The Emerging Role of Vitamin C as a Treatment for Sepsis

Markos G Kashiouris, Michael L'Heureux, Casey A Cable, Bernard J Fisher, Stefan W Leichtle, Alpha A Fowler, Markos G Kashiouris, Michael L'Heureux, Casey A Cable, Bernard J Fisher, Stefan W Leichtle, Alpha A Fowler

Abstract

Sepsis, a life-threatening organ dysfunction due to a dysregulated host response to infection, is a leading cause of morbidity and mortality worldwide. Decades of research have failed to identify any specific therapeutic targets outside of antibiotics, infectious source elimination, and supportive care. More recently, vitamin C has emerged as a potential therapeutic agent to treat sepsis. Vitamin C has been shown to be deficient in septic patients and the administration of high dose intravenous as opposed to oral vitamin C leads to markedly improved and elevated serum levels. Its physiologic role in sepsis includes attenuating oxidative stress and inflammation, improving vasopressor synthesis, enhancing immune cell function, improving endovascular function, and epigenetic immunologic modifications. Multiple clinical trials have demonstrated the safety of vitamin C and two recent studies have shown promising data on mortality improvement. Currently, larger randomized controlled studies are underway to validate these findings. With further study, vitamin C may become standard of care for the treatment of sepsis, but given its safety profile, current treatment can be justified with compassionate use.

Keywords: HDIVC; high-dose intravenous vitamin C; sepsis; septic shock; vitamin C.

Conflict of interest statement

The primary authors (M.G.K., B.J.F., A.A.F.III) were investigators on the CITRUS-ALI study.

Figures

Figure 1
Figure 1
The last step in vitamin C (C6H8O6, or l-Ascorbic acid) biosynthesis. Humans have lost the ability to synthesize the GLO enzyme, and thus are dependent on exogenous vitamin C intake through their diet. Modified from: U.S. National Library of Medicine, PubChem.
Figure 2
Figure 2
Ascorbic Acid (AA) and dehydroascorbic Acid (DHA) transporters (left). Concentration of AA and DHA in human organs and cells in uM (right). Inspired by Padayatty and Levine [25].
Figure 3
Figure 3
Infographic of differential vitamin C peak plasma concentrations based on alternative routes of administration and dosage.
Figure 4
Figure 4
Pleiotropic effects of high-dose intravenous vitamin C (HDIVC) in sepsis-induced acute respiratory distress syndrome (ARDS). The orange star [✯] points to possible therapeutic targets of HDIVC. The figure illustrates a human alveolus with the capillary membrane, and the blood-gas barrier during sepsis.
Figure 5
Figure 5
Kaplan–Meier mortality curves in patients with sepsis induced acute respiratory distress syndrome (ARDS) who were randomized to receive a 4-day course of high-dose intravenous vitamin C (HDIVC) versus placebo, upon ARDS onset-recognition.

References

    1. Singer M., Deutschman C.S., Seymour C.W., Shankar-Hari M., Annane D., Bauer M., Bellomo R., Bernard G.R., Chiche J.-D., Coopersmith C.M., et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) JAMA. 2016;315:801–810. doi: 10.1001/jama.2016.0287.
    1. Fleischmann C., Scherag A., Adhikari N.K.J., Hartog C.S., Tsaganos T., Schlattmann P., Angus D.C., Reinhart K. International Forum of Acute Care Trialists Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am. J. Respir. Crit. Care Med. 2016;193:259–272. doi: 10.1164/rccm.201504-0781OC.
    1. Walkey A.J., Lagu T., Lindenauer P.K. Trends in sepsis and infection sources in the United States. A population-based study. Ann. Am. Thorac. Soc. 2015;12:216–220. doi: 10.1513/AnnalsATS.201411-498BC.
    1. Andreu Ballester J.C., Ballester F., González Sánchez A., Almela Quilis A., Colomer Rubio E., Peñarroja Otero C. Epidemiology of sepsis in the Valencian Community (Spain), 1995–2004. Infect. Control Hosp. Epidemiol. 2008;29:630–634. doi: 10.1086/589583.
    1. Cohen J., Vincent J.-L., Adhikari N.K.J., Machado F.R., Angus D.C., Calandra T., Jaton K., Giulieri S., Delaloye J., Opal S., et al. Sepsis: A roadmap for future research. Lancet Infect. Dis. 2015;15:581–614. doi: 10.1016/S1473-3099(15)70112-X.
    1. Sheu C.-C., Gong M.N., Zhai R., Chen F., Bajwa E.K., Clardy P.F., Gallagher D.C., Thompson B.T., Christiani D.C. Clinical characteristics and outcomes of sepsis-related vs non-sepsis-related ARDS. Chest. 2010;138:559–567. doi: 10.1378/chest.09-2933.
    1. Kaukonen K.-M., Bailey M., Suzuki S., Pilcher D., Bellomo R. Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000–2012. JAMA. 2014;311:1308–1316. doi: 10.1001/jama.2014.2637.
    1. Rhee C., Jones T.M., Hamad Y., Pande A., Varon J., O’Brien C., Anderson D.J., Warren D.K., Dantes R.B., Epstein L., et al. Centers for Disease Control and Prevention (CDC) Prevention Epicenters Program Prevalence, Underlying Causes, and Preventability of Sepsis-Associated Mortality in US Acute Care Hospitals. JAMA Netw. Open. 2019;2:e187571. doi: 10.1001/jamanetworkopen.2018.7571.
    1. Salvemini D., Cuzzocrea S. Oxidative stress in septic shock and disseminated intravascular coagulation. Free Radic. Biol. Med. 2002;33:1173–1185. doi: 10.1016/S0891-5849(02)00961-9.
    1. Marshall J.C. Clinical trials of mediator-directed therapy in sepsis: What have we learned? Intensive Care Med. 2000;26(Suppl. 1):S75–S83. doi: 10.1007/s001340051122.
    1. Kruger P., Bailey M., Bellomo R., Cooper D.J., Harward M., Higgins A., Howe B., Jones D., Joyce C., Kostner K., et al. ANZ-STATInS Investigators–ANZICS Clinical Trials Group A multicenter randomized trial of atorvastatin therapy in intensive care patients with severe sepsis. Am. J. Respir. Crit. Care Med. 2013;187:743–750. doi: 10.1164/rccm.201209-1718OC.
    1. Truwit J.D., Bernard G.R., Steingrub J., Matthay M.A., Liu K.D., Albertson T.E., Brower R.G., Shanholtz C., Rock P., Douglas I.S., et al. Rosuvastatin for sepsis-associated acute respiratory distress syndrome. N. Engl. J. Med. 2014;370:2191–2200.
    1. Ranieri V.M., Thompson B.T., Barie P.S., Dhainaut J.-F., Douglas I.S., Finfer S., Gårdlund B., Marshall J.C., Rhodes A., Artigas A., et al. PROWESS-SHOCK Study Group Drotrecogin alfa (activated) in adults with septic shock. N. Engl. J. Med. 2012;366:2055–2064. doi: 10.1056/NEJMoa1202290.
    1. Ziegler E.J., Fisher C.J., Sprung C.L., Straube R.C., Sadoff J.C., Foulke G.E., Wortel C.H., Fink M.P., Dellinger R.P., Teng N.N. Treatment of gram-negative bacteremia and septic shock with HA-1A human monoclonal antibody against endotoxin. A randomized, double-blind, placebo-controlled trial. The HA-1A Sepsis Study Group. N. Engl. J. Med. 1991;324:429–436. doi: 10.1056/NEJM199102143240701.
    1. National Cancer Institute Ascorbic Acid (Code C285) [(accessed on 11 September 2019)]; Available online: .
    1. Drouin G., Godin J.-R., Pagé B. The genetics of vitamin C loss in vertebrates. Curr. Genom. 2011;12:371–378. doi: 10.2174/138920211796429736.
    1. Lachapelle M.Y., Drouin G. Inactivation dates of the human and guinea pig vitamin C genes. Genetica. 2011;139:199–207. doi: 10.1007/s10709-010-9537-x.
    1. Pauling L. Evolution and the need for ascorbic acid. Proc. Natl. Acad. Sci. USA. 1970;67:1643–1648. doi: 10.1073/pnas.67.4.1643.
    1. Granger M., Eck P. Dietary vitamin C in human health. Adv. Food Nutr. Res. 2018;83:281–310.
    1. Hodges R.E., Hood J., Canham J.E., Sauberlich H.E., Baker E.M. Clinical manifestations of ascorbic acid deficiency in man. Am. J. Clin. Nutr. 1971;24:432–443. doi: 10.1093/ajcn/24.4.432.
    1. Tsukaguchi H., Tokui T., Mackenzie B., Berger U.V., Chen X.Z., Wang Y., Brubaker R.F., Hediger M.A. A family of mammalian Na+-dependent L-ascorbic acid transporters. Nature. 1999;399:70–75. doi: 10.1038/19986.
    1. Daruwala R., Song J., Koh W.S., Rumsey S.C., Levine M. Cloning and functional characterization of the human sodium-dependent vitamin C transporters hSVCT1 and hSVCT2. FEBS Lett. 1999;460:480–484. doi: 10.1016/S0014-5793(99)01393-9.
    1. Corpe C.P., Eck P., Wang J., Al-Hasani H., Levine M. Intestinal dehydroascorbic acid (DHA) transport mediated by the facilitative sugar transporters, GLUT2 and GLUT8. J. Biol. Chem. 2013;288:9092–9101. doi: 10.1074/jbc.M112.436790.
    1. Kuhn V., Diederich L., Keller T.C.S., Kramer C.M., Lückstädt W., Panknin C., Suvorava T., Isakson B.E., Kelm M., Cortese-Krott M.M., et al. Red blood cell function and dysfunction: Redox regulation, nitric oxide metabolism, anemia. Antioxid. Redox Signal. 2017;26:718–742. doi: 10.1089/ars.2016.6954.
    1. Padayatty S.J., Levine M. Vitamin C: The known and the unknown and Goldilocks. Oral Dis. 2016;22:463–493. doi: 10.1111/odi.12446.
    1. Schorah C.J., Downing C., Piripitsi A., Gallivan L., Al-Hazaa A.H., Sanderson M.J., Bodenham A. Total vitamin C, ascorbic acid, and dehydroascorbic acid concentrations in plasma of critically ill patients. Am. J. Clin. Nutr. 1996;63:760–765. doi: 10.1093/ajcn/63.5.760.
    1. Long C.L., Maull K.I., Krishnan R.S., Laws H.L., Geiger J.W., Borghesi L., Franks W., Lawson T.C., E Sauberlich H. Ascorbic acid dynamics in the seriously ill and injured. J. Surg. Res. 2003;109:144–148. doi: 10.1016/S0022-4804(02)00083-5.
    1. Metnitz P.G., Bartens C., Fischer M., Fridrich P., Steltzer H., Druml W. Antioxidant status in patients with acute respiratory distress syndrome. Intensive Care Med. 1999;25:180–185. doi: 10.1007/s001340050813.
    1. Fulzele S., Chothe P., Sangani R., Chutkan N., Hamrick M., Bhattacharyya M., Prasad P.B., Zakhary I., Bowser M., Ganapathy V., et al. Sodium-dependent vitamin C transporter SVCT2: Expression and function in bone marrow stromal cells and in osteogenesis. Stem Cell Res. 2013;10:36–47. doi: 10.1016/j.scr.2012.08.004.
    1. Levine M., Conry-Cantilena C., Wang Y., Welch R.W., Washko P.W., Dhariwal K.R., Park J.B., Lazarev A., Graumlich J.F., King J., et al. pharmacokinetics in healthy volunteers: Evidence for a recommended dietary allowance. Proc. Natl. Acad. Sci. USA. 1996;93:3704–3709. doi: 10.1073/pnas.93.8.3704.
    1. Padayatty S.J., Sun H., Wang Y., Riordan H.D., Hewitt S.M., Katz A., Wesley R.A., Levine M. Vitamin C pharmacokinetics: Implications for oral and intravenous use. Ann. Intern. Med. 2004;140:533–537. doi: 10.7326/0003-4819-140-7-200404060-00010.
    1. Wilson J.X. Mechanism of action of vitamin C in sepsis: Ascorbate modulates redox signaling in endothelium. Biofactors. 2009;35:5–13. doi: 10.1002/biof.7.
    1. Wilson J.X. Evaluation of vitamin C for adjuvant sepsis therapy. Antioxid. Redox Signal. 2013;19:2129–2140. doi: 10.1089/ars.2013.5401.
    1. Frei B., Stocker R., England L., Ames B.N. Ascorbate: The most effective antioxidant in human blood plasma. Adv. Exp. Med. Biol. 1990;264:155–163.
    1. Koekkoek W.A.C.K., van Zanten A.R.H. Antioxidant vitamins and trace elements in critical illness. Nutr. Clin. Pract. 2016;31:457–474. doi: 10.1177/0884533616653832.
    1. Nathens A.B., Neff M.J., Jurkovich G.J., Klotz P., Farver K., Ruzinski J.T., Radella F., Garcia I., Maier R.V. Randomized, prospective trial of antioxidant supplementation in critically ill surgical patients. Ann. Surg. 2002;236:814–822. doi: 10.1097/00000658-200212000-00014.
    1. Wang N.T., Lin H.I., Yeh D.Y., Chou T.Y., Chen C.F., Leu F.C., Wang D., Hu R.T. Effects of the antioxidants lycium barbarum and ascorbic acid on reperfusion liver injury in rats. Transpl. Proc. 2009;41:4110–4113. doi: 10.1016/j.transproceed.2009.08.051.
    1. Lee W.-Y., Lee J.-S., Lee S.-M. Protective effects of combined ischemic preconditioning and ascorbic acid on mitochondrial injury in hepatic ischemia/reperfusion. J. Surg. Res. 2007;142:45–52. doi: 10.1016/j.jss.2006.08.043.
    1. Berger M.M., Soguel L., Shenkin A., Revelly J.-P., Pinget C., Baines M., Chioléro R.L. Influence of early antioxidant supplements on clinical evolution and organ function in critically ill cardiac surgery, major trauma, and subarachnoid hemorrhage patients. Crit. Care. 2008;12:R101. doi: 10.1186/cc6981.
    1. Oudemans-van Straaten H.M., Spoelstra-de Man A.M., de Waard M.C. Vitamin C revisited. Crit. Care. 2014;18:460. doi: 10.1186/s13054-014-0460-x.
    1. Carr A.C., Shaw G.M., Fowler A.A., Natarajan R. Ascorbate-dependent vasopressor synthesis: A rationale for vitamin C administration in severe sepsis and septic shock? Crit. Care. 2015;19:418. doi: 10.1186/s13054-015-1131-2.
    1. Kagan V.E., Serbinova E.A., Forte T., Scita G., Packer L. Recycling of vitamin E in human low density lipoproteins. J. Lipid Res. 1992;33:385–397.
    1. Noguchi N., Iwaki Y., Takahashi M., Komuro E., Kato Y., Tamura K., Cynshi O., Kodama T., Niki E. 2,3-Dihydro-5-hydroxy-2,2-dipentyl-4,6-di-tert-butylbenzofuran: Design and evaluation as a novel radical-scavenging antioxidant against lipid peroxidation. Arch. Biochem. Biophys. 1997;342:236–243. doi: 10.1006/abbi.1997.9994.
    1. Eipper B.A., Mains R.E. The role of ascorbate in the biosynthesis of neuroendocrine peptides. Am. J. Clin. Nutr. 1991;54:1153S–1156S. doi: 10.1093/ajcn/54.6.1153s.
    1. Arrigoni O., De Tullio M.C. The role of ascorbic acid in cell metabolism: Between gene-directed functions and unpredictable chemical reactions. J. Plant Physiol. 2000;157:481–488. doi: 10.1016/S0176-1617(00)80102-9.
    1. Gorres K.L., Raines R.T. Prolyl 4-hydroxylase. Crit. Rev. Biochem. Mol. Biol. 2010;45:106–124. doi: 10.3109/10409231003627991.
    1. Kivirikko K.I., Myllylä R. Post-translational processing of procollagens. Ann. N. Y. Acad. Sci. 1985;460:187–201. doi: 10.1111/j.1749-6632.1985.tb51167.x.
    1. Kishimoto Y., Saito N., Kurita K., Shimokado K., Maruyama N., Ishigami A. Ascorbic acid enhances the expression of type 1 and type 4 collagen and SVCT2 in cultured human skin fibroblasts. Biochem. Biophys. Res. Commun. 2013;430:579–584. doi: 10.1016/j.bbrc.2012.11.110.
    1. Nytko K.J., Maeda N., Schläfli P., Spielmann P., Wenger R.H., Stiehl D.P. Vitamin C is dispensable for oxygen sensing in vivo. Blood. 2011;117:5485–5493. doi: 10.1182/blood-2010-09-307637.
    1. Bruick R.K., McKnight S.L. A conserved family of prolyl-4-hydroxylases that modify HIF. Science. 2001;294:1337–1340. doi: 10.1126/science.1066373.
    1. Grano A., De Tullio M.C. Ascorbic acid as a sensor of oxidative stress and a regulator of gene expression: The Yin and Yang of vitamin C. Med. Hypotheses. 2007;69:953–954. doi: 10.1016/j.mehy.2007.02.008.
    1. Ke Q., Costa M. Hypoxia-inducible factor-1 (HIF-1) Mol. Pharm. 2006;70:1469–1480. doi: 10.1124/mol.106.027029.
    1. Nelson P.J., Pruitt R.E., Henderson L.L., Jenness R., Henderson L.M. Effect of ascorbic acid deficiency on the in vivo synthesis of carnitine. Biochim. Biophys. Acta (BBA)-Gen. Subj. 1981;672:123–127. doi: 10.1016/0304-4165(81)90286-5.
    1. Rebouche C.J. Ascorbic acid and carnitine biosynthesis. Am. J. Clin. Nutr. 1991;54:1147S–1152S. doi: 10.1093/ajcn/54.6.1147s.
    1. Winter B.K., Fiskum G., Gallo L.L. Effects of L-carnitine on serum triglyceride and cytokine levels in rat models of cachexia and septic shock. Br. J. Cancer. 1995;72:1173–1179. doi: 10.1038/bjc.1995.482.
    1. Foroozanfar N., Lucas C.F., Joss D.V., Hugh-Jones K., Hobbs J.R. Ascorbate (1g/day) does not help the phagocyte killing defect of X-linked chronic granulomatous disease. Clin. Exp. Immunol. 1983;51:99–102.
    1. Goldschmidt M.C. Reduced bactericidal activity in neutrophils from scorbutic animals and the effect of ascorbic acid on these target bacteria in vivo and in vitro. Am. J. Clin. Nutr. 1991;54:1214S–1220S. doi: 10.1093/ajcn/54.6.1214s.
    1. Goldschmidt M.C., Masin W.J., Brown L.R., Wyde P.R. The effect of ascorbic acid deficiency on leukocyte phagocytosis and killing of actinomyces viscosus. Int. J. Vitam. Nutr. Res. 1988;58:326–334.
    1. Rebora A., Dallegri F., Patrone F. Neutrophil dysfunction and repeated infections: Influence of levamisole and ascorbic acid. Br. J. Dermatol. 1980;102:49–56. doi: 10.1111/j.1365-2133.1980.tb05671.x.
    1. Shilotri P.G. Glycolytic, hexose monophosphate shunt and bactericidal activities of leukocytes in ascorbic acid deficient guinea pigs. J. Nutr. 1977;107:1507–1512. doi: 10.1093/jn/107.8.1507.
    1. Johnston C.S., Huang S.N. Effect of ascorbic acid nutriture on blood histamine and neutrophil chemotaxis in guinea pigs. J. Nutr. 1991;121:126–130. doi: 10.1093/jn/121.1.126.
    1. Carr A.C., Maggini S. Vitamin C and immune function. Nutrients. 2017;9:1211. doi: 10.3390/nu9111211.
    1. Washko P.W., Wang Y., Levine M. Ascorbic acid recycling in human neutrophils. J. Biol. Chem. 1993;268:15531–15535.
    1. Chen Y., Luo G., Yuan J., Wang Y., Yang X., Wang X., Li G., Liu Z., Zhong N. Vitamin C mitigates oxidative stress and tumor necrosis factor-alpha in severe community-acquired pneumonia and LPS-induced macrophages. Mediat. Inflamm. 2014;2014:426740. doi: 10.1155/2014/426740.
    1. Cárcamo J.M., Pedraza A., Bórquez-Ojeda O., Zhang B., Sanchez R., Golde D.W. Vitamin C is a kinase inhibitor: Dehydroascorbic acid inhibits IkappaBalpha kinase beta. Mol. Cell. Biol. 2004;24:6645–6652. doi: 10.1128/MCB.24.15.6645-6652.2004.
    1. Peng Y., Kwok K.H.H., Yang P.-H., Ng S.S.M., Liu J., Wong O.G., He M.-L., Kung H.-F., Lin M.C.M. Ascorbic acid inhibits ROS production, NF-kappa B activation and prevents ethanol-induced growth retardation and microencephaly. Neuropharmacology. 2005;48:426–434. doi: 10.1016/j.neuropharm.2004.10.018.
    1. Ferrón-Celma I., Mansilla A., Hassan L., Garcia-Navarro A., Comino A.-M., Bueno P., Ferrón J.-A. Effect of vitamin C administration on neutrophil apoptosis in septic patients after abdominal surgery. J. Surg. Res. 2009;153:224–230. doi: 10.1016/j.jss.2008.04.024.
    1. Hampton M.B., Fadeel B., Orrenius S. Redox regulation of the caspases during apoptosis. Ann. N. Y. Acad. Sci. 1998;854:328–335. doi: 10.1111/j.1749-6632.1998.tb09913.x.
    1. Mikacenic C., Moore R., Dmyterko V., West T.E., Altemeier W.A., Liles W.C., Lood C. Neutrophil extracellular traps (NETs) are increased in the alveolar spaces of patients with ventilator-associated pneumonia. Crit. Care. 2018;22:358. doi: 10.1186/s13054-018-2290-8.
    1. Zawrotniak M., Rapala-Kozik M. Neutrophil extracellular traps (NETs)-formation and implications. Acta Biochim. Pol. 2013;60:277–284. doi: 10.18388/abp.2013_1983.
    1. Lefrançais E., Mallavia B., Zhuo H., Calfee C.S., Looney M.R. Maladaptive role of neutrophil extracellular traps in pathogen-induced lung injury. JCI Insight. 2018;3:3. doi: 10.1172/jci.insight.98178.
    1. Yang S., Qi H., Kan K., Chen J., Xie H., Guo X., Zhang L. Neutrophil extracellular traps promote hypercoagulability in patients with sepsis. Shock. 2017;47:132–139. doi: 10.1097/SHK.0000000000000741.
    1. Liu S., Su X., Pan P., Zhang L., Hu Y., Tan H., Wu D., Liu B., Li H., Li H., et al. Neutrophil extracellular traps are indirectly triggered by lipopolysaccharide and contribute to acute lung injury. Sci. Rep. 2016;6:37252. doi: 10.1038/srep37252.
    1. Czaikoski P.G., Mota J.M.S.C., Nascimento D.C., Sônego F., Castanheira F.V.E.S., Melo P.H., Scortegagna G.T., Silva R.L., Barroso-Sousa R., Souto F.O., et al. Neutrophil Extracellular Traps Induce Organ Damage during Experimental and Clinical Sepsis. PLoS ONE. 2016;11:e0148142. doi: 10.1371/journal.pone.0148142.
    1. Saffarzadeh M., Juenemann C., Queisser M.A., Lochnit G., Barreto G., Galuska S.P., Lohmeyer J., Preissner K.T. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: A predominant role of histones. PLoS ONE. 2012;7:e32366. doi: 10.1371/journal.pone.0032366.
    1. Hirose T., Hamaguchi S., Matsumoto N., Irisawa T., Seki M., Tasaki O., Hosotsubo H., Yamamoto N., Yamamoto K., Akeda Y., et al. Presence of neutrophil extracellular traps and citrullinated histone H3 in the bloodstream of critically ill patients. PLoS ONE. 2014;9:e111755. doi: 10.1371/journal.pone.0111755.
    1. Kaplan M.J., Radic M. Neutrophil extracellular traps: Double-edged swords of innate immunity. J. Immunol. 2012;189:2689–2695. doi: 10.4049/jimmunol.1201719.
    1. Sørensen O.E., Borregaard N. Neutrophil extracellular traps - the dark side of neutrophils. J. Clin. Investig. 2016;126:1612–1620. doi: 10.1172/JCI84538.
    1. Maruchi Y., Tsuda M., Mori H., Takenaka N., Gocho T., Huq M.A., Takeyama N. Plasma myeloperoxidase-conjugated DNA level predicts outcomes and organ dysfunction in patients with septic shock. Crit. Care. 2018;22:176. doi: 10.1186/s13054-018-2109-7.
    1. Manda A., Pruchniak M.P., Araźna M., Demkow U.A. Neutrophil extracellular traps in physiology and pathology. Cent. Eur. J. Immunol. 2014;39:116–121. doi: 10.5114/ceji.2014.42136.
    1. O’Brien X.M., Biron B.M., Reichner J.S. Consequences of extracellular trap formation in sepsis. Curr. Opin. Hematol. 2017;24:66–71. doi: 10.1097/MOH.0000000000000303.
    1. Mohammed B.M., Fisher B.J., Kraskauskas D., Farkas D., Brophy D.F., Fowler A.A., Natarajan R. Vitamin C: A novel regulator of neutrophil extracellular trap formation. Nutrients. 2013;5:3131–3151. doi: 10.3390/nu5083131.
    1. Hamaguchi S., Akeda Y., Yamamoto N., Seki M., Yamamoto K., Oishi K., Tomono K. Origin of circulating free DNA in sepsis: Analysis of the CLP mouse model. Mediat. Inflamm. 2015;2015:614518. doi: 10.1155/2015/614518.
    1. Nakahira K., Kyung S.-Y., Rogers A.J., Gazourian L., Youn S., Massaro A.F., Quintana C., Osorio J.C., Wang Z., Zhao Y., et al. Circulating mitochondrial DNA in patients in the ICU as a marker of mortality: Derivation and validation. PLoS Med. 2013;10:e1001577. doi: 10.1371/journal.pmed.1001577.
    1. Manning J., Mitchell B., Appadurai D.A., Shakya A., Pierce L.J., Wang H., Nganga V., Swanson P.C., May J.M., Tantin D., et al. Vitamin C promotes maturation of T-cells. Antioxid. Redox Signal. 2013;19:2054–2067. doi: 10.1089/ars.2012.4988.
    1. Huijskens M.J.A.J., Walczak M., Koller N., Briedé J.J., Senden-Gijsbers B.L.M.G., Schnijderberg M.C., Bos G.M.J., Germeraad W.T.V. Technical advance: Ascorbic acid induces development of double-positive T cells from human hematopoietic stem cells in the absence of stromal cells. J. Leukoc. Biol. 2014;96:1165–1175. doi: 10.1189/jlb.1TA0214-121RR.
    1. Agathocleous M., Meacham C.E., Burgess R.J., Piskounova E., Zhao Z., Crane G.M., Cowin B.L., Bruner E., Murphy M.M., Chen W., et al. Ascorbate regulates haematopoietic stem cell function and leukaemogenesis. Nature. 2017;549:476–481. doi: 10.1038/nature23876.
    1. Lee Chong T., Ahearn E.L., Cimmino L. Reprogramming the epigenome with vitamin C. Front. Cell Dev. Biol. 2019;7:128. doi: 10.3389/fcell.2019.00128.
    1. Young J.I., Züchner S., Wang G. Regulation of the epigenome by vitamin C. Annu. Rev. Nutr. 2015;35:545–564. doi: 10.1146/annurev-nutr-071714-034228.
    1. Kallio J., Jaakkola M., Mäki M., Kilpeläinen P., Virtanen V. Vitamin C inhibits staphylococcus aureus growth and enhances the inhibitory effect of quercetin on growth of Escherichia coli in vitro. Planta Med. 2012;78:1824–1830. doi: 10.1055/s-0032-1315388.
    1. Rawal B.D. Bactericidal action of ascorbic acid on Psuedomonas aeruginosa: Alteration of cell surface as a possible mechanism. Chemotherapy. 1978;24:166–171. doi: 10.1159/000237777.
    1. Mikirova N., Riordan N., Casciari J. Modulation of cytokines in cancer patients by intravenous ascorbate therapy. Med. Sci. Monit. 2016;22:14–25. doi: 10.12659/MSM.895368.
    1. Borrelli E., Roux-Lombard P., Grau G.E., Girardin E., Ricou B., Dayer J., Suter P.M. Plasma concentrations of cytokines, their soluble receptors, and antioxidant vitamins can predict the development of multiple organ failure in patients at risk. Crit. Care Med. 1996;24:392–397. doi: 10.1097/00003246-199603000-00006.
    1. Hamacher J., Hadizamani Y., Borgmann M., Mohaupt M., Männel D.N., Moehrlen U., Lucas R., Stammberger U. Cytokine-Ion Channel Interactions in Pulmonary Inflammation. Front. Immunol. 2017;8:1644. doi: 10.3389/fimmu.2017.01644.
    1. Huang J., Fu G., Yao Q., Cheng G. Relation of thrombomodulin, TFPI and plasma antioxidants in healthy individuals and patients with coronary heart disease. Acta Cardiol. 2008;63:341–346. doi: 10.2143/AC.63.3.1020311.
    1. Puskarich M.A., Cornelius D.C., Tharp J., Nandi U., Jones A.E. Plasma syndecan-1 levels identify a cohort of patients with severe sepsis at high risk for intubation after large-volume intravenous fluid resuscitation. J. Crit. Care. 2016;36:125–129. doi: 10.1016/j.jcrc.2016.06.027.
    1. Hayashida K., Parks W.C., Park P.W. Syndecan-1 shedding facilitates the resolution of neutrophilic inflammation by removing sequestered CXC chemokines. Blood. 2009;114:3033–3043. doi: 10.1182/blood-2009-02-204966.
    1. Smart L., Bosio E., Macdonald S.P.J., Dull R., Fatovich D.M., Neil C., Arendts G. Glycocalyx biomarker syndecan-1 is a stronger predictor of respiratory failure in patients with sepsis due to pneumonia, compared to endocan. J. Crit. Care. 2018;47:93–98. doi: 10.1016/j.jcrc.2018.06.015.
    1. Wu F., Peng Z., Park P.W., Kozar R.A. Loss of Syndecan-1 Abrogates the Pulmonary Protective Phenotype Induced by Plasma After Hemorrhagic Shock. Shock. 2017;48:340–345. doi: 10.1097/SHK.0000000000000832.
    1. Palaiologou M., Delladetsima I., Tiniakos D. CD138 (syndecan-1) expression in health and disease. Histol. Histopathol. 2014;29:177–189.
    1. Sallisalmi M., Tenhunen J., Yang R., Oksala N., Pettilä V. Vascular adhesion protein-1 and syndecan-1 in septic shock. Acta Anaesthesiol. Scand. 2012;56:316–322. doi: 10.1111/j.1399-6576.2011.02578.x.
    1. Wei S., Gonzalez Rodriguez E., Chang R., Holcomb J.B., Kao L.S., Wade C.E. PROPPR Study Group Elevated Syndecan-1 after Trauma and Risk of Sepsis: A Secondary Analysis of Patients from the Pragmatic, Randomized Optimal Platelet and Plasma Ratios (PROPPR) Trial. J. Am. Coll. Surg. 2018;227:587–595. doi: 10.1016/j.jamcollsurg.2018.09.003.
    1. Nelson A., Johansson J., Tydén J., Bodelsson M. Circulating syndecans during critical illness. APMIS. 2017;125:468–475. doi: 10.1111/apm.12662.
    1. Bertrand J., Bollmann M. Soluble syndecans: Biomarkers for diseases and therapeutic options. Br. J. Pharmacol. 2019;176:67–81. doi: 10.1111/bph.14397.
    1. Murphy L.S., Wickersham N., McNeil J.B., Shaver C.M., May A.K., Bastarache J.A., Ware L.B. Endothelial glycocalyx degradation is more severe in patients with non-pulmonary sepsis compared to pulmonary sepsis and associates with risk of ARDS and other organ dysfunction. Ann. Intensive Care. 2017;7:102. doi: 10.1186/s13613-017-0325-y.
    1. Nelson A., Berkestedt I., Schmidtchen A., Ljunggren L., Bodelsson M. Increased levels of glycosaminoglycans during septic shock: Relation to mortality and the antibacterial actions of plasma. Shock. 2008;30:623–627. doi: 10.1097/SHK.0b013e3181777da3.
    1. Kashiouris M.G., Qiao X., Fisher B.J., Truwit J.D., Hite R.D., Morris P.E., Martin G.S., Fowler A.A. A95. Critical Care: Alice in Wonderland—Biomarkers in Critical Illness: Clues to be Unravelled. American Thoracic Society; New York, NY, USA: 2019. A Multicenter Parsimonious Biomarker Mortality Prediction Model for Sepsis-Induced ARDS; p. A2381.
    1. Qiao X., Fisher B., Kashiouris M.G., Truwit J.D., Hite R.D., Morris P.E., Martin G.S., Fowler A.A. A60. Lung Injury, Sepsis, and Ards. American Thoracic Society; New York, NY, USA: 2019. Effects of High Dose Intravenous Vitamin C (IVC) on Plasma Cell-Free DNA Levels in Patients with Sepsis-Associated ARDS; p. A2100.
    1. Pignatelli P., Sanguigni V., Paola S.G., Lo Coco E., Lenti L., Violi F. Vitamin C inhibits platelet expression of CD40 ligand. Free Radic. Biol. Med. 2005;38:1662–1666. doi: 10.1016/j.freeradbiomed.2005.02.032.
    1. Horrobin D.F. Ascorbic acid and prostaglandin synthesis. Subcell. Biochem. 1996;25:109–115.
    1. Mohammed B.M., Sanford K.W., Fisher B.J., Martin E.J., Contaifer D., Warncke U.O., Wijesinghe D.S., Chalfant C.E., Brophy D.F., Fowler Iii A.A., et al. Impact of high dose vitamin C on platelet function. World J. Crit. Care Med. 2017;6:37–47. doi: 10.5492/wjccm.v6.i1.37.
    1. Cudjoe E.K., Hassan Z.H., Kang L., Reynolds P.S., Fisher B.J., McCarter J., Sweeney C., Martin E.J., Middleton P., Ellenberg M., et al. Temporal map of the pig polytrauma plasma proteome with fluid resuscitation and intravenous vitamin C treatment. J. Thromb. Haemost. 2019;17:1827–1837. doi: 10.1111/jth.14580.
    1. Galley H.F., Davies M.J., Webster N.R. Ascorbyl radical formation in patients with sepsis: Effect of ascorbate loading. Free Radic. Biol. Med. 1996;20:139–143. doi: 10.1016/0891-5849(95)02022-5.
    1. Fowler A.A., Syed A.A., Knowlson S., Sculthorpe R., Farthing D., De Wilde C., Farthing C.A., Larus T.L., Martin E., Brophy D.F., et al. Medical Respiratory Intensive Care Unit Nursing, Fisher BJ, Natarajan R. Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis. J. Transl. Med. 2014;12:32. doi: 10.1186/1479-5876-12-32.
    1. Seno T., Inoue N., Matsui K., Ejiri J., Hirata K.-I., Kawashima S., Yokoyama M. Functional expression of sodium-dependent vitamin C transporter 2 in human endothelial cells. J. Vasc. Res. 2004;41:345–351. doi: 10.1159/000080525.
    1. Oudemans-van Straaten H.M., Elbers P.W.G., Spoelstra-de Man A.M.E. How to give vitamin C a cautious but fair chance in severe sepsis. Chest. 2017;151:1199–1200. doi: 10.1016/j.chest.2017.01.008.
    1. Zabet M.H., Mohammadi M., Ramezani M., Khalili H. Effect of high-dose Ascorbic acid on vasopressor’s requirement in septic shock. J. Res. Pharm. Pract. 2016;5:94–100.
    1. Bürzle M., Hediger M.A. Functional and physiological role of vitamin C transporters. Curr. Top. Membr. 2012;70:357–375.
    1. Abrams S.T., Morton B., Alhamdi Y., Alsabani M., Lane S., Welters I.D., Wang G., Toh C.-H. A novel assay for neutrophil extracellular trap formation independently predicts disseminated intravascular coagulation and mortality in critically ill patients. Am. J. Respir. Crit. Care Med. 2019;200:869–880. doi: 10.1164/rccm.201811-2111OC.
    1. Gupta A.K., Joshi M.B., Philippova M., Erne P., Hasler P., Hahn S., Resink T.J. Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Lett. 2010;584:3193–3197. doi: 10.1016/j.febslet.2010.06.006.
    1. Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D.S., Weinrauch Y., Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532–1535. doi: 10.1126/science.1092385.
    1. Bozonet S.M., Carr A.C. The Role of Physiological Vitamin C Concentrations on Key Functions of Neutrophils Isolated from Healthy Individuals. Nutrients. 2019;11:1363. doi: 10.3390/nu11061363.
    1. May J.M., Harrison F.E. Role of vitamin C in the function of the vascular endothelium. Antioxid. Redox Signal. 2013;19:2068–2083. doi: 10.1089/ars.2013.5205.
    1. Fisher B.J., Seropian I.M., Kraskauskas D., Thakkar J.N., Voelkel N.F., Fowler A.A., Natarajan R. Ascorbic acid attenuates lipopolysaccharide-induced acute lung injury. Crit. Care Med. 2011;39:1454–1460. doi: 10.1097/CCM.0b013e3182120cb8.
    1. Burchfield J.S., Li Q., Wang H.Y., Wang R.-F. JMJD3 as an epigenetic regulator in development and disease. Int. J. Biochem. Cell Biol. 2015;67:148–157. doi: 10.1016/j.biocel.2015.07.006.
    1. Brogdon J.L., Xu Y., Szabo S.J., An S., Buxton F., Cohen D., Huang Q. Histone deacetylase activities are required for innate immune cell control of Th1 but not Th2 effector cell function. Blood. 2007;109:1123–1130. doi: 10.1182/blood-2006-04-019711.
    1. Moore L.D., Le T., Fan G. DNA Methylation and Its Basic Function. Neuropsychopharmacology. 2013;38:23–38. doi: 10.1038/npp.2012.112.
    1. Intravenous Vitamin C Employed as Adjunctive Therapy in Recurrent Acute Respiratory Distress Syndrome (ARDS): A Case Report A54. Critical Care Case Reports: Acute Hypoxemic Respiratory Failure/Ards. [(accessed on 24 September 2019)]; Available online: .
    1. Fisher B.J., Kraskauskas D., Martin E.J., Farkas D., Wegelin J.A., Brophy D., Ward K.R., Voelkel N.F., Fowler A.A., Natarajan R. Mechanisms of attenuation of abdominal sepsis induced acute lung injury by ascorbic acid. Am. J. Physiol. Lung Cell Mol. Physiol. 2012;303:L20–L32. doi: 10.1152/ajplung.00300.2011.
    1. Sawyer M.A.J., Mike J.J., Chavin K., Marino P.L. Antioxidant therapy and survival in ARDS. Crit. Care Med. 1989;17:S153.
    1. Vincent J.L., Moreno R., Takala J., Willatts S., De Mendonça A., Bruining H., Reinhart C.K., Suter P., Thijs L.G. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Med. 1996;22:707–710. doi: 10.1007/BF01709751.
    1. Marik P.E., Khangoora V., Rivera R., Hooper M.H., Catravas J. Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Severe Sepsis and Septic Shock: A Retrospective Before-After Study. Chest. 2017;151:1229–1238. doi: 10.1016/j.chest.2016.11.036.
    1. Li J. Evidence is stronger than you think: A meta-analysis of vitamin C use in patients with sepsis. Crit. Care. 2018;22:258. doi: 10.1186/s13054-018-2191-x.
    1. Fowler A.A., Truwit J.D., Hite R.D., Morris P.E., DeWilde C., Priday A., Fisher B., Thacker L.R., Natarajan R., Brophy D.F., et al. Effect of Vitamin C Infusion on Organ Failure and Biomarkers of Inflammation and Vascular Injury in Patients With Sepsis and Severe Acute Respiratory Failure: The CITRIS-ALI Randomized Clinical Trial. JAMA. 2019;322:1261–1270. doi: 10.1001/jama.2019.11825.
    1. Tanaka H., Matsuda T., Miyagantani Y., Yukioka T., Matsuda H., Shimazaki S. Reduction of resuscitation fluid volumes in severely burned patients using ascorbic acid administration: A randomized, prospective study. Arch. Surg. 2000;135:326–331. doi: 10.1001/archsurg.135.3.326.
    1. Hager D.N., Martin G.S., Sevransky J.E., Hooper M.H. Glucometry when using vitamin C in sepsis: A note of caution. Chest. 2018;154:228–229. doi: 10.1016/j.chest.2018.03.018.
    1. Sartor Z., Kesey J., Dissanaike S. The effects of intravenous vitamin C on point-of-care glucose monitoring. J. Burn Care Res. 2015;36:50–56. doi: 10.1097/BCR.0000000000000142.
    1. Smith K.E., Brown C.S., Manning B.M., May T., Riker R.R., Lerwick P.A., Hayes T.L., Fraser G.L. Accuracy of Point-of-Care Blood Glucose Level Measurements in Critically Ill Patients with Sepsis Receiving High-Dose Intravenous Vitamin, C. Pharmacotherapy. 2018;38:1155–1161. doi: 10.1002/phar.2182.

Source: PubMed

3
Abonneren