Understanding the Epilepsy in POLG Related Disease

Omar Hikmat, Tom Eichele, Charalampos Tzoulis, Laurence A Bindoff, Omar Hikmat, Tom Eichele, Charalampos Tzoulis, Laurence A Bindoff

Abstract

Epilepsy is common in polymerase gamma (POLG) related disease and is associated with high morbidity and mortality. Epileptiform discharges typically affect the occipital regions initially and focal seizures, commonly evolving to bilateral convulsive seizures which are the most common seizure types in both adults and children. Our work has shown that mtDNA depletion-i.e., the quantitative loss of mtDNA-in neurones is the earliest and most important factor of the subsequent development of cellular dysfunction. Loss of mtDNA leads to loss of mitochondrial respiratory chain (MRC) components that, in turn, progressively disables energy metabolism. This critically balanced neuronal energy metabolism leads to both a chronic and continuous attrition (i.e., neurodegeneration) and it leaves the neurone unable to cope with increased demand that can trigger a potentially catastrophic cycle that results in acute focal necrosis. We believe that it is the onset of epilepsy that triggers the cascade of damage. These events can be identified in the stepwise evolution that characterizes the clinical, Electroencephalography (EEG), neuro-imaging, and neuropathology findings. Early recognition with prompt and aggressive seizure management is vital and may play a role in modifying the epileptogenic process and improving survival.

Keywords: POLG; epilepsy; mechanism; mitochondria; mtDNA; occipital lobe epilepsy; status epilepticus; stroke-like episodes.

Conflict of interest statement

The authors declare no financial or other conflicts of interest.

Figures

Figure 1
Figure 1
Schematic showing how POLG mutation can cause neuronal death and the role of epilepsy. Recessive mutations in the catalytic subunit of polymerase gamma (POLG) cause neuronal depletion of mtDNA. The level falls to ~40% and we believe that this is the threshold for neurones under which survival cannot be maintained. Depletion impairs the production of MRC components, and this particularly appears to affect complex I, which in turn leads to progressive loss of respiratory chain activity. We also find that over time (i.e., the longer a patient lives with this disease) patient neurones accumulate increasing amounts of mtDNA deletion and point mutation. Whether the greater the mtDNA mutational load has pathological consequences is unclear but possible. Based on our clinical and pathological studies, POLG related disease follows an acute on chronic course and our explanation for this is the presence of the critical neuronal energy level. Gradual loss of neurones, i.e., neurodegeneration is associated with the clinical correlates of ataxia, encephalopathy and cerebral atrophy etc. As soon as the patient develops epilepsy the picture changes dramatically .Focal necrotic lesions develop [4,17] and these are easily identified on magnetic resonance imaging (MRI), (the so-called stroke-like episodes). Such focal damage can also act as a trigger for further seizures.
Figure 2
Figure 2
Typical EEG, imaging, and neuropathology in POLG encephalopathy. Representative findings are shown from a 41-year-old patient, homozygous for the p.W748S mutation (EEG and histology) and an 8-year-old patient compound heterozygous in trans for the p.A467T and p.G303R (MRI). (A) Interictal EEG recording showing periodic sharp activity around 1Hz frequency in in occipital leads O1 and O2; (B) Axial T2-weighted MRI shows bilateral high T2-signal consistent with cortical edema, in the occipitotemporal regions (white arrows); (C) Hematoxylin and eosin stained section of the medial occipital cortex showing severe vacuolation of the neuropil and neuronal loss. Arrows mark examples of eosinophilic neuronal necrosis (magnification: 200×, scalebar: 50 µm).

References

    1. Smeitink J., van den Heuvel L., DiMauro S. The genetics and pathology of oxidative phosphorylation. Nat. Rev. Genet. 2001;2:342–352. doi: 10.1038/35072063.
    1. Spinazzola A., Zeviani M. Disorders from perturbations of nuclear-mitochondrial intergenomic cross-talk. J. Intern. Med. 2009;265:174–192. doi: 10.1111/j.1365-2796.2008.02059.x.
    1. Longley M.J., Graziewicz M.A., Bienstock R.J., Copeland W.C. Consequences of mutations in human DNA polymerase gamma. Gene. 2005;354:125–131. doi: 10.1016/j.gene.2005.03.029.
    1. Tzoulis C., Tran G.T., Coxhead J., Bertelsen B., Lilleng P.K., Balafkan N., Payne B., Miletic H., Chinnery P.F., Bindoff L.A. Molecular pathogenesis of polymerase gamma-related neurodegeneration. Ann. Neurol. 2014;76:66–81. doi: 10.1002/ana.24185.
    1. Cohen B.H., Chinnery P.F., Copeland W.C. POLG-related disorders. In: Pagon R.A., Adam M.P., Ardinger H.H., Wallace S.E., Amemiya A., Bean L.J.H., Bird T.D., Fong C.T., Mefford H.C., Smith R.J.H., et al., editors. Genereviews(r) University of Washington; Seattle, WA, USA: 1993.
    1. Chan S.S., Copeland W.C. DNA polymerase gamma and mitochondrial disease: Understanding the consequence of POLG mutations. Biochim. Biophys. Acta. 2009;1787:312–319. doi: 10.1016/j.bbabio.2008.10.007.
    1. Debray F.G., Lambert M., Chevalier I., Robitaille Y., Decarie J.C., Shoubridge E.A., Robinson B.H., Mitchell G.A. Long-term outcome and clinical spectrum of 73 pediatric patients with mitochondrial diseases. Pediatrics. 2007;119:722–733. doi: 10.1542/peds.2006-1866.
    1. Khurana D.S., Salganicoff L., Melvin J.J., Hobdell E.F., Valencia I., Hardison H.H., Marks H.G., Grover W.D., Legido A. Epilepsy and respiratory chain defects in children with mitochondrial encephalopathies. Epilepsia. 2008;39:8–13.
    1. Canafoglia L., Franceschetti S., Antozzi C., Carrara F., Farina L., Granata T., Lamantea E., Savoiardo M., Uziel G., Villani F., et al. Epileptic phenotypes associated with mitochondrial disorders. Neurology. 2001;56:1340–1346. doi: 10.1212/WNL.56.10.1340.
    1. Rahman S. Pathophysiology of mitochondrial disease causing epilepsy and status epilepticus. Epilepsy Behav. 2015;49:71–75. doi: 10.1016/j.yebeh.2015.05.003.
    1. Whittaker R.G., Devine H.E., Gorman G.S., Schaefer A.M., Horvath R., Ng Y., Nesbitt V., Lax N.Z., McFarland R., Cunningham M.O., et al. Epilepsy in adults with mitochondrial disease: A cohort study. Ann. Neurol. 2015;78:949–957. doi: 10.1002/ana.24525.
    1. Horvath R., Hudson G., Ferrari G., Futterer N., Ahola S., Lamantea E., Prokisch H., Lochmuller H., McFarland R., Ramesh V., et al. Phenotypic spectrum associated with mutations of the mitochondrial polymerase gamma gene. Brain. 2006;129:1674–1684. doi: 10.1093/brain/awl088.
    1. Tzoulis C., Engelsen B.A., Telstad W., Aasly J., Zeviani M., Winterthun S., Ferrari G., Aarseth J.H., Bindoff L.A. The spectrum of clinical disease caused by the a467t and w748s POLG mutations: A study of 26 cases. Brain. 2006;129:1685–1692. doi: 10.1093/brain/awl097.
    1. Winterthun S., Ferrari G., He L., Taylor R.W., Zeviani M., Turnbull D.M., Engelsen B.A., Moen G., Bindoff L.A. Autosomal recessive mitochondrial ataxic syndrome due to mitochondrial polymerase gamma mutations. Neurology. 2005;64:1204–1208. doi: 10.1212/01.WNL.0000156516.77696.5A.
    1. Anagnostou M.E., Ng Y.S., Taylor R.W., McFarland R. Epilepsy due to mutations in the mitochondrial polymerase gamma (POLG) gene: A clinical and molecular genetic review. Epilepsia. 2016;57:1531–1545. doi: 10.1111/epi.13508.
    1. Tzoulis C., Neckelmann G., Mork S.J., Engelsen B.E., Viscomi C., Moen G., Ersland L., Zeviani M., Bindoff L.A. Localized cerebral energy failure in DNA polymerase gamma-associated encephalopathy syndromes. Brain. 2010;133:1428–1437. doi: 10.1093/brain/awq067.
    1. Tzoulis C., Bindoff L.A. Molecular genetics of DNA polymerase gamma-associated neurodegeneration. eLS. 2016 doi: 10.1002/9780470015902.a0026904.
    1. Engelsen B.A., Tzoulis C., Karlsen B., Lillebo A., Laegreid L.M., Aasly J., Zeviani M., Bindoff L.A. POLG1 mutations cause a syndromic epilepsy with occipital lobe predilection. Brain. 2008;131:818–828. doi: 10.1093/brain/awn007.
    1. Hikmat O., Tzoulis C., Chong W.K., Chentouf L., Klingenberg C., Fratter C., Carr L.J., Prabhakar P., Kumaraguru N., Gissen P., et al. The clinical spectrum and natural history of early-onset diseases due to DNA polymerase gamma mutations. Genet. Med. 2017 doi: 10.1038/gim.2017.35.
    1. Wolf N.I., Rahman S., Schmitt B., Taanman J.W., Duncan A.J., Harting I., Wohlrab G., Ebinger F., Rating D., Bast T. Status epilepticus in children with alpers’ disease caused by POLG1 mutations: Eeg and mri features. Epilepsia. 2009;50:1596–1607. doi: 10.1111/j.1528-1167.2008.01877.x.
    1. Bindoff L.A., Engelsen B.A. Mitochondrial diseases and epilepsy. Epilepsia. 2012;53:92–97. doi: 10.1111/j.1528-1167.2012.03618.x.
    1. Nguyen K.V., Sharief F.S., Chan S.S., Copeland W.C., Naviaux R.K. Molecular diagnosis of alpers syndrome. J. Hepatol. 2006;45:108–116. doi: 10.1016/j.jhep.2005.12.026.
    1. Naviaux R.K., Nguyen K.V. POLG mutations associated with alpers’ syndrome and mitochondrial DNA depletion. Ann. Neurol. 2004;55:706–712. doi: 10.1002/ana.20079.
    1. Harding B.N. Progressive neuronal degeneration of childhood with liver disease (alpers-huttenlocher syndrome): A personal review. J. Child Neurol. 1990;5:273–287. doi: 10.1177/088307389000500402.
    1. Saneto R.P., Naviaux R.K. Polymerase γ disease through the ages. Dev. Disabil. Res. Rev. 2010;16:163–174. doi: 10.1002/ddrr.105.
    1. Janssen W., Quaegebeur A., van Goethem G., Ann L., Smets K., Vandenberghe R., van Paesschen W. The spectrum of epilepsy caused by POLG mutations. Acta Neurol. Belg. 2016;116:17–25. doi: 10.1007/s13760-015-0499-8.
    1. Tzoulis C., Henriksen E., Miletic H., Bindoff L.A. No evidence of ischemia in stroke-like lesions of mitochondrial POLG encephalopathy. Mitochondrion. 2017;32:10–15. doi: 10.1016/j.mito.2016.11.004.
    1. Hikmat O., Tzoulis C., Knappskog P.M., Johansson S., Boman H., Sztromwasser P., Lien E., Brodtkorb E., Ghezzi D., Bindoff L.A. ADCK3 mutations with epilepsy, stroke-like episodes and ataxia: A POLG mimic? Eur. J. Neurol. 2016;23:1188–1194. doi: 10.1111/ene.13003.
    1. Iizuka T., Sakai F. Pathogenesis of stroke-like episodes in melas: Analysis of neurovascular cellular mechanisms. Curr. Neurovasc. Res. 2005;2:29–45. doi: 10.2174/1567202052773544.
    1. Bathla G., Policeni B., Agarwal A. Neuroimaging in patients with abnormal blood glucose levels. AJNR Am. J. Neuroradiol. 2014;35:833–840. doi: 10.3174/ajnr.A3486.
    1. Rahman S. Mitochondrial disease and epilepsy. Dev. Med. Child Neurol. 2012;54:397–406. doi: 10.1111/j.1469-8749.2011.04214.x.
    1. Kunz W.S. The role of mitochondria in epileptogenesis. Curr. Opin. Neurol. 2002;15:179–184. doi: 10.1097/00019052-200204000-00009.
    1. Kann O., Kovacs R. Mitochondria and neuronal activity. Am. J. Physiol. Cell Physiol. 2007;292:641–657. doi: 10.1152/ajpcell.00222.2006.
    1. Kilbride S.M., Telford J.E., Tipton K.F., Davey G.P. Partial inhibition of complex I activity increases ca-independent glutamate release rates from depolarized synaptosomes. J. Neurochem. 2008;106:826–834. doi: 10.1111/j.1471-4159.2008.05441.x.
    1. McKenna M.C. The glutamate-glutamine cycle is not stoichiometric: Fates of glutamate in brain. J. Neurosci. Res. 2007;85:3347–3358. doi: 10.1002/jnr.21444.
    1. Kwan P., Arzimanoglou A., Berg A.T., Brodie M.J., Allen Hauser W., Mathern G., Moshe S.L., Perucca E., Wiebe S., French J. Definition of drug resistant epilepsy: Consensus proposal by the ad hoc task force of the ilae commission on therapeutic strategies. Epilepsia. 2010;51:1069–1077. doi: 10.1111/j.1528-1167.2009.02397.x.
    1. Pruss H., Holtkamp M. Ketamine successfully terminates malignant status epilepticus. Epilepsy Res. 2008;82:219–222. doi: 10.1016/j.eplepsyres.2008.08.005.
    1. Pfeffer G., Majamaa K., Turnbull D.M., Thorburn D., Chinnery P.F. Treatment for mitochondrial disorders. Cochrane Database Syst. Rev. 2012 doi: 10.1002/14651858.CD004426.

Source: PubMed

3
Abonneren