Treatment for benign thyroid nodules with a combination of natural extracts

Felician Stancioiu, Daniel Mihai, Georgios Z Papadakis, Aristidis Tsatsakis, Demetrios A Spandidos, Corin Badiu, Felician Stancioiu, Daniel Mihai, Georgios Z Papadakis, Aristidis Tsatsakis, Demetrios A Spandidos, Corin Badiu

Abstract

Benign thyroid nodules are among the most common endocrine disorders. Recent advances in diagnostic imaging and pathology have significantly contributed to better risk stratification of thyroid nodules. However, current treatment options, beyond surgical approaches are limited. The following placebo-controlled study presents, to the best of our knowledge, the first results of a non-invasive therapy for benign thyroid nodules. The efficacy and safety of a supplement containing spirulina, curcumin and Boswellia in euthyroid patients with benign thyroid nodules, was assessed by a 3 month, double-blind, placebo-controlled study which was completed by 34 patients. Patients with benign (FNAB documented) single thyroid nodules between 2 and 5 cm were evaluated in a prospective placebo-controlled cross-over trial, across 12 weeks (3 visits with six-week intervals). At each visit, the target thyroid nodule was recorded in two dimensions. In addition, plasma levels of thyroid stimulating hormone, free thyroxine and copper were assessed. The mean initial nodule area at V1 was 4.38±3.14 cm2, at V2 3.87±2.79 cm2, and at V3 3.53±2.84 cm2; P<0.04. Administration of the active substances (n=34) was followed by a mean area decrease of 0.611 cm2±0.933 (SD), while placebo administration (n=29) was followed by a mean decrease of 0.178 cm2±0.515 (SD), (P=0.027). The presented findings suggest that the combination of spirulina-curcumin-Βoswellia is effective in reducing the size of benign thyroid nodules. However, additional studies are needed in order to elucidate the exact mechanisms through which the suggested supplement facilitates a decrease in the size of benign thyroid nodules.

Figures

Figure 1.
Figure 1.
Nodule size at V1, V2, V3 in all patients. In all 34 patients, the mean initial nodule area at initial visit (V1 S) was 4.38±3.14 cm2, at 2nd visit (V2 S) mean nodule area and SD was: 3.87±2.79 cm2, and at 3nd visit (V3 S) mean nodule area and SD was 3.53±2.84 cm2. D, large diameter; d, small diameter; S, area; SD, standard deviation.
Figure 2.
Figure 2.
The figure graphically represents the significant data from Table III, comparing the means, min and max values nodule areas in the AI (Act) and P (Plac) groups after the initial 6 week administration of AI or P (V2-V1, noted ‘A’) and after 12 weeks of AI or P (V3-V1, noted ‘A+B’, A being the initial 6 weeks, B the final 6 weeks of study). As noted in Table III, in the ‘B’ period of the study (V3-V2) the mean nodule areas in the AI vs. P groups were not statistically significant. A Act, A Plac (n=17), A+B Act (n=39), A+B Plac (n=29).
Figure 3.
Figure 3.
Interactions between thyroid hormones, ceruloplasmin, adrenal hormones, and processes of intestinal absorbtion, oxidative metabolism and inflammation. T3/T4, triiodothyronine/thyroxine; TRH/TSH, thyroid releasing/stimulating hormones; ACTH, adrenocorticotropic hormone; SOD, superoxide dysmutase.

References

    1. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26:1–133. doi: 10.1089/thy.2015.0020.
    1. Burman KD, Wartofsky L. CLINICAL PRACTICE. Thyroid Nodules. N Engl J Med. 2015;373:2347–2356. doi: 10.1056/NEJMcp1415786.
    1. Bernardi S, Stacul F, Michelli A, Giudici F, Zuolo G, de Manzini N, Dobrinja C, Zanconati F, Fabris B. 12-month efficacy of a single radiofrequency ablation on autonomously functioning thyroid nodules. Endocrine. 2017;57:402–408. doi: 10.1007/s12020-016-1174-4.
    1. Cesareo R, Palermo A, Pasqualini V, Simeoni C, Casini A, Pelle G, Manfrini S, Campagna G, Cianni R. Efficacy and safety of a single radiofrequency ablation of solid benign non-functioning thyroid nodules. Arch Endocrinol Metab. 2017;61:173–179. doi: 10.1590/2359-3997000000246.
    1. Wu W, Gong X, Zhou Q, Chen X, Chen X. Ultrasound-guided percutaneous microwave ablation for solid benign thyroid nodules: Comparison of MWA versus control group. Int J Endocrinol. 2017;2017:9724090. doi: 10.1155/2017/9724090.
    1. Yue W, Wang S, Wang B, Xu Q, Yu S, Yonglin Z, Wang X. Ultrasound guided percutaneous microwave ablation of benign thyroid nodules: Safety and imaging follow-up in 222 patients. Eur J Radiol. 2013;82:e11–e16. doi: 10.1016/j.ejrad.2012.07.020.
    1. Dobnig H, Amrein K. Monopolar radiofrequency ablation of thyroid nodules: A prospective Austrian single-center study. Thyroid. 2018;28:472–480. doi: 10.1089/thy.2017.0547.
    1. Durante C, Costante G, Lucisano G, Bruno R, Meringolo D, Paciaroni A, Puxeddu E, Torlontano M, Tumino S, Attard M, et al. The natural history of benign thyroid nodules. JAMA. 2015;313:926–935. doi: 10.1001/jama.2015.0956.
    1. Hay ID, Thompson GB, Grant CS, Bergstralh EJ, Dvorak CE, Gorman CA, Maurer MS, McIver B, Mullan BP, Oberg AL, et al. Papillary thyroid carcinoma managed at the Mayo Clinic during six decades (1940–1999): Temporal trends in initial therapy and long-term outcome in 2444 consecutively treated patients. World J Surg. 2002;26:879–885. doi: 10.1007/s00268-002-6612-1.
    1. Twomey PJ, Viljoen A, House IM, Reynolds TM, Wierzbicki AS. Relationship between serum copper, ceruloplasmin, and non-ceruloplasmin-bound copper in routine clinical practice. Clin Chem. 2005;51:1558–1559. doi: 10.1373/clinchem.2005.052688.
    1. Habi b, M Ahsan B, Huntington T, Hasan MA. Food and Agriculture Organization of the United Nations; Rome, Italy: 2008. A review on culture, production and use of Spirulina as food for humans and feeds for domestic animals and fish. In: FAO Fisheries and Aquaculture Circular No.1034.
    1. Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng. 2006;101:87–96. doi: 10.1263/jbb.101.87.
    1. Becker EW. Micro-algae as a source of protein. Biotechnol Adv. 2007;25:207–210. doi: 10.1016/j.biotechadv.2006.11.002.
    1. Kent M, Welladsen HM, Mangott A, Li Y. Nutritional evaluation of Australian microalgae as potential human health supplements. PLoS One. 2015;10:e0118985. doi: 10.1371/journal.pone.0118985.
    1. Perrone D, Ardito F, Giannatempo G, Dioguardi M, Troiano G, Lo Russo L, DE Lillo A, Laino L, Lo Muzio L. Biological and therapeutic activities, and anticancer properties of curcumin. Exp Ther Med. 2015;10:1615–1623. doi: 10.3892/etm.2015.2749.
    1. Tabrizi R, Vakili S, Akbari M, Mirhosseini N, Lankarani KB, Rahimi M, Mobini M, Jafarnejad S, Vahedpoor Z, Asemi Z. The effects of curcumin-containing supplements on biomarkers of inflammation and oxidative stress: A systematic review and meta-analysis of randomized controlled trials. Phytother Res. 2019;33:252–262. doi: 10.1002/ptr.6226.
    1. Beghelli D, Isani G, Roncada P, Andreani G, Bistoni O, Bertocchi M, Lupidi G, Alunno A. Antioxidant and ex vivo immune system regulatory properties of Boswellia serrata extracts. Oxid Med Cell Longev. 2017;2017:7468064. doi: 10.1155/2017/7468064.
    1. Governa P, Marchi M, Cocetta V, De Leo B, Saunders PTK, Catanzaro D, Miraldi E, Montopoli M, Biagi M. Effects of Boswellia Serrata Roxb. and Curcuma longa L. in an in vitro intestinal inflammation model using immune cells and Caco-2. Pharmaceuticals (Basel) 2018;11:E126. doi: 10.3390/ph11040126.
    1. Kizhakkedath R. Clinical evaluation of a formulation containing Curcuma longa and Boswellia serrata extracts in the management of knee osteoarthritis. Mol Med Rep. 2013;8:1542–1548. doi: 10.3892/mmr.2013.1661.
    1. Schenk H, Haralambus I, Leb G, Pickel H, Goebel R. The effect of oral contraceptives on levels of thyroid hormone, blood coagulation and ceruloplasmin. MMW Munch Med Wochenschr. 1977;119:941–944. (In German)
    1. Schreiber V, Pribyl T. Effect of interaction of oestrogen, testosterone and thyroid hormones on the serum ceruloplasmin level in rats. Physiol Bohemoslov (2) 1977:129–137.
    1. Schreiber V, Pribyl T, Jahodová J. Reactions of hypothalamic ascorbic acid, serum ceruloplasmin and the adenohypophysis to oestradiol: Inhibition by L-thyroxine. Physiol Bohemoslov. 1980;29:11–20.
    1. Dumitriu L, Bartoc R, Ursu H, Purice M, Ionescu V. Significance of high levels of serum malonyl dialdehyde (MDA) and ceruloplasmin (CP) in hyper- and hypothyroidism. Endocrinologie. 1988;26:35–38.
    1. Tisato V, Gallo S, Melloni E, Celeghini C, Passaro A, Zauli G, Secchiero P, Bergamini C, Trentini A, Bonaccorsi G, et al. TRAIL and ceruloplasmin inverse correlation as a representative crosstalk between inflammation and oxidative stress. Mediators Inflamm. 2018;2018:9629537. doi: 10.1155/2018/9629537.
    1. Golenkina EA, Viryasova GM, Galkina SI, Gaponova TV, Sud'ina GF, Sokolov AV. Fine regulation of neutrophil oxidative status and apoptosis by ceruloplasmin and its derivatives. Cells. 2018;7:E8. doi: 10.3390/cells7010008.
    1. Valenzise M, Porcaro F, Zirilli G, De Luca F, Cinquegrani M, Aversa T. Hypoceruloplasminemia: An unusual biochemical finding in a girl with Hashimoto's thyroiditis and severe hypothyroidism. . Pediatr Med Chir. 2018;40 doi: 10.4081/pmc.2018.179.
    1. Mittag J, Behrends T, Nordström K, Anselmo J, Vennström B, Schomburg L. Serum copper as a novel biomarker for resistance to thyroid hormone. Biochem J. 2012;443:103–109. doi: 10.1042/BJ20111817.
    1. Fitch CA, Song Y, Levenson CW. Developmental regulation of hepatic ceruloplasmin mRNA and serum activity by exogenous thyroxine and dexamethasone. Proc Soc Exp Biol Med. 1999;221:27–31. doi: 10.1046/j.1525-1373.1999.d01-50.x.
    1. Kralik A, Kirchgessner M, Eder K. Concentrations of thyroid hormones in serum and activity of hepatic 5′ monodeiodinase in copper-deficient rats. Z Ernahrungswiss. 1996;35:288–291. doi: 10.1007/BF01625694.
    1. Bastian TW, Lassi KC, Anderson GW, Prohaska JR. Maternal iron supplementation attenuates the impact of perinatal copper deficiency but does not eliminate hypotriiodothyroninemia nor impaired sensorimotor development. J Nutr Biochem. 2011;22:1084–1090. doi: 10.1016/j.jnutbio.2010.09.007.
    1. Song B. Immunohistochemical demonstration of epidermal growth factor receptor and ceruloplasmin in thyroid diseases. Acta Pathol Jpn. 1991;41:336–343.
    1. Kondi-Pafiti A, Smyrniotis V, Frangou M, Papayanopoulou A, Englezou M, Deligeorgi H. Immunohistochemical study of ceruloplasmin, lactoferrin and secretory component expression in neoplastic and non-neoplastic thyroid gland diseases. Acta Oncol. 2000;39:753–756. doi: 10.1080/028418600750063848.
    1. Vaideeswar P, Pandit AA, Khilnani PH, Powar HS. Differentiation of follicular adenoma and carcinoma of thyroid by immunohistochemical demonstration of ceruloplasmin. Indian J Pathol Microbiol. 1994;37:165–169.
    1. Wang Q, Shen Y, Ye B, Hu H, Fan C, Wang T, Zheng Y, Lv J, Ma Y, Xiang M. Gene expression differences between thyroid carcinoma, thyroid adenoma and normal thyroid tissue. Oncol Rep. 2018;40:3359–3369.

Source: PubMed

3
Abonneren