Exercise and Creatine Supplementation to Augment the Adaptation of Exercise Training Among Breast Cancer Survivors Completing Chemotherapy: Protocol for an Open-label Randomized Controlled Trial (the THRIVE Study)

Darpan I Patel, Angela Gonzalez, Crisann Moon, Monica Serra, Preston Blake Bridges, Daniel Hughes, Geoffrey Clarke, Lisa Kilpela, Rozmin Jiwani, Nicolas Musi, Darpan I Patel, Angela Gonzalez, Crisann Moon, Monica Serra, Preston Blake Bridges, Daniel Hughes, Geoffrey Clarke, Lisa Kilpela, Rozmin Jiwani, Nicolas Musi

Abstract

Background: In breast cancer survivors, chemotherapy-induced muscle loss has been shown to be attenuated with structured resistance exercise. Creatine supplementation can increase bioenergetics in skeletal muscle, which helps to improve overall strength and endurance and reduce muscular fatigue. Therefore, we hypothesize that adding creatinine supplementation to exercise training will accelerate improvements in strength, endurance, and bioenergetics in breast cancer survivors.

Objective: The primary objective is to determine the effects of combining creatine supplementation with exercise on modulating strength and physical function in breast cancer survivors by comparing these effects to those of exercise alone. The secondary objectives are to determine if creatine supplementation and exercise can increase the intramuscular storage of creatine and improve body composition by comparing this intervention to exercise alone.

Methods: We aim to test our hypothesis by conducting an open-label randomized controlled trial of 30 breast cancer survivors who have completed chemotherapy within 6 months of enrollment. Eligible participants will be equally randomized (1:1) to either a creatine and exercise group or an exercise-only group for this 12-week intervention. Individuals who are randomized to receive creatine will be initially dosed at 20 g per day for 7 days to boost the availability of creatine systemically. Thereafter, the dose will be reduced to 5 g per day for maintenance throughout the duration of the 12-week protocol. All participants will engage in 3 center-based exercise sessions, which will involve completing 3 sets of 8 to 12 repetitions on chest press, leg press, seated row, shoulder press, leg extension, and leg curl machines. The primary outcomes will include changes in strength, body composition, and physical function in breast cancer survivors. The secondary outcomes will be intramuscular concentrations of creatine and adenosine triphosphate in the vastus lateralis, midthigh cross-sectional area, and quality of life.

Results: As of October 2021, a total of 9 patients have been enrolled into the study. No unexpected adverse events have been reported.

Conclusions: Creatine is being studied as a potential agent for improving strength, endurance, and bioenergetics in breast cancer survivors following chemotherapy. The findings from our trial may have future implications for supporting breast cancer survivors in reversing the muscle loss experienced during chemotherapy and improving their physical function and quality of life.

Trial registration: ClinicalTrials.gov NCT04207359; https://ichgcp.net/clinical-trials-registry/NCT04207359.

International registered report identifier (irrid): PRR1-10.2196/26827.

Keywords: doxorubicin; oncology; quality of life; rehabilitation; resistant exercise; supplements.

Conflict of interest statement

Conflicts of Interest: None declared.

©Darpan I Patel, Angela Gonzalez, Crisann Moon, Monica Serra, Preston Blake Bridges, Daniel Hughes, Geoffrey Clarke, Lisa Kilpela, Rozmin Jiwani, Nicolas Musi. Originally published in JMIR Research Protocols (https://www.researchprotocols.org), 01.04.2022.

Figures

Figure 1
Figure 1
Individuals randomized to the creatine group will exercise 3 times per week for 12 weeks and take creatine in powder form as indicated. Individuals in the control group will exercise 3 times per week for 12 weeks without creatine dosing.

References

    1. Barreto R, Mandili G, Witzmann FA, Novelli F, Zimmers TA, Bonetto A. Cancer and chemotherapy contribute to muscle loss by activating common signaling pathways. Front Physiol. 2016 Oct 19;7:472. doi: 10.3389/fphys.2016.00472. doi: 10.3389/fphys.2016.00472.
    1. Visovsky C. Muscle strength, body composition, and physical activity in women receiving chemotherapy for breast cancer. Integr Cancer Ther. 2006 Sep;5(3):183–191. doi: 10.1177/1534735406291962. 5/3/183
    1. Winters-Stone KM, Bennett JA, Nail L, Schwartz A. Strength, physical activity, and age predict fatigue in older breast cancer survivors. Oncol Nurs Forum. 2008 Sep;35(5):815–821. doi: 10.1188/08.ONF.815-821.76715G72463GW577
    1. Winters-Stone KM, Dobek J, Bennett JA, Nail LM, Leo MC, Schwartz A. The effect of resistance training on muscle strength and physical function in older, postmenopausal breast cancer survivors: a randomized controlled trial. J Cancer Surviv. 2012 Jun;6(2):189–199. doi: 10.1007/s11764-011-0210-x.
    1. Winters-Stone KM, Dobek J, Nail L, Bennett JA, Leo MC, Naik A, Schwartz A. Strength training stops bone loss and builds muscle in postmenopausal breast cancer survivors: a randomized, controlled trial. Breast Cancer Res Treat. 2011 Jun;127(2):447–456. doi: 10.1007/s10549-011-1444-z.
    1. Pin F, Couch ME, Bonetto A. Preservation of muscle mass as a strategy to reduce the toxic effects of cancer chemotherapy on body composition. Curr Opin Support Palliat Care. 2018 Dec;12(4):420–426. doi: 10.1097/SPC.0000000000000382.
    1. Freedman RJ, Aziz N, Albanes D, Hartman T, Danforth D, Hill S, Sebring N, Reynolds JC, Yanovski JA. Weight and body composition changes during and after adjuvant chemotherapy in women with breast cancer. J Clin Endocrinol Metab. 2004 May;89(5):2248–2253. doi: 10.1210/jc.2003-031874.
    1. Winters-Stone K. Tai Ji Quan for the aging cancer survivor: Mitigating the accelerated development of disability, falls, and cardiovascular disease from cancer treatment. J Sport Health Sci. 2014 Mar 01;3(1):52–57. doi: 10.1016/j.jshs.2013.11.003.
    1. Nelson SH, Weiner LS, Natarajan L, Parker BA, Patterson RE, Hartman SJ. Continuous, objective measurement of physical activity during chemotherapy for breast cancer: the Activity in Treatment pilot study. Transl Behav Med. 2020 Oct 08;10(4):1031–1038. doi: 10.1093/tbm/ibz079. 5506435
    1. Persky AM, Brazeau GA, Hochhaus G. Pharmacokinetics of the dietary supplement creatine. Clin Pharmacokinet. 2003;42(6):557–574. doi: 10.2165/00003088-200342060-00005.4265
    1. Riesberg LA, Weed SA, McDonald TL, Eckerson JM, Drescher KM. Beyond muscles: The untapped potential of creatine. Int Immunopharmacol. 2016 Aug;37:31–42. doi: 10.1016/j.intimp.2015.12.034. S1567-5769(15)30239-3
    1. Kreider RB, Kalman DS, Antonio J, Ziegenfuss TN, Wildman R, Collins R, Candow DG, Kleiner SM, Almada AL, Lopez HL. International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. J Int Soc Sports Nutr. 2017 Jun 13;14:18. doi: 10.1186/s12970-017-0173-z. 173
    1. Smith SA, Montain SJ, Matott RP, Zientara GP, Jolesz FA, Fielding RA. Creatine supplementation and age influence muscle metabolism during exercise. J Appl Physiol (1985) 1998 Oct;85(4):1349–1356. doi: 10.1152/jappl.1998.85.4.1349.
    1. Campbell WW, Barton Jr ML, Cyr-Campbell D, Davey SL, Beard JL, Parise G, Evans WJ. Effects of an omnivorous diet compared with a lactoovovegetarian diet on resistance-training-induced changes in body composition and skeletal muscle in older men. Am J Clin Nutr. 1999 Dec;70(6):1032–1039. doi: 10.1093/ajcn/70.6.1032.
    1. Harris RC, Söderlund K, Hultman E. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci (Lond) 1992 Sep;83(3):367–374. doi: 10.1042/cs0830367.
    1. Stout JR, Graves BS, Cramer JT, Goldstein ER, Costa PB, Smith AE, Walter AA. Effects of creatine supplementation on the onset of neuromuscular fatigue threshold and muscle strength in elderly men and women (64 - 86 years) J Nutr Health Aging. 2007;11(6):459–464.
    1. Gotshalk LA, Kraemer WJ, Mendonca MAG, Vingren JL, Kenny AM, Spiering BA, Hatfield DL, Fragala MS, Volek JS. Creatine supplementation improves muscular performance in older women. Eur J Appl Physiol. 2008 Jan;102(2):223–231. doi: 10.1007/s00421-007-0580-y.
    1. Gotshalk LA, Volek JS, Staron RS, Denegar CR, Hagerman FC, Kraemer WJ. Creatine supplementation improves muscular performance in older men. Med Sci Sports Exerc. 2002 Mar;34(3):537–543. doi: 10.1097/00005768-200203000-00023.
    1. Cañete S, San Juan AF, Pérez M, Gómez-Gallego F, López-Mojares LM, Earnest CP, Fleck SJ, Lucia A. Does creatine supplementation improve functional capacity in elderly women? J Strength Cond Res. 2006 Feb;20(1):22–28. doi: 10.1519/R-17044.1.R-17044
    1. Devries MC, Phillips SM. Creatine supplementation during resistance training in older adults-a meta-analysis. Med Sci Sports Exerc. 2014 Jun;46(6):1194–1203. doi: 10.1249/MSS.0000000000000220.
    1. Gualano B, Artioli GG, Poortmans JR, Lancha Junior AH. Exploring the therapeutic role of creatine supplementation. Amino Acids. 2010 Jan;38(1):31–44. doi: 10.1007/s00726-009-0263-6.
    1. Lønbro S, Dalgas U, Primdahl H, Overgaard J, Overgaard K. Feasibility and efficacy of progressive resistance training and dietary supplements in radiotherapy treated head and neck cancer patients--the DAHANCA 25A study. Acta Oncol. 2013 Feb;52(2):310–318. doi: 10.3109/0284186X.2012.741325.
    1. Norman K, Stübler D, Baier P, Schütz T, Ocran K, Holm E, Lochs H, Pirlich M. Effects of creatine supplementation on nutritional status, muscle function and quality of life in patients with colorectal cancer--a double blind randomised controlled trial. Clin Nutr. 2006 Aug;25(4):596–605. doi: 10.1016/j.clnu.2006.01.014.S0261-5614(06)00033-1
    1. Bourgeois JM, Nagel K, Pearce E, Wright M, Barr RD, Tarnopolsky MA. Creatine monohydrate attenuates body fat accumulation in children with acute lymphoblastic leukemia during maintenance chemotherapy. Pediatr Blood Cancer. 2008 Aug;51(2):183–187. doi: 10.1002/pbc.21571.
    1. Jatoi A, Steen PD, Atherton PJ, Moore DF, Rowland KM, Le-Lindqwister NA, Adonizio CS, Jaslowski AJ, Sloan J, Loprinzi C. A double-blind, placebo-controlled randomized trial of creatine for the cancer anorexia/weight loss syndrome (N02C4): an Alliance trial. Ann Oncol. 2017 Aug 01;28(8):1957–1963. doi: 10.1093/annonc/mdx232. S0923-7534(19)32163-5
    1. van Norren K, van Helvoort A, Argilés JM, van Tuijl S, Arts K, Gorselink M, Laviano A, Kegler D, Haagsman HP, van der Beek EM. Direct effects of doxorubicin on skeletal muscle contribute to fatigue. Br J Cancer. 2009 Jan 27;100(2):311–314. doi: 10.1038/sj.bjc.6604858. 6604858
    1. Fairman CM, Kendall KL, Hart NH, Taaffe DR, Galvão DA, Newton RU. The potential therapeutic effects of creatine supplementation on body composition and muscle function in cancer. Crit Rev Oncol Hematol. 2019 Jan;133:46–57. doi: 10.1016/j.critrevonc.2018.11.003.S1040-8428(18)30301-9
    1. Chan AW, Tetzlaff JM, Gøtzsche PC, Altman DG, Mann H, Berlin JA, Dickersin K, Hróbjartsson A, Schulz KF, Parulekar WR, Krleza-Jeric K, Laupacis A, Moher D. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013 Jan 08;346:e7586. doi: 10.1136/bmj.e7586.
    1. American College of Sports Medicine . ACSM's Guidelines for Exercise Testing and Prescription Eighth Edition. Philadelphia, United States: Wolters Kluwer; 2013.
    1. Campbell KL, Winters-Stone KM, Wiskemann J, May AM, Schwartz AL, Courneya KS, Zucker DS, Matthews CE, Ligibel JA, Gerber LH, Morris GS, Patel AV, Hue TF, Perna FM, Schmitz KH. Exercise guidelines for cancer survivors: Consensus statement from international multidisciplinary roundtable. Med Sci Sports Exerc. 2019 Nov;51(11):2375–2390. doi: 10.1249/MSS.0000000000002116. 00005768-201911000-00023
    1. Borg G. Borg's Perceived Exertion and Pain Scales. Champaign, IL: Human Kinetics; 1998.
    1. Hultman E, Söderlund K, Timmons JA, Cederblad G, Greenhaff PL. Muscle creatine loading in men. J Appl Physiol (1985) 1996 Jul;81(1):232–237. doi: 10.1152/jappl.1996.81.1.232.
    1. Albanese CV, Diessel E, Genant HK. Clinical applications of body composition measurements using DXA. J Clin Densitom. 2003;6(2):75–85. doi: 10.1385/jcd:6:2:75.JCD:6:2:75
    1. Brzycki M. Strength testing—Predicting a one-rep max from reps-to-fatigue. J Phys Educ Recreat Dance. 1993;64(1):88–90. doi: 10.1080/07303084.1993.10606684.
    1. Knapik JJ, Wright JE, Mawdsley RH, Braun JM. Isokinetic, isometric and isotonic strength relationships. Arch Phys Med Rehabil. 1983 Feb;64(2):77–80.
    1. Rogers BH, Brown JC, Gater DR, Schmitz KH. Association between maximal bench press strength and isometric handgrip strength among breast cancer survivors. Arch Phys Med Rehabil. 2017 Feb;98(2):264–269. doi: 10.1016/j.apmr.2016.07.017. S0003-9993(16)30415-4
    1. Schmidt K, Vogt L, Thiel C, Jäger E, Banzer W. Validity of the six-minute walk test in cancer patients. Int J Sports Med. 2013 Jul;34(7):631–636. doi: 10.1055/s-0032-1323746.
    1. Fayers P, Bottomley A, EORTC Quality of Life Group. Quality of Life Unit Quality of life research within the EORTC-the EORTC QLQ-C30. European Organisation for Research and Treatment of Cancer. Eur J Cancer. 2002 Mar;38 Suppl 4:S125–S133. doi: 10.1016/s0959-8049(01)00448-8.S0959804901004488
    1. Fayers P, Aaronson NK, Bjordal K, Sullivan M. EORTC QLQ–C30 Scoring Manual. Brussels, Belgium: European Organization for Research and Treatment of Cancer; 1995.
    1. Ripley EM, Clarke GD, Hamidi V, Martinez RA, Settles FD, Solis C, Deng S, Abdul-Ghani M, Tripathy D, DeFronzo RA. Reduced skeletal muscle phosphocreatine concentration in type 2 diabetic patients: a quantitative image-based phosphorus-31 MR spectroscopy study. Am J Physiol Endocrinol Metab. 2018 Aug 01;315(2):E229–E239. doi: 10.1152/ajpendo.00426.2017.
    1. Deng S, Ripley EM, Vasquez JA, Tripathy D, DeFronzo RA, Clarke GD. Quantitative image-based phosphorus-31 MR spectroscopy for evaluating age-based differences in skeletal muscle metabolites. SPIE Medical Imaging 2018; February 10-15, 2018; Houston, Texas, United States. 2018. Mar 09,
    1. Naressi A, Couturier C, Castang I, de Beer R, Graveron-Demilly D. Java-based graphical user interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance spectroscopy signals. Comput Biol Med. 2001 Jul;31(4):269–286. doi: 10.1016/s0010-4825(01)00006-3.S0010-4825(01)00006-3
    1. Vanhamme L, van den Boogaart A, Van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson. 1997 Nov;129(1):35–43. doi: 10.1006/jmre.1997.1244.S1090780797912441
    1. Common Terminology Criteria for Adverse Events (CTCAE) National Cancer Institute. [2022-01-03]. .
    1. Julious SA. Sample size of 12 per group rule of thumb for a pilot study. Pharm Stat. 2005 Nov 24;4(4):287–291. doi: 10.1002/pst.185.
    1. Browne RH. On the use of a pilot sample for sample size determination. Stat Med. 1995 Sep 15;14(17):1933–1940. doi: 10.1002/sim.4780141709.
    1. Billingham SAM, Whitehead AL, Julious SA. An audit of sample sizes for pilot and feasibility trials being undertaken in the United Kingdom registered in the United Kingdom Clinical Research Network database. BMC Med Res Methodol. 2013 Aug 20;13:104. doi: 10.1186/1471-2288-13-104. 1471-2288-13-104
    1. Patel DI, Abuchowski K, Sheikh B, Rivas P, Musi N, Kumar AP. Exercise preserves muscle mass and force in a prostate cancer mouse model. Eur J Transl Myol. 2019 Nov 12;29(4):8520. doi: 10.4081/ejtm.2019.8520. doi: 10.4081/ejtm.2019.8520.
    1. Juvet LK, Thune I, Elvsaas IKØ, Fors EA, Lundgren S, Bertheussen G, Leivseth G, Oldervoll LM. The effect of exercise on fatigue and physical functioning in breast cancer patients during and after treatment and at 6 months follow-up: A meta-analysis. Breast. 2017 Jun;33:166–177. doi: 10.1016/j.breast.2017.04.003.S0960-9776(17)30427-7
    1. Villaseñor A, Ballard-Barbash R, Baumgartner K, Baumgartner R, Bernstein L, McTiernan A, Neuhouser ML. Prevalence and prognostic effect of sarcopenia in breast cancer survivors: the HEAL Study. J Cancer Surviv. 2012 Dec;6(4):398–406. doi: 10.1007/s11764-012-0234-x.
    1. Paireder M, Asari R, Kristo I, Rieder E, Tamandl D, Ba-Ssalamah A, Schoppmann S. Impact of sarcopenia on outcome in patients with esophageal resection following neoadjuvant chemotherapy for esophageal cancer. Eur J Surg Oncol. 2017 Feb;43(2):478–484. doi: 10.1016/j.ejso.2016.11.015.S0748-7983(16)31034-4
    1. Pamoukdjian F, Bouillet T, Lévy V, Soussan M, Zelek L, Paillaud E. Prevalence and predictive value of pre-therapeutic sarcopenia in cancer patients: A systematic review. Clin Nutr. 2018 Aug;37(4):1101–1113. doi: 10.1016/j.clnu.2017.07.010.S0261-5614(17)30249-2
    1. Morishita S, Kaida K, Tanaka T, Itani Y, Ikegame K, Okada M, Ishii S, Kodama N, Ogawa H, Domen K. Prevalence of sarcopenia and relevance of body composition, physiological function, fatigue, and health-related quality of life in patients before allogeneic hematopoietic stem cell transplantation. Support Care Cancer. 2012 Dec;20(12):3161–3168. doi: 10.1007/s00520-012-1460-5.
    1. Wang SL, Zhuang CL, Huang DD, Pang WY, Lou N, Chen FF, Zhou CJ, Shen X, Yu Z. Sarcopenia adversely impacts postoperative clinical outcomes following gastrectomy in patients with gastric cancer: A prospective study. Ann Surg Oncol. 2016 Feb;23(2):556–564. doi: 10.1245/s10434-015-4887-3.10.1245/s10434-015-4887-3
    1. Huang DD, Wang SL, Zhuang CL, Zheng BS, Lu JX, Chen FF, Zhou CJ, Shen X, Yu Z. Sarcopenia, as defined by low muscle mass, strength and physical performance, predicts complications after surgery for colorectal cancer. Colorectal Dis. 2015 Nov;17(11):O256–O264. doi: 10.1111/codi.13067.
    1. Schmitz KH, Courneya KS, Matthews C, Demark-Wahnefried W, Galvão DA, Pinto BM, Irwin ML, Wolin KY, Segal RJ, Lucia A, Schneider CM, von Gruenigen VE, Schwartz AL, American College of Sports Medicine American College of Sports Medicine roundtable on exercise guidelines for cancer survivors. Med Sci Sports Exerc. 2010 Jul;42(7):1409–1426. doi: 10.1249/MSS.0b013e3181e0c112.00005768-201007000-00023
    1. Galvão DA, Taaffe DR, Spry N, Joseph D, Newton RU. Combined resistance and aerobic exercise program reverses muscle loss in men undergoing androgen suppression therapy for prostate cancer without bone metastases: a randomized controlled trial. J Clin Oncol. 2010 Jan 10;28(2):340–347. doi: 10.1200/JCO.2009.23.2488.JCO.2009.23.2488
    1. Segal RJ, Reid RD, Courneya KS, Sigal RJ, Kenny GP, Prud'Homme DG, Malone SC, Wells GA, Scott CG, D'Angelo MES. Randomized controlled trial of resistance or aerobic exercise in men receiving radiation therapy for prostate cancer. J Clin Oncol. 2009 Jan 20;27(3):344–351. doi: 10.1200/JCO.2007.15.4963.JCO.2007.15.4963
    1. Safdar A, Yardley NJ, Snow R, Melov S, Tarnopolsky MA. Global and targeted gene expression and protein content in skeletal muscle of young men following short-term creatine monohydrate supplementation. Physiol Genomics. 2008 Jan 17;32(2):219–228. doi: 10.1152/physiolgenomics.00157.2007.00157.2007
    1. Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kjaer M. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. J Physiol. 2006 Jun 01;573(Pt 2):525–534. doi: 10.1113/jphysiol.2006.107359. doi: 10.1113/jphysiol.2006.107359.jphysiol.2006.107359
    1. Galvão DA, Taaffe DR, Spry N, Newton RU. Exercise can prevent and even reverse adverse effects of androgen suppression treatment in men with prostate cancer. Prostate Cancer Prostatic Dis. 2007;10(4):340–346. doi: 10.1038/sj.pcan.4500975.4500975

Source: PubMed

3
Abonneren