu E., Karasu G.T., Ozturk N., Lorenz M., Schwarz K., Vraetz T., et al. . 2014. Clinical heterogeneity of immunodysregulation, polyendocrinopathy, enteropathy, X-linked: pulmonary involvement as a non-classical disease manifestation. J. Clin. Immunol. 34:601–606. 10.1007/s10875-014-0059-7
    1. Belkaid Y., and Hand T.W.. 2014. Role of the microbiota in immunity and inflammation. Cell. 157:121–141. 10.1016/j.cell.2014.03.011
    1. Bennett C.L., Christie J., Ramsdell F., Brunkow M.E., Ferguson P.J., Whitesell L., Kelly T.E., Saulsbury F.T., Chance P.F., and Ochs H.D.. 2001. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27:20–21. 10.1038/83713
    1. Blair P.J., Bultman S.J., Haas J.C., Rouse B.T., Wilkinson J.E., and Godfrey V.L.. 1994. CD4+CD8− T cells are the effector cells in disease pathogenesis in the scurfy (sf) mouse. J. Immunol. 153:3764–3774.
    1. Burroughs L.M., Torgerson T.R., Storb R., Carpenter P.A., Rawlings D.J., Sanders J., Scharenberg A.M., Skoda-Smith S., Englund J., Ochs H.D., and Woolfrey A.E.. 2010. Stable hematopoietic cell engraftment after low-intensity nonmyeloablative conditioning in patients with immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. J. Allergy Clin. Immunol. 126:1000–1005. 10.1016/j.jaci.2010.05.021
    1. Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K., Fierer N., Peña A.G., Goodrich J.K., Gordon J.I., et al. . 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 7:335–336. 10.1038/nmeth.f.303
    1. Cerf-Bensussan N., and Gaboriau-Routhiau V.. 2010. The immune system and the gut microbiota: friends or foes? Nat. Rev. Immunol. 10:735–744. 10.1038/nri2850
    1. Chinen T., Volchkov P.Y., Chervonsky A.V., and Rudensky A.Y.. 2010. A critical role for regulatory T cell-mediated control of inflammation in the absence of commensal microbiota. J. Exp. Med. 207:2323–2330. 10.1084/jem.20101235
    1. Collado M.C., Meriluoto J., and Salminen S.. 2007. Role of commercial probiotic strains against human pathogen adhesion to intestinal mucus. Lett. Appl. Microbiol. 45:454–460. 10.1111/j.1472-765X.2007.02212.x
    1. Csóka B., Himer L., Selmeczy Z., Vizi E.S., Pacher P., Ledent C., Deitch E.A., Spolarics Z., Németh Z.H., and Haskó G.. 2008. Adenosine A2A receptor activation inhibits T helper 1 and T helper 2 cell development and effector function. FASEB J. 22:3491–3499. 10.1096/fj.08-107458
    1. da Rocha Lapa F., da Silva M.D., de Almeida Cabrini D., and Santos A.R.. 2012. Anti-inflammatory effects of purine nucleosides, adenosine and inosine, in a mouse model of pleurisy: evidence for the role of adenosine A2 receptors. Purinergic Signal. 8:693–704. 10.1007/s11302-012-9299-2
    1. da Rocha Lapa F., de Oliveira A.P., Accetturi B.G., de Oliveira Martins I., Domingos H.V., de Almeida Cabrini D., de Lima W.T., and Santos A.R.. 2013. Anti-inflammatory effects of inosine in allergic lung inflammation in mice: evidence for the participation of adenosine A2A and A 3 receptors. Purinergic Signal. 9:325–336. 10.1007/s11302-013-9351-x
    1. David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E., Ling A.V., Devlin A.S., Varma Y., Fischbach M.A., et al. . 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 505:559–563. 10.1038/nature12820
    1. Deaglio S., Dwyer K.M., Gao W., Friedman D., Usheva A., Erat A., Chen J.F., Enjyoji K., Linden J., Oukka M., et al. . 2007. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 204:1257–1265. 10.1084/jem.20062512
    1. Dorrestein P.C., Mazmanian S.K., and Knight R.. 2014. Finding the missing links among metabolites, microbes, and the host. Immunity. 40:824–832. 10.1016/j.immuni.2014.05.015
    1. Fredholm B.B. 1995. Astra Award Lecture. Adenosine, adenosine receptors and the actions of caffeine. Pharmacol. Toxicol. 76:93–101. 10.1111/j.1600-0773.1995.tb00111.x
    1. Fredholm B.B., Irenius E., Kull B., and Schulte G.. 2001. Comparison of the potency of adenosine as an agonist at human adenosine receptors expressed in Chinese hamster ovary cells. Biochem. Pharmacol. 61:443–448. 10.1016/S0006-2952(00)00570-0
    1. Furusawa Y., Obata Y., Fukuda S., Endo T.A., Nakato G., Takahashi D., Nakanishi Y., Uetake C., Kato K., Kato T., et al. . 2013. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 504:446–450. 10.1038/nature12721
    1. Futamura Y., Muroi M., and Osada H.. 2013. Target identification of small molecules based on chemical biology approaches. Mol. Biosyst. 9:897–914. 10.1039/c2mb25468a
    1. Godfrey V.L., Wilkinson J.E., Rinchik E.M., and Russell L.B.. 1991a Fatal lymphoreticular disease in the scurfy (sf) mouse requires T cells that mature in a sf thymic environment: potential model for thymic education. Proc. Natl. Acad. Sci. USA. 88:5528–5532. 10.1073/pnas.88.13.5528
    1. Godfrey V.L., Wilkinson J.E., and Russell L.B.. 1991b X-linked lymphoreticular disease in the scurfy (sf) mutant mouse. Am. J. Pathol. 138:1379–1387.
    1. Gomez G., and Sitkovsky M.V.. 2003. Differential requirement for A2a and A3 adenosine receptors for the protective effect of inosine in vivo. Blood. 102:4472–4478. 10.1182/blood-2002-11-3624
    1. Goodrich J.K., Waters J.L., Poole A.C., Sutter J.L., Koren O., Blekhman R., Beaumont M., Van Treuren W., Knight R., Bell J.T., et al. . 2014. Human genetics shape the gut microbiome. Cell. 159:789–799. 10.1016/j.cell.2014.09.053
    1. Gupta R.W., Tran L., Norori J., Ferris M.J., Eren A.M., Taylor C.M., Dowd S.E., and Penn D.. 2013. Histamine-2 receptor blockers alter the fecal microbiota in premature infants. J. Pediatr. Gastroenterol. Nutr. 56:397–400. 10.1097/MPG.0b013e318282a8c2
    1. Hannibal M.C., and Torgerson T.. 2011. IPEX Syndrome. GeneReviews. [Internet] University of Washington, Seattle, Seattle, WA: pp. 1993–2016.,
    1. Haskó G., Kuhel D.G., Németh Z.H., Mabley J.G., Stachlewitz R.F., Virág L., Lohinai Z., Southan G.J., Salzman A.L., and Szabó C.. 2000. Inosine inhibits inflammatory cytokine production by a posttranscriptional mechanism and protects against endotoxin-induced shock. J. Immunol. 164:1013–1019. 10.4049/jimmunol.164.2.1013
    1. Haskó G., Sitkovsky M.V., and Szabó C.. 2004. Immunomodulatory and neuroprotective effects of inosine. Trends Pharmacol. Sci. 25:152–157. 10.1016/j.tips.2004.01.006
    1. He B., Nohara K., Ajami N.J., Michalek R.D., Tian X., Wong M., Losee-Olson S.H., Petrosino J.F., Yoo S.H., Shimomura K., and Chen Z.. 2015. Transmissible microbial and metabolomic remodeling by soluble dietary fiber improves metabolic homeostasis. Sci. Rep. 5:10604 10.1038/srep10604
    1. Hemarajata P., and Versalovic J.. 2013. Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Therap. Adv. Gastroenterol. 6:39–51. 10.1177/1756283X12459294
    1. Hooper L.V., Littman D.R., and Macpherson A.J.. 2012. Interactions between the microbiota and the immune system. Science. 336:1268–1273. 10.1126/science.1223490
    1. Hou B., Xu Z.W., Yang C.W., Gao Y., Zhao S.F., and Zhang C.G.. 2007. Protective effects of inosine on mice subjected to lethal total-body ionizing irradiation. J. Radiat. Res. (Tokyo). 48:57–62. 10.1269/jrr.06067
    1. Jin X., Shepherd R.K., Duling B.R., and Linden J.. 1997. Inosine binds to A3 adenosine receptors and stimulates mast cell degranulation. J. Clin. Invest. 100:2849–2857. 10.1172/JCI119833
    1. Kanangat S., Blair P., Reddy R., Daheshia M., Godfrey V., Rouse B.T., and Wilkinson E.. 1996. Disease in the scurfy (sf) mouse is associated with overexpression of cytokine genes. Eur. J. Immunol. 26:161–165. 10.1002/eji.1830260125
    1. Kawamoto S., Maruya M., Kato L.M., Suda W., Atarashi K., Doi Y., Tsutsui Y., Qin H., Honda K., Okada T., et al. . 2014. Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity. 41:152–165. 10.1016/j.immuni.2014.05.016
    1. Kolassa N., Stengg R., and Turnheim K.. 1977. Salvage of adenosine, inosine, hypoxanthine, and adenisine by the isolated epithelium of guinea pig jejunum. Can. J. Physiol. Pharmacol. 55:1039–1044. 10.1139/y77-143
    1. Lebon G., Warne T., Edwards P.C., Bennett K., Langmead C.J., Leslie A.G., and Tate C.G.. 2011. Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature. 474:521–525. 10.1038/nature10136
    1. Lee W.J., and Hase K.. 2014. Gut microbiota-generated metabolites in animal health and disease. Nat. Chem. Biol. 10:416–424. 10.1038/nchembio.1535
    1. Liu Y., Fatheree N.Y., Mangalat N., and Rhoads J.M.. 2012. Lactobacillus reuteri strains reduce incidence and severity of experimental necrotizing enterocolitis via modulation of TLR4 and NF-κB signaling in the intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 302:G608–G617. 10.1152/ajpgi.00266.2011
    1. Liu Y., Fatheree N.Y., Dingle B.M., Tran D.Q., and Rhoads J.M.. 2013. Lactobacillus reuteri DSM 17938 changes the frequency of Foxp3+ regulatory T cells in the intestine and mesenteric lymph node in experimental necrotizing enterocolitis. PLoS One. 8:e56547 10.1371/journal.pone.0056547
    1. Liu Y., Tran D.Q., Fatheree N.Y., and Marc Rhoads J.. 2014. Lactobacillus reuteri DSM 17938 differentially modulates effector memory T cells and Foxp3+ regulatory T cells in a mouse model of necrotizing enterocolitis. Am. J. Physiol. Gastrointest. Liver Physiol. 307:G177–G186. 10.1152/ajpgi.00038.2014
    1. Lukens J.R., Gurung P., Vogel P., Johnson G.R., Carter R.A., McGoldrick D.J., Bandi S.R., Calabrese C.R., Vande Walle L., Lamkanfi M., and Kanneganti T.D.. 2014. Dietary modulation of the microbiome affects autoinflammatory disease. Nature. 516:246–249. 10.1038/nature13788
    1. Lupp C., Robertson M.L., Wickham M.E., Sekirov I., Champion O.L., Gaynor E.C., and Finlay B.B.. 2007. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe. 2:119–129. 10.1016/j.chom.2007.06.010
    1. Mabley J.G., Pacher P., Liaudet L., Soriano F.G., Haskó G., Marton A., Szabo C., and Salzman A.L.. 2003a Inosine reduces inflammation and improves survival in a murine model of colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 284:G138–G144. 10.1152/ajpgi.00060.2002
    1. Mabley J.G., Rabinovitch A., Suarez-Pinzon W., Haskó G., Pacher P., Power R., Southan G., Salzman A., and Szabó C.. 2003b Inosine protects against the development of diabetes in multiple-low-dose streptozotocin and nonobese diabetic mouse models of type 1 diabetes. Mol. Med. 9:96–104. 10.2119/2003-00016.Mabley
    1. Mabley J.G., Pacher P., Murthy K.G., Williams W., Southan G.J., Salzman A.L., and Szabo C.. 2008. The novel inosine analogue, INO-2002, protects against diabetes development in multiple low-dose streptozotocin and non-obese diabetic mouse models of type I diabetes. J. Endocrinol. 198:581–589. 10.1677/JOE-07-0511
    1. Mack D.R., Ahrne S., Hyde L., Wei S., and Hollingsworth M.A.. 2003. Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut. 52:827–833. 10.1136/gut.52.6.827
    1. Mai V., Braden C.R., Heckendorf J., Pironis B., and Hirshon J.M.. 2006. Monitoring of stool microbiota in subjects with diarrhea indicates distortions in composition. J. Clin. Microbiol. 44:4550–4552. 10.1128/JCM.01542-06
    1. Markle J.G., Frank D.N., Mortin-Toth S., Robertson C.E., Feazel L.M., Rolle-Kampczyk U., von Bergen M., McCoy K.D., Macpherson A.J., and Danska J.S.. 2013. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science. 339:1084–1088. 10.1126/science.1233521
    1. Massaad M.J., Ramesh N., and Geha R.S.. 2013. Wiskott-Aldrich syndrome: a comprehensive review. Ann. N. Y. Acad. Sci. 1285:26–43. 10.1111/nyas.12049
    1. Möser G.H., Schrader J., and Deussen A.. 1989. Turnover of adenosine in plasma of human and dog blood. Am. J. Physiol. 256:C799–C806.
    1. Muto J., Lee H., Lee H., Uwaya A., Park J., Nakajima S., Nagata K., Ohno M., Ohsawa I., and Mikami T.. 2014. Oral administration of inosine produces antidepressant-like effects in mice. Sci. Rep. 4:4199 10.1038/srep04199
    1. Muzny D., Qin X., Buhay C., Dugan-Rocha S., Ding Y., Chen G., Hawes A., Holder M., and Johnson A.. 2011. The complete genome of Lactobacillus reuteri ATCC 55730/SD2112. Nucleotide Sequence [Large Scale Genomic DNA] the EMBL/GenBank/DDBJ databases:.
    1. Nademi Z., Slatter M., Gambineri E., Mannurita S.C., Barge D., Hodges S., Bunn S., Thomas J., Haugk B., Hambleton S., et al. . 2014. Single centre experience of haematopoietic SCT for patients with immunodysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. Bone Marrow Transplant. 49:310–312. 10.1038/bmt.2013.181
    1. Nascimento F.P., Figueredo S.M., Marcon R., Martins D.F., Macedo S.J. Jr., Lima D.A., Almeida R.C., Ostroski R.M., Rodrigues A.L., and Santos A.R.. 2010. Inosine reduces pain-related behavior in mice: involvement of adenosine A1 and A2A receptor subtypes and protein kinase C pathways. J. Pharmacol. Exp. Ther. 334:590–598. 10.1124/jpet.110.166058
    1. Nicholson J.K., Holmes E., Kinross J., Burcelin R., Gibson G., Jia W., and Pettersson S.. 2012. Host-gut microbiota metabolic interactions. Science. 336:1262–1267. 10.1126/science.1223813
    1. Okada M., Suzuki K., Nakashima M., Nakanishi T., and Fujioka N.. 2006. The nucleotide derivatives inosine and inosinic acid inhibit intestinal absorption of mizoribine in rats. Eur. J. Pharmacol. 531:140–144. 10.1016/j.ejphar.2005.12.013
    1. Okou D.T., Mondal K., Faubion W.A., Kobrynski L.J., Denson L.A., Mulle J.G., Ramachandran D., Xiong Y., Svingen P., Patel V., et al. . 2014. Exome sequencing identifies a novel FOXP3 mutation in a 2-generation family with inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 58:561–568. 10.1097/MPG.0000000000000302
    1. Ouyang W., Beckett O., Ma Q., Paik J.H., DePinho R.A., and Li M.O.. 2010. Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells. Nat. Immunol. 11:618–627. 10.1038/ni.1884
    1. Patel R.M., and Denning P.W.. 2015. Intestinal microbiota and its relationship with necrotizing enterocolitis. Pediatr. Res. 78:232–238. 10.1038/pr.2015.97
    1. Rahimian R., Fakhfouri G., Daneshmand A., Mohammadi H., Bahremand A., Rasouli M.R., Mousavizadeh K., and Dehpour A.R.. 2010. Adenosine A2A receptors and uric acid mediate protective effects of inosine against TNBS-induced colitis in rats. Eur. J. Pharmacol. 649:376–381. 10.1016/j.ejphar.2010.09.044
    1. Rao A., Kamani N., Filipovich A., Lee S.M., Davies S.M., Dalal J., and Shenoy S.. 2007. Successful bone marrow transplantation for IPEX syndrome after reduced-intensity conditioning. Blood. 109:383–385. 10.1182/blood-2006-05-025072
    1. Reagan-Shaw S., Nihal M., and Ahmad N.. 2008. Dose translation from animal to human studies revisited. FASEB J. 22:659–661. 10.1096/fj.07-9574LSF
    1. Rhoads J.M., Fatheree N.Y., Norori J., Liu Y., Lucke J.F., Tyson J.E., and Ferris M.J.. 2009. Altered fecal microflora and increased fecal calprotectin in infants with colic. J. Pediatr. 155:823–828.e1. 10.1016/j.jpeds.2009.05.012
    1. Roelofsen H., Priebe M.G., and Vonk R.J.. 2010. The interaction of short-chain fatty acids with adipose tissue: relevance for prevention of type 2 diabetes. Benef. Microbes. 1:433–437. 10.3920/BM2010.0028
    1. Round J.L., and Mazmanian S.K.. 2010. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl. Acad. Sci. USA. 107:12204–12209. 10.1073/pnas.0909122107
    1. Rudensky A.Y. 2011. Regulatory T cells and Foxp3. Immunol. Rev. 241:260–268. 10.1111/j.1600-065X.2011.01018.x
    1. Sanders M.E., Guarner F., Guerrant R., Holt P.R., Quigley E.M., Sartor R.B., Sherman P.M., and Mayer E.A.. 2013. An update on the use and investigation of probiotics in health and disease. Gut. 62:787–796. 10.1136/gutjnl-2012-302504
    1. Schwarzschild M.A., Ascherio A., Beal M.F., Cudkowicz M.E., Curhan G.C., Hare J.M., Hooper D.C., Kieburtz K.D., Macklin E.A., Oakes D., et al. Parkinson Study Group SURE-PD Investigators . 2014. Inosine to increase serum and cerebrospinal fluid urate in Parkinson disease: a randomized clinical trial. JAMA Neurol. 71:141–150. 10.1001/jamaneurol.2013.5528
    1. Seidel M.G., Fritsch G., Lion T., Jürgens B., Heitger A., Bacchetta R., Lawitschka A., Peters C., Gadner H., and Matthes-Martin S.. 2009. Selective engraftment of donor CD4+25high FOXP3-positive T cells in IPEX syndrome after nonmyeloablative hematopoietic stem cell transplantation. Blood. 113:5689–5691. 10.1182/blood-2009-02-206359
    1. Sharma R., Sung S.S., Fu S.M., and Ju S.T.. 2009. Regulation of multi-organ inflammation in the regulatory T cell-deficient scurfy mice. J. Biomed. Sci. 16:20 10.1186/1423-0127-16-20
    1. Sharma R., Sharma P.R., Kim Y.C., Leitinger N., Lee J.K., Fu S.M., and Ju S.T.. 2011. IL-2-controlled expression of multiple T cell trafficking genes and Th2 cytokines in the regulatory T cell-deficient scurfy mice: implication to multiorgan inflammation and control of skin and lung inflammation. J. Immunol. 186:1268–1278. 10.4049/jimmunol.1002677
    1. Spinler J.K., Taweechotipatr M., Rognerud C.L., Ou C.N., Tumwasorn S., and Versalovic J.. 2008. Human-derived probiotic Lactobacillus reuteri demonstrate antimicrobial activities targeting diverse enteric bacterial pathogens. Anaerobe. 14:166–171. 10.1016/j.anaerobe.2008.02.001
    1. Suscovich T.J., Perdue N.R., and Campbell D.J.. 2012. Type-1 immunity drives early lethality in scurfy mice. Eur. J. Immunol. 42:2305–2310. 10.1002/eji.201242391
    1. Torrazza R.M., and Neu J.. 2013. The altered gut microbiome and necrotizing enterocolitis. Clin. Perinatol. 40:93–108. 10.1016/j.clp.2012.12.009
    1. Uhlig H.H., Schwerd T., Koletzko S., Shah N., Kammermeier J., Elkadri A., Ouahed J., Wilson D.C., Travis S.P., Turner D., et al. COLORS in IBD Study Group and NEOPICS . 2014. The diagnostic approach to monogenic very early onset inflammatory bowel disease. Gastroenterology. 147:990–1007.e3. 10.1053/j.gastro.2014.07.023
    1. Urbańska M., and Szajewska H.. 2014. The efficacy of Lactobacillus reuteri DSM 17938 in infants and children: a review of the current evidence. Eur. J. Pediatr. 173:1327–1337. 10.1007/s00431-014-2328-0
    1. Verbsky J.W., and Chatila T.A.. 2013. Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) and IPEX-related disorders: an evolving web of heritable autoimmune diseases. Curr. Opin. Pediatr. 25:708–714. 10.1097/MOP.0000000000000029
    1. Viegas T.X., Omura G.A., Stoltz R.R., and Kisicki J.. 2000. Pharmacokinetics and pharmacodynamics of peldesine (BCX-34), a purine nucleoside phosphorylase inhibitor, following single and multiple oral doses in healthy volunteers. J. Clin. Pharmacol. 40:410–420. 10.1177/00912700022008991
    1. Walter J., Britton R.A., and Roos S.. 2011. Host-microbial symbiosis in the vertebrate gastrointestinal tract and the Lactobacillus reuteri paradigm. Proc. Natl. Acad. Sci. USA. 108:4645–4652. 10.1073/pnas.1000099107
    1. Ward J.L., Sherali A., Mo Z.P., and Tse C.M.. 2000. Kinetic and pharmacological properties of cloned human equilibrative nucleoside transporters, ENT1 and ENT2, stably expressed in nucleoside transporter-deficient PK15 cells. Ent2 exhibits a low affinity for guanosine and cytidine but a high affinity for inosine. J. Biol. Chem. 275:8375–8381. 10.1074/jbc.275.12.8375
    1. Welihinda A.A., Kaur M., Greene K., Zhai Y., and Amento E.P.. 2016. The adenosine metabolite inosine is a functional agonist of the adenosine A2A receptor with a unique signaling bias. Cell. Signal. 28:552–560. 10.1016/j.cellsig.2016.02.010
    1. Weng M., and Walker W.A.. 2013. The role of gut microbiota in programming the immune phenotype. J. Dev. Orig. Health Dis. 4:203–214. 10.1017/S2040174412000712
    1. Wu H.J., and Wu E.. 2012. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes. 3:4–14. 10.4161/gmic.19320
    1. Xu F., Wu H., Katritch V., Han G.W., Jacobson K.A., Gao Z.G., Cherezov V., and Stevens R.C.. 2011. Structure of an agonist-bound human A2A adenosine receptor. Science. 332:322–327. 10.1126/science.1202793
    1. Zennaro D., Scala E., Pomponi D., Caprini E., Arcelli D., Gambineri E., Russo G., and Mari A.. 2012. Proteomics plus genomics approaches in primary immunodeficiency: the case of immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. Clin. Exp. Immunol. 167:120–128. 10.1111/j.1365-2249.2011.04492.x
    1. Zhou L., Chong M.M., and Littman D.R.. 2009. Plasticity of CD4+ T cell lineage differentiation. Immunity. 30:646–655. 10.1016/j.immuni.2009.05.001
    1. Ziegler S., Pries V., Hedberg C., and Waldmann H.. 2013. Target identification for small bioactive molecules: finding the needle in the haystack. Angew. Chem. Int. Ed. Engl. 52:2744–2792. 10.1002/anie.201208749

Source: PubMed

3
Abonneren