Pomegranate juice to reduce fecal calprotectin levels in inflammatory bowel disease patients with a high risk of clinical relapse: Study protocol for a randomized controlled trial

Eleonora Scaioli, Andrea Belluzzi, Luigi Ricciardiello, Daniele Del Rio, Enrica Rotondo, Pedro Mena, Eleonora Derlindati, Francesca Danesi, Eleonora Scaioli, Andrea Belluzzi, Luigi Ricciardiello, Daniele Del Rio, Enrica Rotondo, Pedro Mena, Eleonora Derlindati, Francesca Danesi

Abstract

Background: Inflammatory bowel disease (IBD) is a chronic condition characterized by recurrent episodes of intestinal inflammation and is thought to be related to an autoimmune reaction to genetic and environmental factors. Although evidence indicates that a polyphenolic-rich diet plays an important role in modulating aspects of chronic inflammation, few studies have focused on the effect of ellagitannin (ET)-rich food consumption on long-term remission maintenance in IBD patients with a high risk of clinical relapse. Therefore, we hypothesize that supplementation with a pomegranate juice, a naturally rich source of ETs, could significantly modulate the markers of mucosal and systemic inflammation relative to a control group receiving a placebo.

Methods/design: This double-blind, randomized controlled trial includes patients with IBD involving the colorectum who have been in stable therapy for at least the three previous months and have a high risk of clinical relapse. Participants are randomly allocated to one of two groups: active supplementation (125 mL of cv. Wonderful pomegranate juice) or placebo (125 mL) taken twice daily for 12 weeks. The primary outcome is changes in the fecal neutrophil-derived protein calprotectin, a surrogate marker of mucosal improvement, between the two groups from baseline to 12 weeks later. The secondary outcomes include transcriptomic changes in peripheral blood mononuclear cells and intestinal biopsies and changes in circulating inflammatory markers and trimethylamine-N-oxide levels. Pomegranate ET-derived metabolites are identified and quantified in plasma and urine samples.

Discussion: The results will provide information on the possible reduction of fecal calprotectin levels following the consumption of pomegranate juice. The findings will also show the in vivo metabolism of pomegranate ETs. Finally, the effect of 12-week pomegranate juice consumption on local and systemic inflammatory markers will be elucidated, which will likely provide additional insights into the maintenance of remission in IBD patients.

Trial registration: ClinicalTrials.gov, NCT03000101 . Registered on 21 December 2016.

Keywords: Crohn’s disease; Ellagitannins; Fecal calprotectin; IBD; Inflammation; Inflammatory bowel disease; Pomegranate juice; Punica granatum L.; Ulcerative colitis.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Scheme of the study design. IBD inflammatory bowel disease, UC ulcerative colitis, CD Crohn’s disease
Fig. 2
Fig. 2
Schedule of enrolment, intervention, and assessments in the study. FC fecal calprotectin, TMAO trimethylamine N-oxide, ET ellagitannin, FFQ food frequency questionnaire

References

    1. Podolsky DK. Inflammatory bowel disease. N Engl J Med. 2002;347:417–429. doi: 10.1056/NEJMra020831.
    1. Gisbert JP, Marín AC, Chaparro M. The risk of relapse after anti-TNF discontinuation in inflammatory bowel disease: Systematic review and meta-analysis. Am J Gastroenterol. 2016;111:632–647. doi: 10.1038/ajg.2016.54.
    1. Foell D, Frosch M, Sorg C, Roth J. Phagocyte-specific calcium-binding S100 proteins as clinical laboratory markers of inflammation. Clin Chim Acta. 2004;344:37–51. doi: 10.1016/j.cccn.2004.02.023.
    1. Costa F, Mumolo MG, Ceccarelli L, Bellini M, Romano MR, Sterpi C, Ricchiuti A, Marchi S, Bottai M. Calprotectin is a stronger predictive marker of relapse in ulcerative colitis than in Crohn’s disease. Gut. 2005;54:364–368. doi: 10.1136/gut.2004.043406.
    1. D'Haens G, Ferrante M, Vermeire S, Baert F, Noman M, Moortgat L, Geens P, Iwens D, Aerden I, Van Assche G, et al. Fecal calprotectin is a surrogate marker for endoscopic lesions in inflammatory bowel disease. Inflamm Bowel Dis. 2012;18:2218–2224. doi: 10.1002/ibd.22917.
    1. D’Incà R, Pont E, Leo V, Ferronato A, Fries W, Vettorato MG, Martines D, Sturniolo GC. Calprotectin and lactoferrin in the assessment of intestinal inflammation and organic disease. Int J Color Dis. 2006;22:429–437. doi: 10.1007/s00384-006-0159-9.
    1. Schoepfer AM, Trummler M, Seeholzer P, Seibold-Schmid B, Seibold F. Discriminating IBD from IBS: Comparison of the test performance of fecal markers, blood leukocytes, CRP, and IBD antibodies. Inflamm Bowel Dis. 2008;14:32–39. doi: 10.1002/ibd.20275.
    1. Tibble JA, Sigthorsson G, Bridger S, Fagerhol MK, Bjarnason I. Surrogate markers of intestinal inflammation are predictive of relapse in patients with inflammatory bowel disease. Gastroenterology. 2000;119:15–22. doi: 10.1053/gast.2000.8523.
    1. Gisbert JP, Bermejo F, Pérez-Calle JL, Taxonera C, Vera I, McNicholl AG, Algaba A, López P, López-Palacios N, Calvo M, et al. Fecal calprotectin and lactoferrin for the prediction of inflammatory bowel disease relapse. Inflamm Bowel Dis. 2009;15:1190–1198. doi: 10.1002/ibd.20933.
    1. Molander P, Färkkilä M, Ristimäki A, Salminen K, Kemppainen H, Blomster T, Koskela R, Jussila A, Rautiainen H, Nissinen M, et al. Does fecal calprotectin predict short-term relapse after stopping TNFα-blocking agents in inflammatory bowel disease patients in deep remission? J Crohn's Colitis. 2015;9:33–40.
    1. von Roon AC, Karamountzos L, Purkayastha S, Reese GE, Darzi AW, Teare JP, Paraskeva P, Tekkis PP. Diagnostic precision of fecal calprotectin for inflammatory bowel disease and colorectal malignancy. Am J Gastroenterol. 2007;102:803–813. doi: 10.1111/j.1572-0241.2007.01126.x.
    1. Liverani E, Scaioli E, Digby RJ, Bellanova M, Belluzzi A. How to predict clinical relapse in inflammatory bowel disease patients. World J Gastroenterol. 2016;22:1017–1033. doi: 10.3748/wjg.v22.i3.1017.
    1. Solem CA, Loftus EV, Jr, Tremaine WJ, Harmsen WS, Zinsmeister AR, Sandborn WJ. Correlation of C-reactive protein with clinical, endoscopic, histologic, and radiographic activity in inflammatory bowel disease. Inflamm Bowel Dis. 2005;11:707–712. doi: 10.1097/01.MIB.0000173271.18319.53.
    1. Vermeire S, Van Assche G, Rutgeerts P. C-reactive protein as a marker for inflammatory bowel disease. Inflamm Bowel Dis. 2004;10:661–665. doi: 10.1097/00054725-200409000-00026.
    1. Danesi F, Ferguson LR. Could pomegranate juice help in the control of inflammatory diseases? Nutrients. 2017;9:958. doi: 10.3390/nu9090958.
    1. Nunes S, Danesi F, Del Rio D, Silva P. Resveratrol and inflammatory bowel disease: The evidence so far. Nutr Res Rev. 2018;31:85–97. doi: 10.1017/S095442241700021X.
    1. Mesko B, Poliska S, Szegedi A, Szekanecz Z, Palatka K, Papp M, Nagy L. Peripheral blood gene expression patterns discriminate among chronic inflammatory diseases and healthy controls and identify novel targets. BMC Med Genet. 2010;3:article 15.
    1. Biasi F, Astegiano M, Maina M, Leonarduzzi G, Poli G. Polyphenol supplementation as a complementary medicinal approach to treating Inflammatory Bowel Disease. Curr Med Chem. 2011;18:4851–4865. doi: 10.2174/092986711797535263.
    1. Koponen JM, Happonen AM, Mattila PH, Törrönen AR. Contents of anthocyanins and ellagitannins in selected foods consumed in Finland. J Agric Food Chem. 2007;55:1612–1619. doi: 10.1021/jf062897a.
    1. Espín JC, González-Barrio R, Cerdá B, López-Bote C, Rey AI, Tomás-Barberán FA. Iberian pig as a model to clarify obscure points in the bioavailability and metabolism of ellagitannins in humans. J Agric Food Chem. 2007;55:10476–10485. doi: 10.1021/jf0723864.
    1. Selma MV, Beltrán D, Garcia-Villalba R, Espín JC, Tomás-Barberán FA. Description of urolithin production capacity from ellagic acid of two human intestinal Gordonibacter species. Food Funct. 2014;5:1779–1784. doi: 10.1039/C4FO00092G.
    1. Larrosa M, González-Sarrías A, Yáñez-Gascón MJ, Selma MV, Azorín-Ortuño M, Toti S, Tomás-Barberán F, Dolara P, Espín JC. Anti-inflammatory properties of a pomegranate extract and its metabolite urolithin-A in a colitis rat model and the effect of colon inflammation on phenolic metabolism. J Nutr Biochem. 2010;21:717–725. doi: 10.1016/j.jnutbio.2009.04.012.
    1. Marín M, María Giner R, Ríos J-L, Carmen Recio M. Intestinal anti-inflammatory activity of ellagic acid in the acute and chronic dextrane sulfate sodium models of mice colitis. J Ethnopharmacol. 2013;150:925–934. doi: 10.1016/j.jep.2013.09.030.
    1. Rosillo MA, Sanchez-Hidalgo M, Cárdeno A, Alarcón de la Lastra C. Protective effect of ellagic acid, a natural polyphenolic compound, in a murine model of Crohn's disease. Biochem Pharmacol. 2011;82:737–745. doi: 10.1016/j.bcp.2011.06.043.
    1. Rosillo MA, Sánchez-Hidalgo M, Cárdeno A, Aparicio-Soto M, Sánchez-Fidalgo S, Villegas I, de la Lastra CA. Dietary supplementation of an ellagic acid-enriched pomegranate extract attenuates chronic colonic inflammation in rats. Pharmacol Res. 2012;66:235–242. doi: 10.1016/j.phrs.2012.05.006.
    1. Chan AW, Tetzlaff JM, Altman DG, Laupacis A, Gøtzsche PC, Krleža-Jerić K, Hróbjartsson A, Mann H, Dickersin K, Berlin JA, et al. SPIRIT 2013 statement: Defining standard protocol items for clinical trials. Ann Intern Med. 2013;158:200–207. doi: 10.7326/0003-4819-158-3-201302050-00583.
    1. Bain MA, Fornasini G, Evans AM. Trimethylamine: Metabolic, pharmacokinetic and safety aspects. Curr Drug Metab. 2005;6:227–240. doi: 10.2174/1389200054021807.
    1. Snyder SM, Reber JD, Freeman BL, Orgad K, Eggett DL, Parker TL. Controlling for sugar and ascorbic acid, a mixture of flavonoids matching navel oranges significantly increases human postprandial serum antioxidant capacity. Nutr Res. 2011;31:519–526. doi: 10.1016/j.nutres.2011.06.006.
    1. Tomás-Barberan FA, Espín JC, García-Conesa MT. Bioavailability and metabolism of ellagic acid and ellagitannins. In: Quideau S, editor. Chemistry and biology of ellagitannins. London: World Scientific; 2009. pp. 273–297.
    1. Walmsley RS, Ayres RCS, Pounder RE, Allan RN. A simple clinical colitis activity index. Gut. 1998;43:29–32. doi: 10.1136/gut.43.1.29.
    1. Best WR, Becktel JM, Singleton JW. Rederived values of the eight coefficients of the Crohn's Disease Activity Index (CDAI) Gastroenterology. 1979;77:843–846. doi: 10.1016/0016-5085(79)90384-6.
    1. López San Román A, Muñoz F. Comorbidity in inflammatory bowel disease. World J Gastroenterol. 2011;17:2723–2733. doi: 10.3748/wjg.v17.i22.2723.
    1. D'Amore S, Vacca M, Graziano G, D'Orazio A, Cariello M, Martelli N, Di Tullio G, Salvia R, Grandaliano G, Belfiore A, et al. Nuclear receptors expression chart in peripheral blood mononuclear cells identifies patients with metabolic syndrome. Biochim Biophys Acta. 2013;1832:2289–2301. doi: 10.1016/j.bbadis.2013.09.006.
    1. Valerii MC, Ricci C, Spisni E, Di Silvestro R, De Fazio L, Cavazza E, Lanzini A, Campieri M, Dalpiaz A, Pavan B, et al. Responses of peripheral blood mononucleated cells from non-celiac gluten sensitive patients to various cereal sources. Food Chem. 2015;176:167–174. doi: 10.1016/j.foodchem.2014.12.061.
    1. Pellegrini N, Salvatore S, Valtuena S, Bedogni G, Porrini M, Pala V, Del Rio D, Sieri S, Miglio C, Krogh V, et al. Development and validation of a food frequency questionnaire for the assessment of dietary total antioxidant capacity. J Nutr. 2007;137:93–98. doi: 10.1093/jn/137.1.93.
    1. Konikoff MR, Denson LA. Role of fecal calprotectin as a biomarker of intestinal inflammation in inflammatory bowel disease. Inflamm Bowel Dis. 2006;12:524–534. doi: 10.1097/00054725-200606000-00013.
    1. Prossomariti A, Scaioli E, Piazzi G, Fazio C, Bellanova M, Biagi E, Candela M, Brigidi P, Consolandi C, Balbi T, et al. Short-term treatment with eicosapentaenoic acid improves inflammation and affects colonic differentiation markers and microbiota in patients with ulcerative colitis. Sci Rep. 2017;7:7458. doi: 10.1038/s41598-017-07992-1.
    1. Scaioli E, Sartini A, Bellanova M, Campieri M, Festi D, Bazzoli F, Belluzzi A. Eicosapentaenoic acid reduces fecal levels of calprotectin and prevents relapse in patients with ulcerative colitis. Clin Gastroenterol Hepatol. 2018;16:1268–1275. doi: 10.1016/j.cgh.2018.01.036.
    1. Schroeder KW, Tremaine WJ, Ilstrup DM. Coated oral 5-aminosalicylic acid therapy for mildly to moderately active ulcerative colitis. A randomized study. N Engl J Med. 1987;317:1625–1629. doi: 10.1056/NEJM198712243172603.
    1. Geboes K, Riddell R, Öst A, Jensfelt B, Persson T, Löfberg R. A reproducible grading scale for histological assessment of inflammation in ulcerative colitis. Gut. 2000;47:404–409. doi: 10.1136/gut.47.3.404.
    1. Mooiweer E, Severs M, Schipper ME, Fidder HH, Siersema PD, Laheij RJ, Oldenburg B. Low fecal calprotectin predicts sustained clinical remission in inflammatory bowel disease patients: A plea for deep remission. J Crohns Colitis. 2015;9:50–55. doi: 10.1093/ecco-jcc/jju003.
    1. Sands BE. Biomarkers of inflammation in inflammatory bowel disease. Gastroenterology. 2015;149:1275–1285. doi: 10.1053/j.gastro.2015.07.003.
    1. Lichtenstein GR, McGovern DPB. Using markers in IBD to predict disease and treatment outcomes: Rationale and a review of current status. Am J Gastroenterol Suppl. 2016;3:17–26. doi: 10.1038/ajgsup.2016.17.
    1. Boyapati RK, Kalla R, Satsangi J, Ho GT. Biomarkers in search of precision medicine in IBD. Am J Gastroenterol. 2016;111:1682–1690. doi: 10.1038/ajg.2016.441.
    1. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63. doi: 10.1038/nature09922.
    1. Wilson A, Teft WA, Morse BL, Choi YH, Woolsey S, DeGorter MK, Hegele RA, Tirona RG, Kim RB. Trimethylamine-N-oxide: A novel biomarker for the identification of inflammatory bowel disease. Dig Dis Sci. 2015;60:3620–3630. doi: 10.1007/s10620-015-3797-3.
    1. Miller CA, Corbin KD, da Costa KA, Zhang S, Zhao X, Galanko JA, Blevins T, Bennett BJ, O'Connor A, Zeisel SH. Effect of egg ingestion on trimethylamine-N-oxide production in humans: A randomized, controlled, dose-response study. Am J Clin Nutr. 2014;100:778–786. doi: 10.3945/ajcn.114.087692.
    1. Häsler R, Sheibani-Tezerji R, Sinha A, Barann M, Rehman A, Esser D, Aden K, Knecht C, Brandt B, Nikolaus S, et al. Uncoupling of mucosal gene regulation, mRNA splicing and adherent microbiota signatures in inflammatory bowel disease. Gut. 2017;66:2087–2097. doi: 10.1136/gutjnl-2016-311651.
    1. Bogaert S, Laukens D, Peeters H, Melis L, Olievier K, Boon N, Verbruggen G, Vandesompele J, Elewaut D, De Vos M. Differential mucosal expression of Th17-related genes between the inflamed colon and ileum of patients with inflammatory bowel disease. BMC Immunol. 2010;11:61. doi: 10.1186/1471-2172-11-61.
    1. Derlindati E, Dei Cas A, Montanini B, Spigoni V, Curella V, Aldigeri R, Ardigò D, Zavaroni I, Bonadonna RC. Transcriptomic analysis of human polarized macrophages: More than one role of alternative activation? PLoS One. 2015;10:e0119751. doi: 10.1371/journal.pone.0119751.
    1. Mena P, Tassotti M, Martini D, Rosi A, Brighenti F, Del Rio D. The Pocket-4-Life project, bioavailability and beneficial properties of the bioactive compounds of espresso coffee and cocoa-based confectionery containing coffee: Study protocol for a randomized cross-over trial. Trials. 2017;18:527. doi: 10.1186/s13063-017-2271-2.
    1. Kane S: Sample size calculator—ClinCalc; 2012. . Accessed 18 Mar 2016.
    1. Saghaei M. Random allocation software for parallel group randomized trials. BMC Med Res Methodol. 2004;4:26. doi: 10.1186/1471-2288-4-26.
    1. Efird J. Blocked randomization with randomly selected block sizes. Int J Environ Res Public Health. 2011;8:15–20. doi: 10.3390/ijerph8010015.
    1. Ghazalpour A, Doss S, Zhang B, Wang S, Plaisier C, Castellanos R, Brozell A, Schadt EE, Drake TA, Lusis AJ, et al. Integrating genetic and network analysis to characterize genes related to mouse weight. PLoS Genet. 2006;2:article e130. doi: 10.1371/journal.pgen.0020130.
    1. Rubio CA, Befrits R. Colorectal cancer in Crohn's disease--review of a 56-year experience in Karolinska Institute University Hospital. J Environ Pathol Toxicol Oncol. 2008;27:257–266. doi: 10.1615/JEnvironPatholToxicolOncol.v27.i4.20.
    1. Haskey N, Gibson DL. An examination of diet for the maintenance of remission in inflammatory bowel disease. Nutrients. 2017;9:259. doi: 10.3390/nu9030259.
    1. Lewis JD, Albenberg L, Lee D, Kratz M, Gottlieb K, Reinisch W. The importance and challenges of dietary intervention trials for inflammatory bowel disease. Inflamm Bowel Dis. 2017;23:181–191. doi: 10.1097/MIB.0000000000001009.
    1. Giménez-Bastida JA, Larrosa M, González-Sarrías A, Tomás-Barberán F, Espín JC, García-Conesa MT. Intestinal ellagitannin metabolites ameliorate cytokine-induced inflammation and associated molecular markers in human colon fibroblasts. J Agric Food Chem. 2012;60:8866–8876. doi: 10.1021/jf300290f.
    1. González-Sarrías A, Larrosa M, Tomás-Barberán FA, Dolara P, Espín JC. NF-κB-dependent anti-inflammatory activity of urolithins, gut microbiota ellagic acid-derived metabolites, in human colonic fibroblasts. Br J Nutr. 2010;104:503–512. doi: 10.1017/S0007114510000826.
    1. Morrill KE, Aceves B, Valdez LA, Thomson CA, Hakim IA, Bell ML, Martinez JA, Garcia DO. Feasibility and acceptability of a beverage intervention for Hispanic adults: A protocol for a pilot randomized controlled trial. Nutr J. 2018;17:16. doi: 10.1186/s12937-018-0329-y.
    1. Murphy MM, Barrett EC, Bresnahan KA, Barraj LM. 100% Fruit juice and measures of glucose control and insulin sensitivity: A systematic review and meta-analysis of randomised controlled trials. J Nutr Sci. 2017;6:e59. doi: 10.1017/jns.2017.63.
    1. Tomás-Barberán FA, García-Villalba R, González-Sarrías A, Selma MV, Espín JC. Ellagic acid metabolism by human gut microbiota: Consistent observation of three urolithin phenotypes in intervention trials, independent of food source, age, and health status. J Agric Food Chem. 2014;62:6535–6538. doi: 10.1021/jf5024615.
    1. Tomás-Barberán FA, González-Sarrías A, García-Villalba R, Núñez-Sánchez MÁ, Selma MV, García-Conesa MT, Espín JC. Urolithins, the rescue of “old” metabolites to understand a “new” concept: Metabotypes as a nexus among phenolic metabolism, microbiota dysbiosis, and host health status. Mol Nutr Food Res. 2017;61:1500901. doi: 10.1002/mnfr.201500901.
    1. Marlow G, Ellett S, Ferguson IR, Zhu S, Karunasinghe N, Jesuthasan AC, Han DY, Fraser AG, Ferguson LR. Transcriptomics to study the effect of a Mediterranean-inspired diet on inflammation in Crohn's disease patients. Hum Genomics. 2013;7:24. doi: 10.1186/1479-7364-7-24.
    1. Planell N, Masamunt MC, Leal RF, Rodríguez L, Esteller M, Lozano JJ, Ramírez A, Ayrizono MLS, Coy CSR, Alfaro I, et al. Usefulness of transcriptional blood biomarkers as a non-invasive surrogate marker of mucosal healing and endoscopic response in ulcerative colitis. J Crohns Colitis. 2017;11:1335–1346. doi: 10.1093/ecco-jcc/jjx091.
    1. González-Sarrías A, Núñez-Sánchez MÁ, Tomé-Carneiro J, Tomás-Barberán FA, García-Conesa MT, Espín JC. Comprehensive characterization of the effects of ellagic acid and urolithins on colorectal cancer and key-associated molecular hallmarks: MicroRNA cell specific induction of CDKN1A (p21) as a common mechanism involved. Mol Nutr Food Res. 2016;60:701–716. doi: 10.1002/mnfr.201500780.
    1. Núñez-Sánchez MÁ, Dávalos A, González-Sarrías A, Casas-Agustench P, Visioli F, Monedero-Saiz T, García-Talavera NV, Gómez-Sánchez MB, Sánchez-Álvarez C, García-Albert AM, et al. MicroRNAs expression in normal and malignant colon tissues as biomarkers of colorectal cancer and in response to pomegranate extracts consumption: Critical issues to discern between modulatory effects and potential artefacts. Mol Nutr Food Res. 2015;59:1973–1986. doi: 10.1002/mnfr.201500357.
    1. Núñez-Sánchez MÁ, González-Sarrías A, García-Villalba R, Monedero-Saiz T, García-Talavera NV, Gómez-Sánchez MB, Sánchez-Álvarez C, García-Albert AM, Rodríguez-Gil FJ, Ruiz-Marín M, et al. Gene expression changes in colon tissues from colorectal cancer patients following the intake of an ellagitannin-containing pomegranate extract: A randomized clinical trial. J Nutr Biochem. 2017;42:126–133. doi: 10.1016/j.jnutbio.2017.01.014.

Source: PubMed

3
Abonneren