Netupitant/palonosetron (NEPA) and dexamethasone for prevention of emesis in breast cancer patients receiving adjuvant anthracycline plus cyclophosphamide: a multi-cycle, phase II study

Roberta Caputo, Marina Elena Cazzaniga, Andrea Sbrana, Rosalba Torrisi, Ida Paris, Monica Giordano, Vincenzo Montesarchio, Valentina Guarneri, Laura Amaducci, Domenico Bilancia, Giuseppina Cilenti, Alessandra Fabi, Elena Collovà, Alessio Schirone, Erminio Bonizzoni, Luigi Celio, Sabino De Placido, Michelino De Laurentiis, Roberta Caputo, Marina Elena Cazzaniga, Andrea Sbrana, Rosalba Torrisi, Ida Paris, Monica Giordano, Vincenzo Montesarchio, Valentina Guarneri, Laura Amaducci, Domenico Bilancia, Giuseppina Cilenti, Alessandra Fabi, Elena Collovà, Alessio Schirone, Erminio Bonizzoni, Luigi Celio, Sabino De Placido, Michelino De Laurentiis

Abstract

Background: NEPA is an oral fixed-dose combination of netupitant, a new highly selective neurokinin-1 receptor antagonist, and palonosetron. This study was conducted to evaluate whether the efficacy of NEPA against chemotherapy-induced nausea and vomiting (CINV) in cycle 1 would be maintained over subsequent chemotherapy cycles in breast cancer patients receiving adjuvant anthracycline plus cyclophosphamide (AC). The study also describes the relationship between efficacy on day 1 through 5 (overall period) and control of CINV on day 6 through 21 (very late period) in each cycle.

Methods: In this multicentre, phase II study, patients received both NEPA and dexamethasone (12 mg intravenously) just before chemotherapy. The primary efficacy endpoint was overall complete response (CR; no emesis and no rescue medication use) in cycle 1. Sustained efficacy was evaluated during the subsequent cycles by calculating the rate of CR in cycles 2-4 and by assessing the probability of sustained CR over multiple cycles. The impact of both overall CR and risk factors for CINV on the control of very late events (vomiting and moderate-to-severe nausea) were also examined.

Results: Of the 149 patients enrolled in the study, 139 were evaluable for a total of 552 cycles; 97.8% completed all 4 cycles. The proportion of patients with an overall CR was 70.5% (90% CI, 64.1 to 76.9) in cycle 1, and this was maintained in subsequent cycles. The cumulative percentage of patients with a sustained CR over 4 cycles was 53%. NEPA was well tolerated across cycles. In each cycle, patients with CR experienced a significantly better control of very late CINV events than those who experienced no CR. Among the patients with CR, the only predictor for increased likelihood of developing very late CINV was pre-chemotherapy (anticipatory) nausea (adjusted odds ratio = 0.65-0.50 for no CINV events on cycles 3 and 4).

Conclusion: The high anti-emetic efficacy seen with the NEPA regimen in the first cycle was maintained over multiple cycles of adjuvant AC for breast cancer. Preliminary evidence also suggests that patients achieving a CR during the overall period gain high protection even against very late CINV events in each chemotherapy cycle.

Trial registration: This trial was retrospectively registered at Clinicaltrials.gov identifier (NCT03862144) on 05/Mar/2019.

Keywords: AC; Breast cancer; CINV; NEPA; Nausea; Vomiting.

Conflict of interest statement

LC: fees for advisory board (Italfarmaco, Kyowa).

MDL: advisory board e SC member (Novartis; Amgen; Eli Lilly; Genentech).

VG: institutional research grant (Roche), fees for advisory board (Eli Lilly, Novartis, Roche), speakers bureau (Eli Lilly, Novartis).

IP: advisory board (Novartis, Roche, Astrazeneca, Eisai, Italfarmaco, Pfizer, Eli Lilly, Pierre-Fabre), invited speech (Novartis, Roche, Astrazeneca, Pfizer, Eli Lilly).

SDP: advisory board (GSK, Novartis, Roche, Celgene, Astrazeneca, Amgen, Eisai, Italfarmaco, Pfizer, Eli Lilly), invited speech (GSK, Novartis, Roche, Celgene, Astrazeneca, Amgen, Pfizer, Eli Lilly).

RC: advisory board (Novartis, Italfarmaco).

Other authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Kaplan-Meier curve of continued CR success rate. Patients who did not sustain a CR across cycles 1–4 were considered treatment failures. CR, complete response (no emesis, and no use of rescue medication)
Fig. 2
Fig. 2
Proportion of patients without CINV events during the very late period by CR status seen in the overall period of each cycle. CINV, chemotherapy-induced nausea and vomiting; CR, complete response (no emesis, and no use of rescue medication). P values were calculated using the Fisher’s exact test (two-sided). CINV events were vomiting and/or moderate-to-severe nausea

References

    1. Navari RM, Aapro M. Antiemetic prophylaxis for chemotherapy-induced nausea and vomiting. N Engl J Med. 2016;374:1356–1367. doi: 10.1056/NEJMra1515442.
    1. Warr DG, Hesketh PJ, Gralla RJ, Muss HB, Herrstedt J, Eisenberg PD, et al. Efficacy and tolerability of aprepitant for the prevention of chemotherapy-induced nausea and vomiting in patients with breast cancer after moderately emetogenic chemotherapy. J Clin Oncol. 2005;23:2822–2830. doi: 10.1200/JCO.2005.09.050.
    1. Bash E, Prestrud AA, Hesketh PJ, Kris MG, Feyer PC, Somerfield MR, et al. Antiemetics: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2011;29:4189–4198. doi: 10.1200/JCO.2010.34.4614.
    1. Roila F, Molassiotis A, Herrstedt J, Aapro M, Gralla RJ, Bruera E, et al. 2016 MASCC and ESMO guideline update for the prevention of chemotherapy- and radiotherapy-induced nausea and vomiting and of nausea and vomiting in advanced cancer patients. Ann Oncol. 2016;27(Suppl 5):v119–v133. doi: 10.1093/annonc/mdw270.
    1. Hesketh PJ, Kris MG, Basch E, Bohlke K, Barbour SY, Clark-Snow RA, et al. Antiemetics: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2017;35:3240–3261. doi: 10.1200/JCO.2017.74.4789.
    1. Molassiotis A, Aapro M, Dicato M, Gascon P, Novoa SA, Isambert N, et al. Evaluation of risk factors predicting chemotherapy-related nausea and vomiting: results from a European prospective observational study. J Pain Symptom Manage. 2014;47:839–848. doi: 10.1016/j.jpainsymman.2013.06.012.
    1. Hesketh PJ, Aapro M, Jordan K, Schwartzberg L, Bosnjak S, Rugo H. A review of NEPA, a novel fixed antiemetic combination with the potential of enhancing guideline adherence and improving control of chemotherapy-induced nausea and vomiting. Biomed Res Int. 2015;2015:651879. doi: 10.1155/2015/651879.
    1. Rojas C, Mithun R, Tsukamoto T, Slusher BS. Molecular mechanisms of 5-HT3 and NK1 receptor antagonists. Eur J Pharmacol. 2014;722:26–37. doi: 10.1016/j.ejphar.2013.08.049.
    1. Celio L, Niger M, Ricchini F, Agustoni F. Palonosetron in the prevention of chemotherapy-induced nausea and vomiting: an evidence-based review of safety, efficacy, and place in therapy. Core Evid. 2015;10:75–87. doi: 10.2147/CE.S65555.
    1. Aapro M, Rugo H, Rossi G, Rizzi G, Borroni ME, Bondarenko I, et al. A randomized phase III study evaluating the efficacy and safety of NEPA, a fixed-dose combination of netupitant and palonosetron, for prevention of chemotherapy-induced nausea and vomiting following moderately emetogenic chemotherapy. Ann Oncol. 2014;25:1328–1333. doi: 10.1093/annonc/mdu101.
    1. Spinelli T, Moresino C, Baumann S, Timmer W, Schultz A. Effects of combined netupitant and palonosetron (NEPA), a cancer supportive care antiemetic, on the ECG of healthy subjects: an ICH E14 thorough QT trial. Springerplus. 2014;3:389.
    1. Chan A, Kim H-K, Hsieh RK, Yu S, de Lima LG, Su W-C, et al. Incidence and predictors of anticipatory nausea and vomiting in Asia Pacific clinical practice-a longitudinal analysis. Support Care Cancer. 2015;23:283–291. doi: 10.1007/s00520-014-2375-0.
    1. Herrstedt J, Muss HB, Warr DG, Hesketh PJ, Eisenberg PD, Raftopoulos H, et al. Efficacy and tolerability of aprepitant for the prevention of chemotherapy-induced nausea and emesis over multiple cycles of moderately emetogenic chemotherapy. Cancer. 2005;104:1548–1555. doi: 10.1002/cncr.21343.
    1. Shih V, Wan HS, Chan A. Clinical predictors of chemotherapy-induced nausea and vomiting in breast cancer patients receiving adjuvant doxorubicin and cyclophosphamide. Ann Pharmacother. 2009;43:444–452. doi: 10.1345/aph.1L437.
    1. Warr DG, Street JC, Carides AD. Evaluation of risk factors predictive of nausea and vomiting with current standard-of-care antiemetic treatment: analysis of phase 3 trial of aprepitant in patients receiving adriamycin-cyclophosphamide-based chemotherapy. Support Care Cancer. 2011;19:807–813. doi: 10.1007/s00520-010-0899-5.
    1. Aapro M, Karthaus M, Schwartzberg L, Bondarenko I, Sarosiek T, Oprean C, et al. NEPA, a fixed oral combination of netupitant and palonosetron, improves control of chemotherapy-induced nausea and vomiting (CINV) over multiple cycles of chemotherapy: results of a randomized, double-blind, phase 3 trial versus oral palonosetron. Support Care Cancer. 2017;25:1127–1135. doi: 10.1007/s00520-016-3502-x.
    1. Schwartzberg L, Navari R, Clark-Snow R, Arkania E, Radyukova I, Patel K, et al. Phase IIIb safety and efficacy of intravenous NEPA for prevention of chemotherapy-induced nausea and vomiting (CINV) in patients with breast cancer receiving initial and repeat cycles of anthracycline and cyclophosphamide (AC) chemotherapy. Oncologist. 2019. 10.1634/theoncologist.2019-0527.
    1. Bosnjak SM, Gralla RJ, Schwartzberg L. Prevention of chemotherapy-induced nausea: the role of neurokinin-1 (NK1) receptor antagonists. Support Care Cancer. 2017;25:1661–1671. doi: 10.1007/s00520-017-3585-z.
    1. Kubota K, Saito M, Aogi K, Sekine I, Yoshizawa H, Yanagita Y, et al. Control of nausea with palonosetron versus granisetron, both combined with dexamethasone, in patients receiving cisplatin or anthracycline plus cyclophosphamide-based regimens. Support Care Cancer. 2016;24:4025–4033. doi: 10.1007/s00520-016-3203-5.
    1. De Laurentiis Michelino, Bonfadini Chiara, Lorusso Vito, Cilenti Giuseppina, Di Rella Francesca, Altavilla Giuseppe, Otero Manuela, Ardizzoia Antonio, Marchetti Paolo, Peverelli Giorgia, Amoroso Domenico, Vecchio Stefania, Fiorio Elena, Orecchia Simona. Incidence of nausea and vomiting in breast cancer patients treated with anthracycline plus cyclophosphamide-based chemotherapy regimens in Italy: NAVY observational study. Supportive Care in Cancer. 2018;26(12):4021–4029. doi: 10.1007/s00520-018-4259-1.
    1. Aapro M, Molassiotis A, Dicato M, Pelaez I, Rodriguez-Lescure A, Pastorelli D, et al. The effect of guideline-consistent antiemetic therapy on chemotherapy-induced nausea and vomiting (CINV): the Pan European Emesis registry (PEER) Ann Oncol. 2012;23:1986–1992. doi: 10.1093/annonc/mds021.
    1. Chan A, Low XH, Yap KY. Assessment of the relationship between adherence with antiemetic drug therapy and control of nausea and vomiting in breast cancer patients receiving anthracycline-based chemotherapy. J Manag Care Pharm. 2012;18:385–394.
    1. Vidall C, Fernandez-Ortega P, Cortinovis D, Jahan P, Amlani B, Scottè F. Impact and management of chemotherapy/radiotherapy-induced nausea and vomiting and the perceptual gap between oncologists/oncology nurses and patients: a cross-sectional multinational survey. Support Care Cancer. 2015;23:3297–3305. doi: 10.1007/s00520-015-2750-5.
    1. Molassiotis A, Lee PH, Burke TA, Dicato M, Gascon P, Roila F, et al. Anticipatory nausea, risk factors, and its impact on chemotherapy-induced nausea and vomiting: results from the Pan European Emesis registry study. J Pain Symptom Manag. 2016;51:987–993. doi: 10.1016/j.jpainsymman.2015.12.317.

Source: PubMed

3
Abonneren