Tumor copy number alteration burden is a pan-cancer prognostic factor associated with recurrence and death

Haley Hieronymus, Rajmohan Murali, Amy Tin, Kamlesh Yadav, Wassim Abida, Henrik Moller, Daniel Berney, Howard Scher, Brett Carver, Peter Scardino, Nikolaus Schultz, Barry Taylor, Andrew Vickers, Jack Cuzick, Charles L Sawyers, Haley Hieronymus, Rajmohan Murali, Amy Tin, Kamlesh Yadav, Wassim Abida, Henrik Moller, Daniel Berney, Howard Scher, Brett Carver, Peter Scardino, Nikolaus Schultz, Barry Taylor, Andrew Vickers, Jack Cuzick, Charles L Sawyers

Abstract

The level of copy number alteration (CNA), termed CNA burden, in the tumor genome is associated with recurrence of primary prostate cancer. Whether CNA burden is associated with prostate cancer survival or outcomes in other cancers is unknown. We analyzed the CNA landscape of conservatively treated prostate cancer in a biopsy and transurethral resection cohort, reflecting an increasingly common treatment approach. We find that CNA burden is prognostic for cancer-specific death, independent of standard clinical prognosticators. More broadly, we find CNA burden is significantly associated with disease-free and overall survival in primary breast, endometrial, renal clear cell, thyroid, and colorectal cancer in TCGA cohorts. To assess clinical applicability, we validated these findings in an independent pan-cancer cohort of patients whose tumors were sequenced using a clinically-certified next generation sequencing assay (MSK-IMPACT), where prognostic value varied based on cancer type. This prognostic association was affected by incorporating tumor purity in some cohorts. Overall, CNA burden of primary and metastatic tumors is a prognostic factor, potentially modulated by sample purity and measurable by current clinical sequencing.

Keywords: cancer biology; copy number alteration; genomics; human; human biology; medicine; prostate cancer.

Conflict of interest statement

HH, RM, AT, KY, WA, HM, DB, HS, BC, PS, NS, BT, AV, JC No competing interests declared, CS Senior Editor, eLife

© 2018, Hieronymus et al.

Figures

Figure 1.. Tumor copy number landscape of…
Figure 1.. Tumor copy number landscape of conservatively treated primary prostate cancer, compared to other primary prostate cancer cohorts.
(a) Heat map of copy number alterations in conservative treatment CNA cohort, as well as TCGA, MSKCC, and IMPACT primary prostate cancer cohorts. (b) Frequency distribution of CNA burden, as log of percentage of genome copy number altered, for the conservative treatment prostate cancer cohort and three other primary prostate cancer cohorts.
Figure 2.. Tumor copy number alteration burden…
Figure 2.. Tumor copy number alteration burden is associated with death from prostate cancer in conservatively treated patients.
(a) Cumulative Incidence of death from disease (dashed lines) and death from other causes (solid lines) based in cases with high CNA burden (red lines, CNA Burden greater than or equal to the median CNA burden of this cohort, 1.48) or non-high CNA burden (black lines, CNA Burden < median). (b) Risk for death from prostate cancer within 5 years of diagnosis. Univariate risk for 5 year prostate cancer-specific death, calculated by locally weighted Kaplan–Meier estimates (solid black line) with 95% confidence interval (dashed black lines) overlaid on the distribution of CNA burden (gray). (c) Association of tumor CNA burden with available cancer outcomes in the conservative treatment primary prostate cancer TAPG1 cohort, TCGA primary cancer cohorts, and the MSK-IMPACT clinical sequencing prostate and pan-cancer cohorts of primary and metastatic tumors. Forest plot of hazard ratio (per 5% CNA burden) with 95% confidence interval shown for cancer-specific mortality (dark blue), overall mortality (light blue), and cancer recurrence (green). Supplementary Tables and Figures.
Figure 2—figure supplement 1.. Kaplan-Meier plot of…
Figure 2—figure supplement 1.. Kaplan-Meier plot of biochemical recurrence in TCGA primary prostate cohort.
The highest quartile tumor CNA burden (above 75 percentile CNA burden, green) is compared to lower three quartiles (blue) with risk table showing the number of patients present at each time point.
Figure 2—figure supplement 2.. Tumor CNA burden…
Figure 2—figure supplement 2.. Tumor CNA burden in multiple cancers is associated with disease free survival and overall survival.
Kaplan-Meier plot of disease free survival (left) and overall survival (right) of TCGA cohorts of (a) endometrial cancer and (b) colorectal cancer. The highest quartile CNA (above 75 percentile CNA burden, green) is compared to lower three quartiles (blue).
Figure 2—figure supplement 3.. Correlation between CNA…
Figure 2—figure supplement 3.. Correlation between CNA burden from IMPACT targeted sequencing assay and whole exome sequencing (WES) of same samples, pan-cancer.
The relationship between CNA burden determined by IMPACT targeted sequencing and WES in a subset of pan-cancer IMPACT cohort samples analyzed by both approaches (n = 1005) is shown (rho = 0.88, p-value=0).
Figure 2—figure supplement 4.. Tumor CNA burden…
Figure 2—figure supplement 4.. Tumor CNA burden in primary prostate cancer is prognostic for overall survival when assayed by clinically approved sequencing panel.
Kaplan-Meier plot of overall survival of IMPACT primary prostate cancer cohort by CNA burden quartile in (a) primary and (b) metastatic tumors. The highest quartile CNA (above 75 percentile CNA burden, green) is compared to lower three quartiles (blue).
Figure 2—figure supplement 5.. Forest Plot of…
Figure 2—figure supplement 5.. Forest Plot of Hazard Ratios (individual and pooled) for meta-analysis assessing the association between tumor CNA burden and overall survival in (a) primary cancer and (b) patients with metastatic cancer in the pan-cancer IMPACT cohort.

References

    1. Abida W, Armenia J, Gopalan A, Brennan R, Walsh M, Barron D, Danila D, Rathkopf D, Morris M, Slovin S, McLaughlin B, Curtis K, Hyman DM, Durack JC, Solomon SB, Arcila ME, Zehir A, Syed A, Gao J, Chakravarty D, Vargas HA, Robson ME, Vijai J, Offit K, Donoghue MTA, Abeshouse AA, Kundra R, Heins ZJ, Penson AV, Harris C, Taylor BS, Ladanyi M, Mandelker D, Zhang L, Reuter VE, Kantoff PW, Solit DB, Berger MF, Sawyers CL, Schultz N, Scher HI. Prospective genomic profiling of prostate Cancer across disease states reveals germline and somatic alterations that may affect clinical decision making. JCO Precision Oncology. 2017;2017:1–16. doi: 10.1200/PO.17.00029.
    1. Bergerot PG, Hahn AW, Bergerot CD, Jones J, Pal SK. The role of circulating tumor DNA in renal cell carcinoma. Current Treatment Options in Oncology. 2018;19:10. doi: 10.1007/s11864-018-0530-4.
    1. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J, Urashima M, Mc Henry KT, Pinchback RM, Ligon AH, Cho YJ, Haery L, Greulich H, Reich M, Winckler W, Lawrence MS, Weir BA, Tanaka KE, Chiang DY, Bass AJ, Loo A, Hoffman C, Prensner J, Liefeld T, Gao Q, Yecies D, Signoretti S, Maher E, Kaye FJ, Sasaki H, Tepper JE, Fletcher JA, Tabernero J, Baselga J, Tsao MS, Demichelis F, Rubin MA, Janne PA, Daly MJ, Nucera C, Levine RL, Ebert BL, Gabriel S, Rustgi AK, Antonescu CR, Ladanyi M, Letai A, Garraway LA, Loda M, Beer DG, True LD, Okamoto A, Pomeroy SL, Singer S, Golub TR, Lander ES, Getz G, Sellers WR, Meyerson M. The landscape of somatic copy-number alteration across human cancers. Nature. 2010;463:899–905. doi: 10.1038/nature08822.
    1. Brajtbord JS, Leapman MS, Cooperberg MR. The CAPRA Score at 10 years: contemporary perspectives and analysis of supporting studies. European Urology. 2017;71:705–709. doi: 10.1016/j.eururo.2016.08.065.
    1. Camacho N, Van Loo P, Edwards S, Kay JD, Matthews L, Haase K, Clark J, Dennis N, Thomas S, Kremeyer B, Zamora J, Butler AP, Gundem G, Merson S, Luxton H, Hawkins S, Ghori M, Marsden L, Lambert A, Karaszi K, Pelvender G, Massie CE, Kote-Jarai Z, Raine K, Jones D, Howat WJ, Hazell S, Livni N, Fisher C, Ogden C, Kumar P, Thompson A, Nicol D, Mayer E, Dudderidge T, Yu Y, Zhang H, Shah NC, Gnanapragasam VJ, Isaacs W, Visakorpi T, Hamdy F, Berney D, Verrill C, Warren AY, Wedge DC, Lynch AG, Foster CS, Lu YJ, Bova GS, Whitaker HC, McDermott U, Neal DE, Eeles R, Cooper CS, Brewer DS, CRUK-ICGC Prostate Group Appraising the relevance of DNA copy number loss and gain in prostate cancer using whole genome DNA sequence data. PLOS Genetics. 2017;13:e1007001. doi: 10.1371/journal.pgen.1007001.
    1. Cancer Genome Atlas Network Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–337. doi: 10.1038/nature11252.
    1. Cancer Genome Atlas Research Network Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499:43–49. doi: 10.1038/nature12222.
    1. Cancer Genome Atlas Research Network. Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H, Robertson AG, Pashtan I, Shen R, Benz CC, Yau C, Laird PW, Ding L, Zhang W, Mills GB, Kucherlapati R, Mardis ER, Levine DA. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497:242–273. doi: 10.1038/nature12113.
    1. Cancer Genome Atlas Research Network Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159:676–690. doi: 10.1016/j.cell.2014.09.050.
    1. Cancer Genome Atlas Research Network The molecular taxonomy of primary prostate Cancer. Cell. 2015;163:1011–1025. doi: 10.1016/j.cell.2015.10.025.
    1. Carter SL, Cibulskis K, Helman E, McKenna A, Shen H, Zack T, Laird PW, Onofrio RC, Winckler W, Weir BA, Beroukhim R, Pellman D, Levine DA, Lander ES, Meyerson M, Getz G. Absolute quantification of somatic DNA alterations in human cancer. Nature Biotechnology. 2012;30:413–421. doi: 10.1038/nbt.2203.
    1. Castro E, Jugurnauth-Little S, Karlsson Q, Al-Shahrour F, Piñeiro-Yañez E, Van de Poll F, Leongamornlert D, Dadaev T, Govindasami K, Guy M, Eeles R, Kote-Jarai Z, UKGPCS, EMBRACE and IMPACT studies High burden of copy number alterations and c-MYC amplification in prostate cancer from BRCA2 germline mutation carriers. Annals of Oncology. 2015;26:2293–2300. doi: 10.1093/annonc/mdv356.
    1. Chen RC, Rumble RB, Loblaw DA, Finelli A, Ehdaie B, Cooperberg MR, Morgan SC, Tyldesley S, Haluschak JJ, Tan W, Justman S, Jain S. Active surveillance for the management of localized prostate cancer (cancer care ontario guideline): american society of clinical oncology clinical practice guideline endorsement. Journal of Clinical Oncology. 2016;34:2182–2190. doi: 10.1200/JCO.2015.65.7759.
    1. Cheng DT, Mitchell TN, Zehir A, Shah RH, Benayed R, Syed A, Chandramohan R, Liu ZY, Won HH, Scott SN, Brannon AR, O'Reilly C, Sadowska J, Casanova J, Yannes A, Hechtman JF, Yao J, Song W, Ross DS, Oultache A, Dogan S, Borsu L, Hameed M, Nafa K, Arcila ME, Ladanyi M, Berger MF. Memorial sloan kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT): A hybridization Capture-Based Next-Generation sequencing clinical assay for solid tumor molecular oncology. The Journal of Molecular Diagnostics : JMD. 2015;17:251–264. doi: 10.1016/j.jmoldx.2014.12.006.
    1. Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie SK, Pastore A, Zhang H, McLellan M, Yau C, Kandoth C, Bowlby R, Shen H, Hayat S, Fieldhouse R, Lester SC, Tse GM, Factor RE, Collins LC, Allison KH, Chen YY, Jensen K, Johnson NB, Oesterreich S, Mills GB, Cherniack AD, Robertson G, Benz C, Sander C, Laird PW, Hoadley KA, King TA, Perou CM, TCGA Research Network Comprehensive molecular portraits of invasive lobular breast cancer. Cell. 2015;163:506–519. doi: 10.1016/j.cell.2015.09.033.
    1. Cooperberg MR, Pasta DJ, Elkin EP, Litwin MS, Latini DM, Du Chane J, Carroll PR. The university of california, san francisco cancer of the prostate risk assessment score: a straightforward and reliable preoperative predictor of disease recurrence after radical prostatectomy. The Journal of Urology. 2005;173:1938–1942. doi: 10.1097/01.ju.0000158155.33890.e7.
    1. Cuzick J, Fisher G, Kattan MW, Berney D, Oliver T, Foster CS, Møller H, Reuter V, Fearn P, Eastham J, Scardino P, Transatlantic Prostate Group Long-term outcome among men with conservatively treated localised prostate cancer. British Journal of Cancer. 2006;95:1186–1194. doi: 10.1038/sj.bjc.6603411.
    1. Danielsen HE, Pradhan M, Novelli M. Revisiting tumour aneuploidy - the place of ploidy assessment in the molecular era. Nature Reviews Clinical Oncology. 2016;13:291–304. doi: 10.1038/nrclinonc.2015.208.
    1. Gómez-Rueda H, Martínez-Ledesma E, Martínez-Torteya A, Palacios-Corona R, Trevino V. Integration and comparison of different genomic data for outcome prediction in cancer. BioData Mining. 2015;8:32. doi: 10.1186/s13040-015-0065-1.
    1. Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton GM, Miller V, Stephens PJ, Daniels GA, Kurzrock R. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Molecular Cancer Therapeutics. 2017;16:2598–2608. doi: 10.1158/1535-7163.MCT-17-0386.
    1. Heitzer E, Ulz P, Geigl JB, Speicher MR. Non-invasive detection of genome-wide somatic copy number alterations by liquid biopsies. Molecular Oncology. 2016;10:494–502. doi: 10.1016/j.molonc.2015.12.004.
    1. Hieronymus H, Schultz N, Gopalan A, Carver BS, Chang MT, Xiao Y, Heguy A, Huberman K, Bernstein M, Assel M, Murali R, Vickers A, Scardino PT, Sander C, Reuter V, Taylor BS, Sawyers CL. Copy number alteration burden predicts prostate cancer relapse. PNAS. 2014;111:11139–11144. doi: 10.1073/pnas.1411446111.
    1. Hyman DM, Taylor BS, Baselga J. Implementing genome-driven oncology. Cell. 2017;168:584–599. doi: 10.1016/j.cell.2016.12.015.
    1. Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TBK, Veeriah S, Shafi S, Johnson DH, Mitter R, Rosenthal R, Salm M, Horswell S, Escudero M, Matthews N, Rowan A, Chambers T, Moore DA, Turajlic S, Xu H, Lee SM, Forster MD, Ahmad T, Hiley CT, Abbosh C, Falzon M, Borg E, Marafioti T, Lawrence D, Hayward M, Kolvekar S, Panagiotopoulos N, Janes SM, Thakrar R, Ahmed A, Blackhall F, Summers Y, Shah R, Joseph L, Quinn AM, Crosbie PA, Naidu B, Middleton G, Langman G, Trotter S, Nicolson M, Remmen H, Kerr K, Chetty M, Gomersall L, Fennell DA, Nakas A, Rathinam S, Anand G, Khan S, Russell P, Ezhil V, Ismail B, Irvin-Sellers M, Prakash V, Lester JF, Kornaszewska M, Attanoos R, Adams H, Davies H, Dentro S, Taniere P, O'Sullivan B, Lowe HL, Hartley JA, Iles N, Bell H, Ngai Y, Shaw JA, Herrero J, Szallasi Z, Schwarz RF, Stewart A, Quezada SA, Le Quesne J, Van Loo P, Dive C, Hackshaw A, Swanton C, TRACERx Consortium Tracking the evolution of non-small-cell lung cancer. New England Journal of Medicine. 2017;376:2109–2121. doi: 10.1056/NEJMoa1616288.
    1. Liang L, Fang JY, Xu J. Gastric cancer and gene copy number variation: emerging cancer drivers for targeted therapy. Oncogene. 2016;35:1475–1482. doi: 10.1038/onc.2015.209.
    1. Liu Y, Chen C, Xu Z, Scuoppo C, Rillahan CD, Gao J, Spitzer B, Bosbach B, Kastenhuber ER, Baslan T, Ackermann S, Cheng L, Wang Q, Niu T, Schultz N, Levine RL, Mills AA, Lowe SW. Deletions linked to TP53 loss drive cancer through p53-independent mechanisms. Nature. 2016;531:471–475. doi: 10.1038/nature17157.
    1. Macintyre G, Goranova TE, De Silva D, Ennis D, Piskorz AM, Eldridge M, Sie D, Lewsley LA, Hanif A, Wilson C, Dowson S, Glasspool RM, Lockley M, Brockbank E, Montes A, Walther A, Sundar S, Edmondson R, Hall GD, Clamp A, Gourley C, Hall M, Fotopoulou C, Gabra H, Paul J, Supernat A, Millan D, Hoyle A, Bryson G, Nourse C, Mincarelli L, Sanchez LN, Ylstra B, Jimenez-Linan M, Moore L, Hofmann O, Markowetz F, McNeish IA, Brenton JD. Copy number signatures and mutational processes in ovarian carcinoma. Nature Genetics. 2018 doi: 10.1038/s41588-018-0179-8.
    1. Nibourel O, Guihard S, Roumier C, Pottier N, Terre C, Paquet A, Peyrouze P, Geffroy S, Quentin S, Alberdi A, Abdelali RB, Renneville A, Demay C, Celli-Lebras K, Barbry P, Quesnel B, Castaigne S, Dombret H, Soulier J, Preudhomme C, Cheok MH. Copy-number analysis identified new prognostic marker in acute myeloid leukemia. Leukemia. 2017;31:555–564. doi: 10.1038/leu.2016.265.
    1. Pearlman A, Upadhyay K, Cole K, Loke J, Sun K, Fineberg S, Freedland SJ, Shao Y, Ostrer H. Robust genomic copy number predictor of pan cancer metastasis. Genes & Cancer. 2018;9:66–77. doi: 10.18632/genesandcancer.165.
    1. Prandi D, Baca SC, Romanel A, Barbieri CE, Mosquera JM, Fontugne J, Beltran H, Sboner A, Garraway LA, Rubin MA, Demichelis F. Unraveling the clonal hierarchy of somatic genomic aberrations. Genome Biology. 2014;15:439. doi: 10.1186/s13059-014-0439-6.
    1. Shen R, Seshan VE. FACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing. Nucleic Acids Research. 2016;44:e131. doi: 10.1093/nar/gkw520.
    1. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B, Antipin Y, Mitsiades N, Landers T, Dolgalev I, Major JE, Wilson M, Socci ND, Lash AE, Heguy A, Eastham JA, Scher HI, Reuter VE, Scardino PT, Sander C, Sawyers CL, Gerald WL. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18:11–22. doi: 10.1016/j.ccr.2010.05.026.
    1. Tosoian JJ, Carter HB, Lepor A, Loeb S. Active surveillance for prostate cancer: current evidence and contemporary state of practice. Nature Reviews Urology. 2016;13:205–215. doi: 10.1038/nrurol.2016.45.
    1. Tschaharganeh DF, Bosbach B, Lowe SW. Coordinated tumor suppression by chromosome 8p. Cancer Cell. 2016;29:617–619. doi: 10.1016/j.ccell.2016.04.011.
    1. Visakorpi T, Kallioniemi AH, Syvänen AC, Hyytinen ER, Karhu R, Tammela T, Isola JJ, Kallioniemi OP. Genetic changes in primary and recurrent prostate Cancer by comparative genomic hybridization. Cancer Research. 1995;55:342–347.
    1. Viswanathan SR, Ha G, Hoff AM, Wala JA, Carrot-Zhang J, Whelan CW, Haradhvala NJ, Freeman SS, Reed SC, Rhoades J, Polak P, Cipicchio M, Wankowicz SA, Wong A, Kamath T, Zhang Z, Gydush GJ, Rotem D, Love JC, Getz G, Gabriel S, Zhang CZ, Dehm SM, Nelson PS, Van Allen EM, Choudhury AD, Adalsteinsson VA, Beroukhim R, Taplin ME, Meyerson M, PCF/SU2C International Prostate Cancer Dream Team Structural alterations driving castration-resistant prostate cancer revealed by linked-read genome sequencing. Cell. 2018;174:433–447. doi: 10.1016/j.cell.2018.05.036.
    1. Vujkovic M, Attiyeh EF, Ries RE, Goodman EK, Ding Y, Kavcic M, Alonzo TA, Wang YC, Gerbing RB, Sung L, Hirsch B, Raimondi S, Gamis AS, Meshinchi S, Aplenc R. Genomic architecture and treatment outcome in pediatric acute myeloid leukemia: a Children's Oncology Group report. Blood. 2017;129:3051–3058. doi: 10.1182/blood-2017-03-772384.
    1. Wala JAL, Craft Yilong;, Schumacher David;, Steven E, Imielinski M, Haber JE, Roberts N, Yao X, Stewart C, Zhang C-Z, Tubio J, Ju YS, Campbell P, Weischenfeldt J, Beroukhim R. Selective and mechanistic sources of recurrent rearrangements across the Cancer genome. BioRxiv. 2017 doi: 10.1101/187609.
    1. Walther A, Houlston R, Tomlinson I. Association between chromosomal instability and prognosis in colorectal cancer: a meta-analysis. Gut. 2008;57:941–950. doi: 10.1136/gut.2007.135004.
    1. Wang H, Liang L, Fang JY, Xu J. Somatic gene copy number alterations in colorectal cancer: new quest for cancer drivers and biomarkers. Oncogene. 2016;35:2011–2019. doi: 10.1038/onc.2015.304.
    1. Williams JL, Greer PA, Squire JA. Recurrent copy number alterations in prostate cancer: an in silico meta-analysis of publicly available genomic data. Cancer Genetics. 2014;207:474–488. doi: 10.1016/j.cancergen.2014.09.003.
    1. Xia S, Kohli M, Du M, Dittmar RL, Lee A, Nandy D, Yuan T, Guo Y, Wang Y, Tschannen MR, Worthey E, Jacob H, See W, Kilari D, Wang X, Hovey RL, Huang CC, Wang L. Plasma genetic and genomic abnormalities predict treatment response and clinical outcome in advanced prostate cancer. Oncotarget. 2015;6:16411–16421. doi: 10.18632/oncotarget.3845.
    1. Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B, Lawrence MS, Zhsng CZ, Wala J, Mermel CH, Sougnez C, Gabriel SB, Hernandez B, Shen H, Laird PW, Getz G, Meyerson M, Beroukhim R. Pan-cancer patterns of somatic copy number alteration. Nature Genetics. 2013;45:1134–1140. doi: 10.1038/ng.2760.
    1. Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, Srinivasan P, Gao J, Chakravarty D, Devlin SM, Hellmann MD, Barron DA, Schram AM, Hameed M, Dogan S, Ross DS, Hechtman JF, DeLair DF, Yao J, Mandelker DL, Cheng DT, Chandramohan R, Mohanty AS, Ptashkin RN, Jayakumaran G, Prasad M, Syed MH, Rema AB, Liu ZY, Nafa K, Borsu L, Sadowska J, Casanova J, Bacares R, Kiecka IJ, Razumova A, Son JB, Stewart L, Baldi T, Mullaney KA, Al-Ahmadie H, Vakiani E, Abeshouse AA, Penson AV, Jonsson P, Camacho N, Chang MT, Won HH, Gross BE, Kundra R, Heins ZJ, Chen HW, Phillips S, Zhang H, Wang J, Ochoa A, Wills J, Eubank M, Thomas SB, Gardos SM, Reales DN, Galle J, Durany R, Cambria R, Abida W, Cercek A, Feldman DR, Gounder MM, Hakimi AA, Harding JJ, Iyer G, Janjigian YY, Jordan EJ, Kelly CM, Lowery MA, Morris LGT, Omuro AM, Raj N, Razavi P, Shoushtari AN, Shukla N, Soumerai TE, Varghese AM, Yaeger R, Coleman J, Bochner B, Riely GJ, Saltz LB, Scher HI, Sabbatini PJ, Robson ME, Klimstra DS, Taylor BS, Baselga J, Schultz N, Hyman DM, Arcila ME, Solit DB, Ladanyi M, Berger MF. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nature Medicine. 2017;23:703–713. doi: 10.1038/nm.4333.

Source: PubMed

3
Abonneren