Tannins from Hamamelis virginiana bark extract: characterization and improvement of the antiviral efficacy against influenza A virus and human papillomavirus

Linda L Theisen, Clemens A J Erdelmeier, Gilles A Spoden, Fatima Boukhallouk, Aurélie Sausy, Luise Florin, Claude P Muller, Linda L Theisen, Clemens A J Erdelmeier, Gilles A Spoden, Fatima Boukhallouk, Aurélie Sausy, Luise Florin, Claude P Muller

Abstract

Antiviral activity has been demonstrated for different tannin-rich plant extracts. Since tannins of different classes and molecular weights are often found together in plant extracts and may differ in their antiviral activity, we have compared the effect against influenza A virus (IAV) of Hamamelis virginiana L. bark extract, fractions enriched in tannins of different molecular weights and individual tannins of defined structures, including pseudotannins. We demonstrate antiviral activity of the bark extract against different IAV strains, including the recently emerged H7N9, and show for the first time that a tannin-rich extract inhibits human papillomavirus (HPV) type 16 infection. As the best performing antiviral candidate, we identified a highly potent fraction against both IAV and HPV, enriched in high molecular weight condensed tannins by ultrafiltration, a simple, reproducible and easily upscalable method. This ultrafiltration concentrate and the bark extract inhibited early and, to a minor extent, later steps in the IAV life cycle and tannin-dependently inhibited HPV attachment. We observed interesting mechanistic differences between tannin structures: High molecular weight tannin containing extracts and tannic acid (1702 g/mol) inhibited both IAV receptor binding and neuraminidase activity. In contrast, low molecular weight compounds (<500 g/mol) such as gallic acid, epigallocatechin gallate or hamamelitannin inhibited neuraminidase but not hemagglutination. Average molecular weight of the compounds seemed to positively correlate with receptor binding (but not neuraminidase) inhibition. In general, neuraminidase inhibition seemed to contribute little to the antiviral activity. Importantly, antiviral use of the ultrafiltration fraction enriched in high molecular weight condensed tannins and, to a lesser extent, the unfractionated bark extract was preferable over individual isolated compounds. These results are of interest for developing and improving plant-based antivirals.

Conflict of interest statement

Competing Interests: CAJE is an employee of Dr. Willmar Schwabe GmbH & Co. KG., whose company partly funded this study. There are no patents, products in development or marketed products to declare. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1. Chemical structures of tannins and…
Figure 1. Chemical structures of tannins and pseudotannins in Hamamelis virginiana L.
(A) gallic acid, (B) hamamelitannin, (C) pentagalloylglucose, (D) tannic acid represented with 10 galloylation units, (E) monomeric condensed tannins, (F) polymeric condensed tannins . Pseudotannins having low or no protein precipitating activity (and molecular weights <500 g/mol) are shown in italics.
Figure 2. Antiviral activity of Hamamelis bark…
Figure 2. Antiviral activity of Hamamelis bark extract.
(A–B) Selectivity index determination. Fluorescence of an H1N1 reporter virus A/Puerto Rico/8/34-NS116-GFP (MOI 0.4 on A549 cells) after 24 h of treatment with Hamamelis bark (A) or leaf (B) extract, expressed in relative fluorescent units (RFU, closed circles). Cytotoxicity of bark (A) or leaf (B) extract on A549 cells after 24 h as determined by XTT assay (open triangles). Background absorbance at 650 nm has been subtracted from XTT absorbance at 450 nm. A representative of at least two independent experiments is shown. (C–H) Antiviral activity of the bark extract against wild type strains. A549 cells (or A549Slam for measles) were infected in triplicates with an MOI of 0.1 for H1N1 A/Puerto Rico/8/34 (C), pandemic H1N1 A/Lux/46/2009 (D), seasonal H3N2 A/Lux/01/2005 (E), H7N9 A/Anhui/01/2013 (F), a MOI of 0.01 for measles Schwarz strain/Rimevax (G) or a MOI of 0.05 for adenovirus type 5 ATCC reference strain (H) in presence of Hamamelis bark serial dilutions. TCID50 was determined after 24 h (C–F, H closed circles), 48 h (C, open circles, G), or 72 h (C, closed triangles). (I) Activity of bark extract against 1000 HPV 16 pseudovirions per HaCaT cell in triplicates. Luminescence was read after 24 h and expressed in percent of untreated controls (closed circles). Cytotoxicity of bark extract on HaCaT cells was determined after 24 h by XTT assay (open triangles) as described for panel 2A. OD, optical density.
Figure 3. Antiviral activity of UF-concentrate, a…
Figure 3. Antiviral activity of UF-concentrate, a fraction of the bark extract enriched in high molecular weight tannins.
(A–B) A549 cells were infected in triplicates at a MOI of 0.1 with pandemic H1N1 A/Lux/46/2009 (A) or H1N1 A/Puerto Rico/8/34 (B) and serial dilutions of UF-concentrate were added at the same time. TCID50 was determined at 24 h (A, B, closed circles), 48 h (B, open circles) or 72 h (B, closed triangles) post infection. (C) Activity of bark extract against 1000 HPV 16 pseudovirions per HaCaT cell, done in triplicates. Luminescence was read after 24 h and expressed in percent of untreated control (closed circles). (A, C) Cytotoxicity of UF-concentrate on A549 (A, open triangles) or HaCaT cells (C, open triangles) was determined after 24 h by XTT assay. Background absorbance at 650 nm has been subtracted from XTT absorbance at 450 nm. OD, optical density.
Figure 4. Determination of the active antiviral…
Figure 4. Determination of the active antiviral principle in Hamamelis bark extract.
(A) Extent of tannin depletion by precipitation with hide powder. Tannins were depleted from drug solutions by stirring with hide powder for 1 h at room temperature followed by filtration. Phenolics, the main constituting moieties of tannins, were photometrically quantified before (black bars) and after (grey bars) hide powder treatment by Folin-Ciocalteu’s phenol reagent using a pyrogallol standard curve. Pyrogallol equivalents (PGE) of hide powder treated samples were normalized to PGE of untreated samples, set to 100%. (B–C) Antiviral effect of tannins. A549 cells were infected in triplicates with pandemic H1N1 A/Lux/46/2009 (MOI 0.05) and were left untreated or treated for 24 h with bark extract (B), UF-fractions or isolated (pseudo)tannins (C) which had been (grey bars) or had not been (black bars) treated with hide powder. Titers were determined at 24 h post infection by TCID50. n.d., not detectable or TCID50<1.
Figure 5. Effect on different IAV and…
Figure 5. Effect on different IAV and HPV life cycle steps.
(A–B) Step of the IAV life cycle affected. A549 cells were infected with pandemic H1N1 (MOI 0.1), and treated with 50 µg/ml of bark extract (A) or 10 µg/ml of UF-concentrate (B) starting 2 h before infection or 0, 2, 4 or 6 h after infection. TCID50s were determined 24 h post infection. (C) Effect on HPV attachment. HaCaT cells preincubated for 1 h with the original (black bars) or tannin-free (grey bars) extracts or DMSO and infected for 15 min with 500 HPV pseudovirions per cell were washed five times and collected in SDS sample buffer for Western blotting. Cell-bound HPV16 particles were stained with anti-L1 antibody and relative band intensities to the β-actin band were quantified densitometrically. (D) Effect on HPV capsid disassembly. HaCaT cells were treated with 20 µg/ml of the extracts for 1 h before HPV 16 pseudovirion infection for 7 h followed by fixation and staining with mouse anti-L1-7 antibody. L1-7 recognizes an epitope located inside of the pseudovirion capsid accessible after uncoating. Fluorescence of L1-7-positive pixels was normalized to the cell nucleus signal (Hoechst staining) and expressed as % of untreated. n.d., not detectable or TCID50<1. * significant difference (p<0.05) as compared to “No treatment”.
Figure 6. Effect of virus or cell…
Figure 6. Effect of virus or cell preincubation with Hamamelis extracts or individual compounds.
(A–B) Preincubation of pandemic H1N1 A/Lux/46/2009 for 2 h with virus growth medium (“no treatment”) or bark extract/UF-fractions (A) or individual compounds (B) before infection of A549 cells (MOI 0.1) and titration 24 h post infection (p.i.). (C–D) Preincubation of A549 cells for 2 h with virus growth medium (“no treatment”) or bark extract/UF-fractions (C) or single compounds (D) before three washes with PBS, infection with pandemic H1N1 (MOI 0.1) and titration 24 h p.i. All experiments were done in at least triplicates. * significant difference (p<0.05) as compared to “No treatment”.
Figure 7. Determination of possible cytotoxicity or…
Figure 7. Determination of possible cytotoxicity or unspecific host cell receptor inhibition.
(A) Cell metabolic activity after 24 h of incubation of A549 cells with DMSO (no treatment), 2.5 µM of staurosporine, 10 µg/ml of UF-concentrate or 50 µg/ml of the remaining drugs was determined in triplicates using XTT assay. Optical density (OD) was determined at 450 nm after background (650 nm) subtraction and expressed as % of the untreated samples. (B) Caspase 3/7 activity after 24 h of A549 cell incubation with DMSO (no treatment), 2.5 µM of staurosporine, 10 µg/ml of UF-concentrate or 50 µg/ml of the remaining drugs was assayed in at least triplicates using detection of a luminogenic caspase 3/7 cleavage product. (C) A549 cells were infected in triplicates with adenovirus type 5 (MOI of 0.05) and simultaneously treated with UF-concentrate. TCID50 was determined at 24 h post infection. (D) Interference of the drugs with cellular TNF-α signaling. A549 cells were preincubated for 30 or 0 minutes (“Preinc.”+or −, respectively) with 50 µg/ml of bark extract (“Bark”) or UF-concentrate (“UF-c”). Then, 0 or 30 ng/ml TNF-α were and 15 minutes later, total proteins were extracted. IκB-α and the loading control β-actin were detected on a Western blot using specific primary and Cy-5 and Cy-3 labeled secondary antibodies. * significantly elevated caspase expression (p<0.05) as compared to “No treatment”.

References

    1. World Health Organization (2009) Fact sheet influenza (seasonal). Available: . Accessed 14 February 2013.
    1. Centers for Disease Control and Prevention (2012) Update: Influenza Activity – United States, 2011–12 Season and Composition of the 2012–13 Influenza Vaccine. MMWR Morb Mortal Wkly Rep 61: 414–420.
    1. Baz M, Abed Y, Papenburg J, Bouhy X, Hamelin ME, et al. (2009) Emergence of oseltamivir-resistant pandemic H1N1 virus during prophylaxis. N Engl J Med 361: 2296–2297 doi:
    1. Gaur AH, Bagga B, Barman S, Hayden R, Lamptey A, et al. (2010) Intravenous zanamivir for oseltamivir-resistant 2009 H1N1 influenza. N Engl J Med 362: 88–89 doi:
    1. Van der Vries E, Stelma FF, Boucher CAB (2010) Emergence of a multidrug-resistant pandemic influenza A (H1N1) virus. N Engl J Med 363: 1381–1382 doi:
    1. Lackenby A, Moran Gilad J, Pebody R, Miah S, Calatayud L, et al. (2011) Continued emergence and changing epidemiology of oseltamivir-resistant influenza A(H1N1)2009 virus, United Kingdom, winter 2010/11. Eurosurveillance 16: 1–6.
    1. Hurt AC, Hardie K, Wilson NJ, Deng YM, Osbourn M, et al. (2011) Community transmission of oseltamivir-resistant A(H1N1)pdm09 influenza. N Engl J Med 365: 2541–2542 doi:
    1. Manhart LE, Koutsky LA (2002) Do condoms prevent genital HPV infection, external genital warts, or cervical neoplasia? A meta-analysis. Sex Transm Dis 29: 725–735.
    1. Chelimo C, Wouldes TA, Cameron LD, Elwood JM (2013) Risk factors for and prevention of human papillomaviruses (HPV), genital warts and cervical cancer. J Infect 66: 207–217 doi:
    1. Repp KK, Nielson CM, Fu R, Schafer S, Lazcano-Ponce E, et al. (2012) Male human papillomavirus prevalence and association with condom use in Brazil, Mexico, and the United States. J Infect Dis 205: 1287–1293 doi:
    1. Winer RL, Hughes JP, Feng Q, O’Reilly S, Kiviat NB, et al. (2006) Condom use and the risk of genital human papillomavirus infection in young women. N Engl J Med 354: 2645–2654 doi:
    1. Nielson CM, Harris RB, Nyitray AG, Dunne EF, Stone KM, et al. (2010) Consistent condom use is associated with lower prevalence of human papillomavirus infection in men. J Infect Dis 202: 445–451 doi:
    1. Buck CB, Thompson CD, Roberts JN, Müller M, Lowy DR, et al. (2006) Carrageenan is a potent inhibitor of papillomavirus infection. PLoS Pathog 2: e69 doi:
    1. Roberts JN, Buck CB, Thompson CD, Kines R, Bernardo M, et al. (2007) Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by carrageenan. Nat Med 13: 857–861 doi:
    1. Selinka HC, Florin L, Patel HD, Freitag K, Schmidtke M, et al. (2007) Inhibition of transfer to secondary receptors by heparan sulfate-binding drug or antibody induces noninfectious uptake of human papillomavirus. J Virol 81: 10970–10980 doi:
    1. Buck CB, Day PM, Thompson CD, Lubkowski J, Lu W, et al. (2006) Human alpha-defensins block papillomavirus infection. Proc Natl Acad Sci U S A 103: 1516–1521 doi:
    1. Spoden GA, Besold K, Krauter S, Plachter B, Hanik N, et al. (2012) Polyethylenimine is a strong inhibitor of human papillomavirus and cytomegalovirus infection. Antimicrob Agents Chemother 56: 75–82 doi:
    1. Mi X, Chai W, Zheng H, Zuo YG, Li J (2011) A randomized clinical comparative study of cryotherapy plus photodynamic therapy vs. cryotherapy in the treatment of multiple condylomata acuminata. Photodermatol Photoimmunol Photomed 27: 176–180 doi:
    1. Mistrangelo M, Cornaglia S, Pizzio M, Rimonda R, Gavello G, et al. (2010) Immunostimulation to reduce recurrence after surgery for anal condyloma acuminata: a prospective randomized controlled trial. Colorectal Dis 12: 799–803 doi:
    1. Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12: 564–582.
    1. Wagner H (1999) Pharmazeutische Biologie Band 2; Arzneidrogen und ihre Inhaltsstoffe. Stuttgart: Wissenschaftliche Verlagsgesellschaft Stuttgart.
    1. Sarni-Manchado P, Cheynier V, Moutounet M (1999) Interactions of grape seed tannins with salivary proteins. J Agric Food Chem 47: 42–47.
    1. Hagerman AE (1992) Tannin-protein interactions. ACS Symp Ser 506: 236–247 doi:
    1. Frazier RA, Deaville ER, Green RJ, Stringano E, Willoughby I, et al. (2010) Interactions of tea tannins and condensed tannins with proteins. J Pharm Biomed Anal 51: 490–495 doi:
    1. Li M, Hagerman AE (2013) Interactions between plasma proteins and naturally occurring polyphenols. Curr Drug Metab 14: 432–445.
    1. Haslam E (1996) Natural polyphenols (vegetable tannins) as drugs: possible modes of action. J Nat Prod 59: 205–215 doi:+
    1. Jöbstl E, Howse JR, Fairclough JP, Williamson MP (2006) Noncovalent cross-linking of casein by epigallocatechin gallate characterized by single molecule force microscopy. J Agric Food Chem 54: 4077–4081 doi:
    1. Williamson MP, McCormick TG, Nance CL, Shearer WT (2006) Epigallocatechin gallate, the main polyphenol in green tea, binds to the T-cell receptor, CD4: Potential for HIV-1 therapy. J Allergy Clin Immunol 118: 1369–1374 doi:
    1. Haslam E (2007) Vegetable tannins - lessons of a phytochemical lifetime. Phytochemistry 68: 2713–2721 doi:
    1. Janecki A, Conrad A, Engels I, Frank U, Kolodziej H (2011) Evaluation of an aqueous-ethanolic extract from Pelargonium sidoides (EPs® 7630) for its activity against group A-streptococci adhesion to human HEp-2 epithelial cells. J Ethnopharmacol 133: 147–152 doi:
    1. Theisen LL, Muller CP (2012) EPs® 7630 (Umckaloabo®), an extract from Pelargonium sidoides roots, exerts anti-influenza virus activity in vitro and in vivo. Antiviral Res 94: 147–156 doi:
    1. Hull Vance S, Tucci M, Benghuzzi H (2011) Evaluation of the antimicrobial efficacy of green tea extract (egcg) against streptococcus pyogenes in vitro - biomed 2011. Biomed Sci Instrum 47: 177–182.
    1. Ikigai H, Nakae T, Hara Y, Shimamura T (1993) Bactericidal catechins damage the lipid bilayer. Biochim Biophys Acta 1147: 132–136.
    1. Ciesek S, von Hahn T, Colpitts CC, Schang LM, Friesland M, et al. (2011) The green tea polyphenol, epigallocatechin-3-gallate, inhibits hepatitis C virus entry. Hepatology 54: 1947–1955 doi:
    1. Nance CL, Shearer WT (2003) Is green tea good for HIV-1 infection? J Allergy Clin Immunol 112: 851–853 doi:
    1. Song JM, Lee KH, Seong BL (2005) Antiviral effect of catechins in green tea on influenza virus. Antivir Res 68: 66–74 doi:[]
    1. Carson RS, Frisch AW (1953) The inactivation of influenza viruses by tannic acid and related compounds. J Bacteriol 66: 572–575.
    1. Liu G, Xiong S, Xiang YF, Guo CW, Ge F, et al. (2011) Antiviral activity and possible mechanisms of action of pentagalloylglucose (PGG) against influenza A virus. Arch Virol 156: 1359–1369 doi:
    1. Deters A, Dauer A, Schnetz E, Fartasch M, Hensel A (2001) High molecular compounds (polysaccharides and proanthocyanidins) from Hamamelis virginiana bark: influence on human skin keratinocyte proliferation and differentiation and influence on irritated skin. Phytochemistry 58: 949–958.
    1. Laux P, Oschmann R (1993) Die Zaubernuss - Hamamelis virginiana L. Zeitschrift für Phyther. 14: 155–166.
    1. Wolff HH, Kieser M (2007) Hamamelis in children with skin disorders and skin injuries: results of an observational study. Eur J Pediatr 166: 943–948 doi:
    1. MacKay D (2001) Hemorrhoids and varicose veins: a review of treatment options. Altern Med Rev 6: 126–140.
    1. Dauer A, Metzner P, Schimmer O (1998) Proanthocyanidins from the bark of Hamamelis virginiana exhibit antimutagenic properties against nitroaromatic compounds. Planta Med 64: 324–327 doi:
    1. Pereira da Silva A, Rocha R, Silva CM, Mira L, Duarte MF, et al. (2000) Antioxidants in medicinal plant extracts. A research study of the antioxidant capacity of Crataegus, Hamamelis and Hydrastis. Phytother Res 14: 612–616.
    1. Touriño S, Lizárraga D, Carreras A, Lorenzo S, Ugartondo V, et al. (2008) Highly galloylated tannin fractions from witch hazel (Hamamelis virginiana) bark: electron transfer capacity, in vitro antioxidant activity, and effects on skin-related cells. Chem Res Toxicol 21: 696–704 doi:
    1. European Medicines Agency (2009) Assessment report on Hamamelis virginiana L., cortex, Hamamelis virginiana L. folium, Hamamelis virginiana L., folium et cortex aut ramunculus destillatum. EMA/HMPC/1.
    1. Erdelmeier CA, Cinatl J, Rabenau H, Doerr HW, Biber A, et al. (1996) Antiviral and antiphlogistic activities of Hamamelis virginiana bark. Planta Med 62: 241–245 doi:
    1. Dauer A, Rimpler H, Hensel A (2003) Polymeric proanthocyanidins from the bark of Hamamelis virginiana. Planta Med 69: 89–91 doi:
    1. González MJ, Torres JL, Medina I (2010) Impact of thermal processing on the activity of gallotannins and condensed tannins from Hamamelis virginiana used as functional ingredients in seafood. J Agric Food Chem 58: 4274–4283 doi:
    1. Sánchez-Tena S, Fernández-Cachón ML, Carreras A, Mateos-Martín ML, Costoya N, et al. (2012) Hamamelitannin from witch hazel (Hamamelis virginiana) displays specific cytotoxic activity against colon cancer cells. J Nat Prod 75: 26–33 doi:
    1. Vennat B, Pourrat H, Pouget MP, Gross D, Pourrat A (1988) Tannins from Hamamelis virginiana: identification of proanthocyanidins and hamamelitannin quantification in leaf, bark, and stem extracts. Planta Med 54: 454–457 doi:
    1. Wang H, Provan GJ, Helliwell K (2003) Determination of hamamelitannin, catechins and gallic acid in witch hazel bark, twig and leaf by HPLC. J Pharm Biomed Anal 33: 539–544 doi:
    1. Takeda M, Ohno S, Seki F, Nakatsu Y, Tahara M, et al. (2005) Long untranslated regions of the measles virus M and F genes control virus replication and cytopathogenicity. J Virol 79: 14346–14354 doi:
    1. Ono N, Tatsuo H, Hidaka Y, Aoki T, Minagawa H, et al. (2001) Measles viruses on throat swabs from measles patients use signaling lymphocytic activation molecule (CDw150) but not CD46 as a cellular receptor. J Virol 75: 4399–4401 doi:
    1. Kittel C, Sereinig S, Ferko B, Stasakova J, Romanova J, et al. (2004) Rescue of influenza virus expressing GFP from the NS1 reading frame. Virology 324: 67–73 doi:[]
    1. Buck CB, Pastrana DV, Lowy DR, Schiller JT (2004) Efficient intracellular assembly of papillomaviral vectors. J Virol 78: 751–757 doi:
    1. Schneider MA, Spoden GA, Florin L, Lambert C (2011) Identification of the dynein light chains required for human papillomavirus infection. Cell Microbiol 13: 32–46 doi:
    1. Ainsworth EA, Gillespie KM (2007) Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat Protoc 2: 875–877 doi:
    1. European Directorate for the Quality of Medicines & Healthcare (2008) Bestimmung des Gerbstoffgehalts pflanzlicher Drogen. European Pharmacopoeia 6.0. p.328.
    1. Bate-Smith E (1975) Phytochemistry of proanthocyanidins. Phytochemistry 14: 1107–1113.
    1. Ehrhardt C, Hrincius ER, Korte V, Mazur I, Droebner K, et al. (2007) A polyphenol rich plant extract, CYSTUS052, exerts anti influenza virus activity in cell culture without toxic side effects or the tendency to induce viral resistance. Antiviral Res 76: 38–47 doi:
    1. Knappe M, Bodevin S, Selinka HC, Spillmann D, Streeck RE, et al. (2007) Surface-exposed amino acid residues of HPV16 L1 protein mediating interaction with cell surface heparan sulfate. J Biol Chem 282: 27913–27922 doi:
    1. Spoden G, Freitag K, Husmann M, Boller K, Sapp M, et al. (2008) Clathrin- and caveolin-independent entry of human papillomavirus type 16–involvement of tetraspanin-enriched microdomains (TEMs). PLoS One 3: e3313 doi:
    1. Scheffer KD, Gawlitza A, Spoden GA, Zhang XA, Lambert C, et al. (2013) Tetraspanin CD151 Mediates Papillomavirus Type 16 Endocytosis. J Virol 87: 3435–3446 doi:
    1. Sapp M, Kraus U, Volpers C, Snijders PJ, Walboomers JM, et al. (1994) Analysis of type-restricted and cross-reactive epitopes on virus-like particles of human papillomavirus type 33 and in infected tissues using monoclonal antibodies to the major capsid protein. J Gen Virol 75 (Pt 12: 3375–3383.
    1. Ueda K, Kawabata R, Irie T, Nakai Y, Tohya Y, et al. (2013) Inactivation of pathogenic viruses by plant-derived tannins: strong effects of extracts from persimmon (Diospyros kaki) on a broad range of viruses. PLoS One 8: e55343 doi:
    1. Mantani N, Andoh T, Kawamata H, Terasawa K, Ochiai H (1999) Inhibitory effect of Ephedrae herba, an oriental traditional medicine, on the growth of influenza A/PR/8 virus in MDCK cells. Antiviral Res 44: 193–200.
    1. Lin LT, Chen TY, Lin SC, Chung CY, Lin TC, et al. (2013) Broad-spectrum antiviral activity of chebulagic acid and punicalagin against viruses that use glycosaminoglycans for entry. BMC Microbiol 13: 187 doi:
    1. Hamilton BS, Whittaker GR, Daniel S (2012) Influenza virus-mediated membrane fusion: determinants of hemagglutinin fusogenic activity and experimental approaches for assessing virus fusion. Viruses 4: 1144–1168 doi:
    1. Seto JT, Rott R (1966) Functional significance of sialidose during influenza virus multiplication. Virology 30: 731–737.
    1. Betts JW, Kelly SM, Haswell SJ (2011) Antibacterial effects of theaflavin and synergy with epicatechin against clinical isolates of Acinetobacter baumannii and Stenotrophomonas maltophilia. Int J Antimicrob Agents 38: 421–425 doi:
    1. Sasaki H, Matsumoto M, Tanaka T, Maeda M, Nakai M, et al. (2004) Antibacterial activity of polyphenol components in oolong tea extract against Streptococcus mutans. Caries Res 38: 2–8 doi:
    1. Takechi M, Tanaka Y, Takehara M, Nonaka G, Nishioka I (1985) Structure and antiherpetic activity among the tannins. Phytochemistry 24: 2245–2250.
    1. Gescher K, Hensel A, Hafezi W, Derksen A, Kuhn J (2011) Oligomeric proanthocyanidins from Rumex acetosa L. inhibit the attachment of herpes simplex virus type-1. Antivir Res 89: 9–18 doi:[]
    1. Nakayama M, Suzuki K, Toda M, Okubo S, Hara Y, et al. (1993) Inhibition of the infectivity of influenza virus by tea polyphenols. Antiviral Res 21: 289–299.
    1. Steinmann J, Buer J, Pietschmann T, Steinmann E (2012) Anti-infective properties of Epigallocatechin-3-gallate (EGCG), a component of Green Tea. Br J Pharmacol. doi:10.1111/bph.12009.
    1. Haidari M, Ali M, Ward Casscells S 3rd, Madjid M (2009) Pomegranate (Punica granatum) purified polyphenol extract inhibits influenza virus and has a synergistic effect with oseltamivir. Phytomedicine 16: 1127–1136 doi:[]
    1. Imanishi N, Tuji Y, Katada Y, Maruhashi M, Konosu S, et al. (2002) Additional inhibitory effect of tea extract on the growth of influenza A and B viruses in MDCK cells. Microbiol Immunol 46: 491–494.
    1. Hashimoto T, Kumazawa S, Nanjo F, Hara Y, Nakayama T (1999) Interaction of tea catechins with lipid bilayers investigated with liposome systems. Biosci Biotechnol Biochem 63: 2252–2255.
    1. Kratz JM, Andrighetti-Fröhner CR, Kolling DJ, Leal PC, Cirne-Santos CC, et al. (2008) Anti-HSV-1 and anti-HIV-1 activity of gallic acid and pentyl gallate. Mem Inst Oswaldo Cruz 103: 437–442.
    1. Lin LT, Chen TY, Chung CY, Noyce RS, Grindley TB, et al. (2011) Hydrolyzable tannins (chebulagic acid and punicalagin) target viral glycoprotein-glycosaminoglycan interactions to inhibit herpes simplex virus 1 entry and cell-to-cell spread. J Virol 85: 4386–4398 doi:
    1. Cerqueira C, Liu Y, Kühling L, Chai W, Hafezi W, et al. (2013) Heparin increases the infectivity of Human Papillomavirus Type 16 independent of cell surface proteoglycans and induces L1 epitope exposure. Cell Microbiol 15: 1818–1836 doi:
    1. Florin L, Sapp M, Spoden GA (2012) Host-cell factors involved in papillomavirus entry. Med Microbiol Immunol 201: 437–448 doi:
    1. Raff AB, Woodham AW, Raff LM, Skeate JG, Yan L, et al. (2013) The evolving field of human papillomavirus receptor research: a review of binding and entry. J Virol 87: 6062–6072 doi:
    1. Ishii T, Ichikawa T, Minoda K, Kusaka K, Ito S, et al. (2011) Human serum albumin as an antioxidant in the oxidation of (−)-epigallocatechin gallate: participation of reversible covalent binding for interaction and stabilization. Biosci Biotechnol Biochem 75: 100–106 doi:
    1. Minoda K, Ichikawa T, Katsumata T, Onobori K, Mori T, et al. (2010) Influence of the galloyl moiety in tea catechins on binding affinity for human serum albumin. J Nutr Sci Vitaminol (Tokyo) 56: 331–334.
    1. Kimmel EM, Jerome M, Holderness J, Snyder D, Kemoli S, et al. (2011) Oligomeric procyanidins stimulate innate antiviral immunity in dengue virus infected human PBMCs. Antiviral Res 90: 80–86 doi:

Source: PubMed

3
Abonneren