Integrated exposure-response analysis of efficacy and safety of lurbinectedin to support the dose regimen in small-cell lung cancer

Carlos Fernández-Teruel, Salvador Fudio, Rubin Lubomirov, Carlos Fernández-Teruel, Salvador Fudio, Rubin Lubomirov

Abstract

Purpose: These exposure-response (E-R) analyses integrated lurbinectedin effects on key efficacy and safety variables in relapsed SCLC to determine the adequacy of the dose regimen of 3.2 mg/m2 1-h intravenous infusion every 3 weeks (q3wk).

Methods: Logistic models and Cox regression analyses were applied to correlate lurbinectedin exposure metrics (AUCtot and AUCu) with efficacy and safety endpoints: objective response rate (ORR) and overall survival (OS) in SCLC patients (n = 99) treated in study B-005 with 3.2 mg/m2 q3wk, and incidence of grade 4 (G4) neutropenia and grade 3-4 (G ≥ 3) thrombocytopenia in a pool of cancer patients from single-agent phase I to III studies (n = 692) treated at a wide range of doses. A clinical utility index was used to assess the appropriateness of the selected dose.

Results: Effect of lurbinectedin AUCu on ORR best fitted to a sigmoid-maximal response (Emax) logistic model, where Emax was dependent on chemotherapy-free interval (CTFI). Cox regression analysis with OS found relationships with both CTFI and AUCu. An Emax logistic model for G4 neutropenia and a linear logistic model for G ≥ 3 thrombocytopenia, which retained platelets and albumin at baseline and body surface area, best fitted to AUCtot and AUCu. AUCu between approximately 1000 and 1700 ng·h/L provided the best benefit/risk ratio, and the dose of 3.2 mg/m2 provided median AUCu of 1400 ng·h/L, thus maximizing the proportion of patients within that lurbinectedin target exposure range.

Conclusions: The relationships evidenced in this integrated E-R analysis support a favorable benefit-risk profile for lurbinectedin 3.2 mg/m2 q3wk.

Trial registration: Clinicaltrials.gov: NCT02454972; registered May 27, 2015.

Keywords: Clinical utility index; Exposure–response; Lurbinectedin; Pharmacokinetics; Small-cell lung cancer.

Conflict of interest statement

Salvador Fudio and Rubin Lubomirov are employees of Pharma Mar. Carlos Fernández-Teruel is a former employee of Pharma Mar. All authors may hold Pharma Mar stock or stock options.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Relationship between ORR by IRC and AUCu stratified by CTFI. Solid black dots represent the proportion of responders grouped by quartiles of AUCu and plotted at the median AUCu for each quartile in resistant (a) and sensitive (b) patients. Bars represent the 95% CI for the proportion of each quartile. Curve and blue shaded area represent predicted values and 95% CI of model-predicted ORR, respectively. The vertical point lines and the gray shaded area represent the 95% prediction interval of the observed AUCu. AUCu unbound plasma area under the concentration–time curve, CI confidence interval, CTFI chemotherapy-free interval, IRC independent review committee, ORR objective response rate
Fig. 2
Fig. 2
Kaplan–Meier plots for OS versus pooled AUCu (first vs. second to fourth quartiles), stratified by CTFI (a, resistant; b, sensitive). Q1 AUCu: first quartile of AUCu; Q2–4 AUCu: second to fourth quartiles of AUCu. AUCu unbound plasma area under the concentration–time curve, CTFI chemotherapy-free interval, OS overall survival
Fig. 3
Fig. 3
Relationship between AUCu and G4 neutropenia (a) and G ≥ 3 thrombocytopenia (b). Solid black dots represent the G4 neutropenia or G ≥ 3 thrombocytopenia incidence grouped by quartiles of AUCu and plotted at the median AUCu for each quartile. The bars represent the 95% confidence interval for the proportion of each quartile. Curve and blue shaded area represent predicted values and 95% confidence intervals of model-predicted risk of G4 neutropenia or G ≥ 3 thrombocytopenia, respectively. The vertical point lines and the gray shaded area represent the 95% prediction interval of the observed AUCu in patients treated at doses from 0.02 to 6.9 mg/m2. AUCu unbound plasma area under the concentration–time curve, G grade
Fig. 4
Fig. 4
Clinical utility index with AUCu in resistant (a) and sensitive (b) SCLC patients. Dashed green vertical line is the lurbinectedin AUCu providing an ORR of 7.5% (resistant) and 19.3% (sensitive), which are the ORRs corresponding to topotecan. Dashed dark red vertical line is the AUCu at which the probability of grade 4 neutropenia is 20%. The gray shaded area represents the 95% prediction interval of the observed AUCu in SCLC patients treated at 3.2 mg/m2. Black dotted vertical lines are percentiles 5, 50, and 95 of AUCu. AUCu unbound plasma area under the concentration–time curve, CUI clinical utility index, G grade, SCLC small-cell lung cancer

References

    1. von Pawel J, Schiller JH, Shepherd FA, Fields SZ, Kleisbauer JP, Chrysson NG, Stewart DJ, Clark PI, Palmer MC, Depierre A, Carmichael J, Krebs JB, Ross G, Lane SR, Gralla R. Topotecan versus cyclophosphamide, doxorubicin, and vincristine for the treatment of recurrent small-cell lung cancer. J Clin Oncol. 1999;17(2):658–667. doi: 10.1200/JCO.1999.17.2.658.
    1. von Pawel J, Gatzemeier U, Pujol JL, Moreau L, Bildat S, Ranson M, Richardson G, Steppert C, Riviere A, Camlett I, Lane S, Ross G. Phase II comparator study of oral versus intravenous topotecan in patients with chemosensitive small-cell lung cancer. J Clin Oncol. 2001;19(6):1743–1749. doi: 10.1200/JCO.2001.19.6.1743.
    1. O'Brien ME, Ciuleanu TE, Tsekov H, Shparyk Y, Cucevia B, Juhasz G, Thatcher N, Ross GA, Dane GC, Crofts T. Phase III trial comparing supportive care alone with supportive care with oral topotecan in patients with relapsed small-cell lung cancer. J Clin Oncol. 2006;24(34):5441–5447. doi: 10.1200/JCO.2006.06.5821.
    1. Eckardt JR, von Pawel J, Pujol JL, Papai Z, Quoix E, Ardizzoni A, Poulin R, Preston AJ, Dane G, Ross G. Phase III study of oral compared with intravenous topotecan as second-line therapy in small-cell lung cancer. J Clin Oncol. 2007;25(15):2086–2092. doi: 10.1200/JCO.2006.08.3998.
    1. von Pawel J, Jotte R, Spigel DR, O'Brien ME, Socinski MA, Mezger J, Steins M, Bosquee L, Bubis J, Nackaerts K, Trigo JM, Clingan P, Schutte W, Lorigan P, Reck M, Domine M, Shepherd FA, Li S, Renschler MF. Randomized phase III trial of amrubicin versus topotecan as second-line treatment for patients with small-cell lung cancer. J Clin Oncol. 2014;32(35):4012–4019. doi: 10.1200/JCO.2013.54.5392.
    1. Evans TL, Cho BC, Udud K, Fischer JR, Shepherd FA, Martinez P, Ramlau R, Syrigos KN, Shen L, Chadjaa M, Wolf M. Cabazitaxel versus topotecan in patients with small-cell lung cancer with progressive disease during or after first-line platinum-based chemotherapy. J Thorac Oncol. 2015;10(8):1221–1228. doi: 10.1097/JTO.0000000000000588.
    1. Leal JF, Martinez-Diez M, Garcia-Hernandez V, Moneo V, Domingo A, Bueren-Calabuig JA, Negri A, Gago F, Guillen-Navarro MJ, Aviles P, Cuevas C, Garcia-Fernandez LF, Galmarini CM. PM01183, a new DNA minor groove covalent binder with potent in vitro and in vivo anti-tumour activity. Br J Pharmacol. 2010;161(5):1099–1110. doi: 10.1111/j.1476-5381.2010.00945.x.
    1. Santamaria Nunez G, Robles CM, Giraudon C, Martinez-Leal JF, Compe E, Coin F, Aviles P, Galmarini CM, Egly JM. Lurbinectedin specifically triggers the degradation of phosphorylated RNA polymerase II and the formation of DNA breaks in cancer cells. Mol Cancer Ther. 2016;15(10):2399–2412. doi: 10.1158/1535-7163.MCT-16-0172.
    1. Harlow M, Easton M, Guillén M PM01183 inactivates the EWS/FLI1 transcription factor by redistributing the protein within the nucleus. 107th Annual Meeting of the American Association for Cancer Research; New Orleans, LA, USA; April 16–20, 2016 (abstr LB-177).
    1. Belgiovine C, Bello E, Liguori M, Craparotta I, Mannarino L, Paracchini L, Beltrame L, Marchini S, Galmarini CM, Mantovani A, Frapolli R, Allavena P, D'Incalci M. Lurbinectedin reduces tumour-associated macrophages and the inflammatory tumour microenvironment in preclinical models. Br J Cancer. 2017;117(5):628–638. doi: 10.1038/bjc.2017.205.
    1. Singh S, Jaigirdar AA, Mulkey F, Cheng J, Hamed SS, Li Y, Liu J, Zhao H, Goheer A, Helms WS, Wang X, Agarwal R, Pragani R, Korsah K, Tang S, Leighton J, Rahman A, Beaver JA, Pazdur R, Theoret MR, Singh H. FDA Approval Summary: Lurbinectedin for the treatment of metastatic small cell lung cancer. Clin Cancer Res. 2020 doi: 10.1158/1078-0432.CCR-20-3901.
    1. Food and Drug Administration, CDER; ZepzelcaTM Multi-disciplinary Review (2020). .
    1. Fernandez-Teruel C, Gonzalez I, Troconiz IF, Lubomirov R, Soto A, Fudio S. Population-pharmacokinetic and covariate analysis of lurbinectedin (PM01183), a new RNA polymerase II inhibitor, in pooled phase I/II trials in patients with cancer. Clin Pharmacokinet. 2018;58(3):363–374. doi: 10.1007/s40262-018-0701-2.
    1. Elez ME, Tabernero J, Geary D, Macarulla T, Kang SP, Kahatt C, Pita AS, Teruel CF, Siguero M, Cullell-Young M, Szyldergemajn S, Ratain MJ. First-in-human phase I study of Lurbinectedin (PM01183) in patients with advanced solid tumors. Clin Cancer Res. 2014;20(8):2205–2214. doi: 10.1158/1078-0432.CCR-13-1880.
    1. Jimeno A, Sharma MR, Szyldergemajn S, Gore L, Geary D, Diamond JR, Fernandez Teruel C, Soto Matos-Pita A, Iglesias JL, Cullell-Young M, Ratain MJ. Phase I study of lurbinectedin, a synthetic tetrahydroisoquinoline that inhibits activated transcription, induces DNA single- and double-strand breaks, on a weekly x 2 every-3-week schedule. Invest New Drugs. 2017;35(4):471–477. doi: 10.1007/s10637-017-0427-2.
    1. Fernandez-Teruel C, Lubomirov R, Fudio S. Population pharmacokinetic-pharmacodynamic modeling and covariate analyses of neutropenia and thrombocytopenia in patients with solid tumors treated with lurbinectedin. J Clin Pharmacol. 2021 doi: 10.1002/jcph.1886.
    1. Trigo J, Subbiah V, Besse B, Moreno V, Lopez R, Sala MA, Peters S, Ponce S, Fernandez C, Alfaro V, Gomez J, Kahatt C, Zeaiter A, Zaman K, Boni V, Arrondeau J, Martinez M, Delord JP, Awada A, Kristeleit R, Olmedo ME, Wannesson L, Valdivia J, Rubio MJ, Anton A, Sarantopoulos J, Chawla SP, Mosquera-Martinez J, D'Arcangelo M, Santoro A, Villalobos VM, Sands J, Paz-Ares L. Lurbinectedin as second-line treatment for patients with small-cell lung cancer: a single-arm, open-label, phase 2 basket trial. Lancet Oncol. 2020;21(5):645–654. doi: 10.1016/S1470-2045(20)30068-1.
    1. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). European journal of cancer (Oxford, England : 1990) 45 (2):228–247. doi:
    1. Lindbom L, Pihlgren P, Jonsson EN. PsN-Toolkit–a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Programs Biomed. 2005;79(3):241–257. doi: 10.1016/j.cmpb.2005.04.005.
    1. Jonsson EN, Karlsson MO. Xpose—an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. J Biomechanics. 1998;58(1):51–64. doi: 10.1016/s0169-2607(98)00067-4.
    1. Wickham H. ggplot2. Elegant graphics for data analysis New York: Springer-Verlag. 2009 doi: 10.1007/978-0-387-98141-3.
    1. Haouala A, Widmer N, Guidi M, Montemurro M, Leyvraz S, Buclin T, Eap CB, Decosterd LA, Csajka C. Prediction of free imatinib concentrations based on total plasma concentrations in patients with gastrointestinal stromal tumours. Br J Clin Pharmacol. 2013;75(4):1007–1018. doi: 10.1111/j.1365-2125.2012.04422.x.
    1. Ouellet D. Benefit-risk assessment: the use of clinical utility index. Expert Opin Drug Saf. 2010;9(2):289–300. doi: 10.1517/14740330903499265.
    1. Benet LZ, Hoener BA. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther. 2002;71(3):115–121. doi: 10.1067/mcp.2002.121829.

Source: PubMed

3
Abonneren