Brain perfusion single photon emission computed tomography in major psychiatric disorders: From basics to clinical practice

Amburanjan Santra, Rakesh Kumar, Amburanjan Santra, Rakesh Kumar

Abstract

Brain single photon emission computed tomography (SPECT) is a well-established and reliable method to assess brain function through measurement of regional cerebral blood flow (rCBF). It can be used to define a patient's pathophysiological status when neurological or psychiatric symptoms cannot be explained by anatomical neuroimaging findings. Though there is ample evidence validating brain SPECT as a technique to track human behavior and correlating psychiatric disorders with dysfunction of specific brain regions, only few psychiatrists have adopted brain SPECT in routine clinical practice. It can be utilized to evaluate the involvement of brain regions in a particular patient, to individualize treatment on basis of SPECT findings, to monitor the treatment response and modify treatment, if necessary. In this article, we have reviewed the available studies in this regard from existing literature and tried to present the evidence for establishing the clinical role of brain SPECT in major psychiatric illnesses.

Keywords: Brain perfusion; psychiatric disorders; regional cerebral blood flow; single photon emission computed tomography.

Conflict of interest statement

Conflict of Interest: None declared.

Figures

Figure 1
Figure 1
Technetium-99m-hexamethylpropyleneamineoxime brain perfusion single photon emission computed tomography-computed tomography (SPECT-CT) images of a 17 year old attention deficit hyperactivity disorder patient, showing hypoperfusion in bilateral frontal cortices and bilateral medial temporal lobes. (a) Transverse view, (b) sagittal view, (c) coronal view of the SPECT-CT, (d) right lateral, (e) left lateral surface projection views of “Neurogam” processed (compared with normal population adult database) images with color scale below (d and e)
Figure 2
Figure 2
Technetium-99m-hexamethylpropyleneamineoxime brain perfusion single photon emission computed tomography (SPECT) in a 40-year-old male patient with obsessive-compulsive disorder revealed hypoperfusion in bilateral prefrontal cortices, with right temporal and occipital lobe. (a) Transverse view, (b) sagittal view, (c) coronal view of the SPECT images
Figure 3
Figure 3
A 45-year-old female with paranoid schizophrenia on antipsychotic treatment have bilateral frontal, and temporal hypoperfusion in technetium-99mhexamethylpropyleneamineoxime brain perfusion single photon emission computed tomography-computed tomography images. (a) Transverse view, (b) sagittal view, (c) coronal view
Figure 4
Figure 4
A 26-year-old male with disorganized schizophrenia was under treatment for last 1-year, showing global cortical hypoperfusion with relative increase in basal ganglia and cerebellar activity in technetium-99m-hexamethylpropyleneamineoxime brain perfusion single photon emission computed tomography-computed tomography images. (a) Transverse view, (b) sagittal view, (c) coronal view
Figure 5
Figure 5
A 62-year-old female with severe depression, showing severe bilateral hypofrontality in technetium-99m-hexamethylpropyleneamineoxime brain perfusion single photon emission computed tomography (SPECT). (a) Transaxial and (b) saggital view brain SPECT of the patient
Figure 6
Figure 6
An 18-year-old male with severe anxiety neurosis revealed hyperactive prefrontal cortices and basal ganglia in technetium-99m-hexamethylpropyleneamineoxime brain perfusion single photon emission computed tomography images. (a) Transverse view, (b) sagittal view, (c) right lateral view of three-dimensional Talairach cortical perfusion report, (d) extracted basal ganglia and thalamus by “Neurogam” processing, (e) color scale for (c and d)
Figure 7
Figure 7
A 19-year-old female with multiple substance abuse disorder (predominantly alcohol and organic solvent) with induced-withdrawal behavioral problem showing diffuse cortical hypoperfusion on both side of cerebral cortex. (a) Transverse view, (b) sagittal view, (c) coronal view of technetium-99m-hexamethylpropyleneamineoxime brain single photon emission computed tomography, (d) right lateral, (e) left lateral surface projection views of “Neurogam” processed (compared with normal population adult database) images with color scale below (d and e)
Figure 8
Figure 8
A 41-year-old male with multiple substance abuse disorder with significant decline in social and occupational performance showing severely decreased cortical perfusion globally. (a) Transverse view, (b) sagittal view, (c) coronal view of technetium-99m-hexamethylpropyleneamineoxime brain single photon emission computed tomography

References

    1. Catafau AM, Parellada E, Lomeña F, Bernardo M, Pavía J, Ros D, et al. Baseline, visual deprivation and visual stimulation 99TCm-HMPAO-related changes in visual cortex can be detected with a single-head SPET system. Nucl Med Commun. 1996;17:480–4.
    1. ACR Guidelines and Standards Committee. ACR-SPR Practice Guideline for the Performance of Single Photon Emission Computed Tomography (SPECT) Brain Perfusion and for Brain Death Examinations. Practice Guideline Revised. 2012:1–11. Resolution 25.
    1. Juni JE, Waxman AD, Devous MD, Tikofsy RS, Ichise M, Van Heertum RL, et al. Society of Nuclear Medicine Procedure Guideline for Brain Perfusion Single Photon Emission Computed Tomography (SPECT) Using Tc-99m Radiopharmaceuticals, Version 2.0. Society of Nuclear Medicine Procedure Guidelines Manual. 2002 Jun;:113–8.
    1. Kapucu OL, Nobili F, Varrone A, Booij J, Vander Borght T, Någren K, et al. EANM procedure guideline for brain perfusion SPECT using 99mTc-labelled radiopharmaceuticals, version 2. Eur J Nucl Med Mol Imaging. 2009;36:2093–102.
    1. Holman BL, Devous MD., Sr Functional brain SPECT: The emergence of a powerful clinical method. J Nucl Med. 1992;33:1888–904.
    1. Vasile RG. Single photon emission computed tomography in psychiatry: Current perspectives. Harv Rev Psychiatry. 1996;4:27–38.
    1. Camargo EE. Brain SPECT in neurology and psychiatry. J Nucl Med. 2001;42:611–23.
    1. Neirinckx RD, Canning LR, Piper IM, Nowotnik DP, Pickett RD, Holmes RA, et al. Technetium-99m d, l-HM-PAO: A new radiopharmaceutical for SPECT imaging of regional cerebral blood perfusion. J Nucl Med. 1987;28:191–202.
    1. Vallabhajosula S, Zimmerman RE, Picard M, Stritzke P, Mena I, Hellman RS, et al. Technetium-99m ECD: A new brain imaging agent: In vivo kinetics and biodistribution studies in normal human subjects. J Nucl Med. 1989;30:599–604.
    1. Nakamura K, Tukatani Y, Kubo A, Hashimoto S, Terayama Y, Amano T, et al. The behavior of 99mTc-hexamethylpropyleneamineoxime (99mTc-HMPAO) in blood and brain. Eur J Nucl Med. 1989;15:100–7.
    1. Piera C, Martínez A, Ramírez I. Radiochemical purity of technetium-99m-HMPAO depends on specific activity. J Nucl Med. 1995;36:706.
    1. Barthel H, Kämpfer I, Seese A, Dannenberg C, Kluge R, Burchert W, et al. Improvement of brain SPECT by stabilization of Tc-99m-HMPAO with methylene blue or cobalt chloride. Comparison with Tc-99m-ECD. Nuklearmedizin. 1999;38:80–4.
    1. Lassen NA, Andersen R, Friberg L, Paulson OB. The retention of [99mTc]-d, l-HM-PAO in the human brain after intracarotid bolus injection: A kinetic analysis. J Cereb Blood Flow Metab. 1988;8(Suppl 1):S13–22.
    1. Friberg L, Andersen AR, Lassen NA, Holm S, Dam M. Retention of 99mTc-bicisate in the human brain after intracarotid injection. J Cereb Blood Flow Metab. 1994;14(Suppl 1):S19–27.
    1. Koyama M, Kawashima R, Ito H, Ono S, Sato K, Goto R, et al. SPECT imaging of normal subjects with technetium-99m-HMPAO and technetium-99m-ECD. J Nucl Med. 1997;38:587–92.
    1. Juni JE, Waxman AD, Devous MD, Tikofsy RS, Ichise M, Van Heertum RL, et al. Procedure guideline for brain perfusion SPECT Using 99mTc Radiopharmaceuticals 3.0. J Nucl Med Technol. 2009;37:191–5.
    1. Catafau AM. Brain SPECT in clinical practice. Part I: Perfusion. J Nucl Med. 2001;42:259–71.
    1. Szatmari P, Offort DR, Boyle MH. Ontario child health study; prevalence of attention deficit disorder with hyperactivity. J Child Psychol Psychiatry. 1989;30:219–30.
    1. American Psychiatric Association. 4th ed. Washington (DC): American Psychiatric Association; 1994. [last accessed on 03/07/2014]. Diagnostic and statistical manual of mental disorders: DSM-IV [Internet] p. 866. Available from: .
    1. Laufer MW, Denhoff E. Hyperkinetic behavior syndrome in children. J Pediatr. 1957;50:463–74.
    1. Zametkin AJ, Nordahl TE, Gross M, King AC, Semple WE, Rumsey J, et al. Cerebral glucose metabolism in adults with hyperactivity of childhood onset. N Engl J Med. 1990;323:1361–6.
    1. Zametkin AJ, Liebenauer LL, Fitzgerald GA, King AC, Minkunas DV, Herscovitch P, et al. Brain metabolism in teenagers with attention-deficit hyperactivity disorder. Arch Gen Psychiatry. 1993;50:333–40.
    1. Lou HC, Henriksen L, Bruhn P, Børner H, Nielsen JB. Striatal dysfunction in attention deficit and hyperkinetic disorder. Arch Neurol. 1989;46:48–52.
    1. Zametkin AJ, Liotta W. The neurobiology of attention-deficit/hyperactivity disorder. J Clin Psychiatry. 1998;59(Suppl 7):17–23.
    1. Daniel G, Amen MD, Blake D. Carmichael, high-resolution brain SPECT imaging in ADHD. Ann Clin Psychiatry. 1997;9:81–6.
    1. Oner O, Oner P, Aysev A, Küçük O, Ibis E. Regional cerebral blood flow in children with ADHD: Changes with age. Brain Dev. 2005;27:279–85.
    1. Kaya GC, Pekcanlar A, Bekis R, Ada E, Miral S, Emiroglu N, et al. Technetium-99m HMPAO brain SPECT in children with attention deficit hyperactivity disorder. Ann Nucl Med. 2002;16:527–31.
    1. Lorberboym M, Watemberg N, Nissenkorn A, Nir B, Lerman-Sagie T. Technetium 99m ethylcysteinate dimer single-photon emission computed tomography (SPECT) during intellectual stress test in children and adolescents with pure versus comorbid attention-deficit hyperactivity disorder (ADHD) J Child Neurol. 2004;19:91–6.
    1. Kim BN, Lee JS, Cho SC, Lee DS. Methylphenidate increased regional cerebral blood flow in subjects with attention deficit/hyperactivity disorder. Yonsei Med J. 2001;42:19–29.
    1. Lee JS, Kim BN, Kang E, Lee DS, Kim YK, Chung JK, et al. Regional cerebral blood flow in children with attention deficit hyperactivity disorder: Comparison before and after methylphenidate treatment. Hum Brain Mapp. 2005;24:157–64.
    1. Cho SC, Hwang JW, Kim BN, Lee HY, Kim HW, Lee JS, et al. The relationship between regional cerebral blood flow and response to methylphenidate in children with attention-deficit hyperactivity disorder: Comparison between non-responders to methylphenidate and responders. J Psychiatr Res. 2007;41:459–65.
    1. Huyser C, Veltman DJ, de Haan E, Boer F. Paediatric obsessive-compulsive disorder, a neurodevelopmental disorder? Evidence from neuroimaging. Neurosci Biobehav Rev. 2009;33:818–30.
    1. Machlin SR, Harris GJ, Pearlson GD, Hoehn-Saric R, Jeffery P, Camargo EE. Elevated medial-frontal cerebral blood flow in obsessive-compulsive patients: A SPECT study. Am J Psychiatry. 1991;148:1240–2.
    1. Hoehn-Saric R, Pearlson GD, Harris GJ, Machlin SR, Camargo EE. Effects of fluoxetine on regional cerebral blood flow in obsessive-compulsive patients. Am J Psychiatry. 1991;148:1243–5.
    1. Hoehn-Saric R, Harris GJ, Pearlson GD, Cox CS, Machlin SR, Camargo EE. A fluoxetine-induced frontal lobe syndrome in an obsessive compulsive patient. J Clin Psychiatry. 1991;52:131–3.
    1. Lucey JV, Costa DC, Blanes T, Busatto GF, Pilowsky LS, Takei N, et al. Regional cerebral blood flow in obsessive-compulsive disordered patients at rest. Differential correlates with obsessive-compulsive and anxious-avoidant dimensions. Br J Psychiatry. 1995;167:629–34.
    1. Chang JW, Kim CH, Lee JD, Chung SS. Single photon emission computed tomography imaging in obsessive-compulsive disorder and for stereotactic bilateral anterior cingulotomy. Neurosurg Clin N Am. 2003;14:237–50.
    1. Hoehn-Saric R, Schlaepfer TE, Greenberg BD, McLeod DR, Pearlson GD, Wong SH. Cerebral blood flow in obsessive-compulsive patients with major depression: Effect of treatment with sertraline or desipramine on treatment responders and non-responders. Psychiatry Res. 2001;108:89–100.
    1. Karadag F, Kalkan Oguzhanoglu N, Yüksel D, Kiraç S, Cura C, Ozdel O, et al. The comparison of pre-and post-treatment (99m) Tc HMPAO brain SPECT images in patients with obsessive-compulsive disorder. Psychiatry Res. 2013;213:169–77.
    1. Santra A, Thukral RK. Brain perfusion single photon emission computed tomography with (99m) Tc-hexamethylpropyleneamineoxime in hereditary obsessive compulsive disorder. Indian J Nucl Med. 2013;28:256–7.
    1. Woods SW. Regional cerebral blood flow imaging with SPECT in psychiatric disease: Focus on schizophrenia, anxiety disorders, and substance abuse. J Clin Psychiatry. 1992;53(Suppl):20–5.
    1. Sabri O, Erkwoh R, Schreckenberger M, Owega A, Sass H, Buell U. Correlation of positive symptoms exclusively to hyperperfusion or hypoperfusion of cerebral cortex in never-treated schizophrenics. Lancet. 1997;349:1735–9.
    1. Faget-Agius C, Boyer L, Padovani R, Richieri R, Mundler O, Lançon C, et al. Schizophrenia with preserved insight is associated with increased perfusion of the precuneus. J Psychiatry Neurosci. 2012;37:297–304.
    1. Hoptman MJ, Antonius D. Neuroimaging correlates of aggression in schizophrenia: An update. Curr Opin Psychiatry. 2011;24:100–6.
    1. Zhao J, He X, Liu Z, Yang D. The effects of clozapine on cognitive function and regional cerebral blood flow in the negative symptom profile schizophrenia. Int J Psychiatry Med. 2006;36:171–81.
    1. Moreno-Iñiguez M, Ortuño F, Arbizu J, Millán M, Soutullo C, Cervera-Enguix S. Regional cerebral blood flow SPECT study, at rest and during Wisconsin Card Sorting Test (WCST) performance, in schizophrenia naive patients or treated with atypical neuroleptics. Actas Esp Psiquiatr. 2005;33:343–51.
    1. Li X, Tang J, Wu Z, Zhao G, Liu C, George MS. SPECT study of Chinese schizophrenic patients suggests that cerebral hypoperfusion and laterality exist in different ethnic groups. World J Biol Psychiatry. 2005;6:98–106.
    1. Wang CS, Yang YK, Chen M, Chiu NT, Yeh TL, Lee IH. Negative symptoms and regional cerebral blood flow in patients with schizophrenia: A single photon emission computed tomography study. Kaohsiung J Med Sci. 2003;19:464–9.
    1. Tsujino N, Nemoto T, Yamaguchi T, Katagiri N, Tohgi N, Ikeda R, et al. Cerebral blood flow changes in very-late-onset schizophrenia-like psychosis with catatonia before and after successful treatment. Psychiatry Clin Neurosci. 2011;65:600–3.
    1. Ertugrul A, Volkan-Salanci B, Basar K, Karli Oguz K, Demir B, Ergun EL, et al. The effect of clozapine on regional cerebral blood flow and brain metabolite ratios in schizophrenia: Relationship with treatment response. Psychiatry Res. 2009;174:121–9.
    1. Novak B, Milcinski M, Grmek M, Kocmur M. Early effects of treatment on regional cerebral blood flow in first episode schizophrenia patients evaluated with 99Tc-ECD-SPECT. Neuro Endocrinol Lett. 2005;26:685–9.
    1. Sharafi M. Comparison of Classical and Clozapine Treatment on Schizophrenia Using Positive and Negative Syndrome Scale of Schizophrenia (PANSS) and SPECT Imaging. Int J Med Sci. 2005;2:79–86.
    1. Kanahara N, Shimizu E, Sekine Y, Uchida Y, Shibuya T, Yamanaka H, et al. Does hypofrontality expand to global brain area in progression of schizophrenia?: A cross-sectional study between first-episode and chronic schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33:410–5.
    1. Musalek M, Podreka I, Walter H, Suess E, Passweg V, Nutzinger D, et al. Regional brain function in hallucinations: A study of regional cerebral blood flow with 99m-Tc-HMPAO-SPECT in patients with auditory hallucinations, tactile hallucinations, and normal controls. Compr Psychiatry. 1989;30:99–108.
    1. Toone BK, Okocha CI, Sivakumar K, Syed GM. Changes in regional cerebral blood flow due to cognitive activation among patients with schizophrenia. Br J Psychiatry. 2000;177:222–8.
    1. Kaplan HI, Sadock BJ. 6th ed. Baltimore, MD: Williams and Wilkins; 1991. Synopsis of Psychiatry; pp. 278–84. (363-82).
    1. Devous MD., Sr Comparison of SPECT applications in neurology and psychiatry. J Clin Psychiatry. 1992;53(Suppl):13–9.
    1. Mayberg HS, Jeffery PJ, Wagner HN, Simpson SG. Regional cerebral blood flow in patients with refractory unipolar depression measured with Tc-99m HMPAO SPECT. J Nucl Med. 1991;32(Suppl):951. Abstract.
    1. Van Heertum RL, O’Connell RA. Functional brain imaging in the evaluation of psychiatric illness. Semin Nucl Med. 1991;21:24–39.
    1. Ito H, Kawashima R, Awata S, Ono S, Sato K, Goto R, et al. Hypoperfusion in the limbic system and prefrontal cortex in depression: SPECT with anatomic standardization technique. J Nucl Med. 1996;37:410–4.
    1. Vasile RG, Schwartz RB, Garada B, Holman BL, Alpert M, Davidson PB, et al. Focal cerebral perfusion defects demonstrated by 99mTc-hexamethylpropyleneamine oxime SPECT in elderly depressed patients. Psychiatry Res. 1996;67:59–70.
    1. Galynker II, Cai J, Ongseng F, Finestone H, Dutta E, Serseni D. Hypofrontality and negative symptoms in major depressive disorder. J Nucl Med. 1998;39:608–12.
    1. Périco CA, Skaf CR, Yamada A, Duran F, Buchpiguel CA, Castro CC, et al. Relationship between regional cerebral blood flow and separate symptom clusters of major depression: A single photon emission computed tomography study using statistical parametric mapping. Neurosci Lett. 2005;384:265–70.
    1. Kim SJ, Song SH, Kim JH, Kwak IS. Statistical parametric mapping analysis of the relationship between regional cerebral blood flow and symptom clusters of the depressive mood in patients with pre-dialytic chronic kidney disease. Ann Nucl Med. 2008;22:201–6.
    1. Yao WJ, Pan HA, Yang YK, Chou YH, Wang ST, Yu CY, et al. Reduced frontal perfusion in depressed postmenopausal women: A SPECT study with WCST. Maturitas. 2008;59:83–90.
    1. Brody AL, Barsom MW, Bota RG, Saxena S. Prefrontal-subcortical and limbic circuit mediation of major depressive disorder. Semin Clin Neuropsychiatry. 2001;6:102–12.
    1. Lucey JV, Costa DC, Adshead G, Deahl M, Busatto G, Gacinovic S, et al. Brain blood flow in anxiety disorders. OCD, panic disorder with agoraphobia, and post-traumatic stress disorder on 99mTcHMPAO single photon emission tomography (SPET) Br J Psychiatry. 1997;171:346–50.
    1. Fernández-Argüelles P, Castro Montaño J, García López O, Cambil Molina T. SPECT study of a group of patients with severe recurrent depression. Actas Luso Esp Neurol Psiquiatr Cienc Afines. 1998;26:223–32.
    1. Holman BL, Carvalho PA, Mendelson J, Teoh SK, Nardin R, Hallgring E, et al. Brain perfusion is abnormal in cocaine-dependent polydrug users: A study using technetium-99m-HMPAO and ASPECT. J Nucl Med. 1991;32:1206–10.
    1. Botelho MF, Relvas JS, Abrantes M, Cunha MJ, Marques TR, Rovira E, et al. Brain blood flow SPET imaging in heroin abusers. Ann N Y Acad Sci. 2006;1074:466–77.
    1. Jordaan GP, Warwick JM, Nel DG, Hewlett R, Emsley R. Alcohol-induced psychotic disorder: Brain perfusion and psychopathology-before and after anti-psychotic treatment. Metab Brain Dis. 2012;27:67–77.
    1. Jordaan GP, Warwick JM, Hewlett R, Emsley R. Resting brain perfusion in alcohol-induced psychotic disorder: A comparison in patients with alcohol dependence, schizophrenia and healthy controls. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34:479–85.
    1. Chung YA, Choi SW, Joe KH, Jeong J, Cheon Y, Kim DJ. Regional cerebral blood flow in patients with alcohol-related dementia: A SPECT study. Int J Neurosci. 2009;119:2100–11.
    1. Holman BL, Mendelson J, Garada B, Teoh SK, Hallgring E, Johnson KA, et al. Regional cerebral blood flow improves with treatment in chronic cocaine polydrug users. J Nucl Med. 1993;34:723–7.
    1. Miller BL, Mena I, Giombetti R, Villanueva-Meyer J, Djenderedjian AH. Neuropsychiatric effects of cocaine: SPECT measurements. J Addict Dis. 1992;11:47–58.
    1. Adinoff B, Braud J, Devous MD, Harris TS. Caudolateral orbitofrontal regional cerebral blood flow is decreased in abstinent cocaine-addicted subjects in two separate cohorts. Addict Biol. 2012;17:1001–12.
    1. Adinoff B, Williams MJ, Best SE, Harris TS, Chandler P, Devous MD., Sr Sex differences in medial and lateral orbitofrontal cortex hypoperfusion in cocaine-dependent men and women. Gend Med. 2006;3:206–22.
    1. Küçük NO, Kiliç EO, Ibis E, Aysev A, Gençoglu EA, Aras G, et al. Brain SPECT findings in long-term inhalant abuse. Nucl Med Commun. 2000;21:769–73.
    1. Lele RD. 1st ed. New Delhi: Jaypee Brothers Medical Publishers Pvt; 2009. Principles and practice of nuclear medicine and correlative medical imaging; p. 175.
    1. Degirmenci B, Miral S, Kaya GC, Iyilikçi L, Arslan G, Baykara A, et al. Technetium-99m HMPAO brain SPECT in autistic children and their families. Psychiatry Res. 2008;162:236–43.
    1. Mayberg HS, Brannan SK, Mahurin RK, Jerabek PA, Brickman JS, Tekell JL, et al. Cingulate function in depression: A potential predictor of treatment response. Neuroreport. 1997;8:1057–61.
    1. Seminowicz DA, Mayberg HS, McIntosh AR, Goldapple K, Kennedy S, Segal Z, et al. Limbic-frontal circuitry in major depression: A path modeling metanalysis. Neuroimage. 2004;22:409–18.
    1. Mayberg HS, Brannan SK, Tekell JL, Silva JA, Mahurin RK, McGinnis S, et al. Regional metabolic effects of fluoxetine in major depression: Serial changes and relationship to clinical response. Biol Psychiatry. 2000;48:830–43.
    1. Saxena S, Brody AL, Maidment KM, Smith EC, Zohrabi N, Katz E, et al. Cerebral glucose metabolism in obsessive-compulsive hoarding. Am J Psychiatry. 2004;161:1038–48.
    1. Diler RS, Kibar M, Avci A. Pharmacotherapy and regional cerebral blood flow in children with obsessive compulsive disorder. Yonsei Med J. 2004;45:90–9.
    1. Wu JC, Gillin JC, Buchsbaum MS, Schachat C, Darnall LA, Keator DB, et al. Sleep deprivation PET correlations of Hamilton symptom improvement ratings with changes in relative glucose metabolism in patients with depression. J Affect Disord. 2008;107:181–6.
    1. Wu J, Buchsbaum MS, Gillin JC, Tang C, Cadwell S, Wiegand M, et al. Prediction of antidepressant effects of sleep deprivation by metabolic rates in the ventral anterior cingulate and medial prefrontal cortex. Am J Psychiatry. 1999;156:1149–58.
    1. Langguth B, Wiegand R, Kharraz A, Landgrebe M, Marienhagen J, Frick U, et al. Pre-treatment anterior cingulate activity as a predictor of antidepressant response to repetitive transcranial magnetic stimulation (rTMS) Neuro Endocrinol Lett. 2007;28:633–8.
    1. Dougherty DD, Weiss AP, Cosgrove GR, Alpert NM, Cassem EH, Nierenberg AA, et al. Cerebral metabolic correlates as potential predictors of response to anterior cingulotomy for treatment of major depression. J Neurosurg. 2003;99:1010–7.
    1. Oner P, Oner O, Aysev A, Küçük O, Ibis E. Comparison of cerebral blood flow in children with obsessive compulsive disorder and attention deficit hyperactivity disorder. Turk Psikiyatri Derg. 2008;19:13–8.
    1. Brockmann H, Zobel A, Joe A, Biermann K, Scheef L, Schuhmacher A, et al. The value of HMPAO SPECT in predicting treatment response to citalopram in patients with major depression. Psychiatry Res. 2009;173:107–12.
    1. Molina Rodríguez V, Montz Andreé R, Pérez Castejón MJ, Capdevila García E, Carreras Delgado JL, Rubia Vila FJ. SPECT study of regional cerebral perfusion in neuroleptic-resistant schizophrenic patients who responded or did not respond to clozapine. Am J Psychiatry. 1996;153:1343–6.
    1. Noël X, Sferrazza R, Van Der Linden M, Paternot J, Verhas M, Hanak C, et al. Contribution of frontal cerebral blood flow measured by (99m) Tc-Bicisate spect and executive function deficits to predicting treatment outcome in alcohol-dependent patients. Alcohol Alcohol. 2002;37:347–54.
    1. Kanetaka H, Hanyu H, Hirao K, Shimizu S, Sato T, Akai T, et al. Prediction of response to donepezil in Alzheimer's disease: Combined MRI analysis of the substantia innominata and SPECT measurement of cerebral perfusion. Nucl Med Commun. 2008;29:568–73.
    1. Mega MS, Dinov ID, Lee L, O’Connor SM, Masterman DM, Wilen B, et al. Orbital and dorsolateral frontal perfusion defect associated with behavioral response to cholinesterase inhibitor therapy in Alzheimer's disease. J Neuropsychiatry Clin Neurosci. 2000;12:209–18.
    1. Guedj E, Cammilleri S, Colavolpe C, Taieb D, de Laforte C, Niboyet J, et al. Predictive value of brain perfusion SPECT for ketamine response in hyperalgesic fibromyalgia. Eur J Nucl Med Mol Imaging. 2007;34:1274–9.
    1. Amen DG, Hanks C, Prunella J. Predicting positive and negative treatment responses to stimulants with brain SPECT imaging. J Psychoactive Drugs. 2008;40:131–8.
    1. Goethals I, Audenaert K, Jacobs F, Van den Eynde F, Bernagie K, Kolindou A, et al. Brain perfusion SPECT in impulsivity-related personality disorders. Behav Brain Res. 2005;157:187–92.
    1. Amen DG, Hanks C, Prunella JR, Green A. An analysis of regional cerebral blood flow in impulsive murderers using single photon emission computed tomography. J Neuropsychiatry Clin Neurosci. 2007;19:304–9.
    1. Amen DG, Prunella JR, Fallon JH, Amen B, Hanks C. A comparative analysis of completed suicide using high resolution brain SPECT imaging. J Neuropsychiatry Clin Neurosci. 2009;21:430–9.
    1. Gescher DM, Malevani J. Mood stabilizer in the psychopharmacotherapy of borderline personality disorder. Fortschr Neurol Psychiatr. 2009;77:389–98.
    1. Freo U, Pizzolato G, Dam M, Ori C, Battistin L. A short review of cognitive and functional neuroimaging studies of cholinergic drugs: Implications for therapeutic potentials. J Neural Transm. 2002;109:857–70.

Source: PubMed

3
Abonneren