Postural control in Chiari I malformation: protocol for a paediatric prospective, observational cohort - potential role of posturography for surgical indication

Irene Stella, Thomas Remen, Arthur Petel, Anthony Joud, Olivier Klein, Philippe Perrin, Irene Stella, Thomas Remen, Arthur Petel, Anthony Joud, Olivier Klein, Philippe Perrin

Abstract

Introduction: Chiari I malformation (CM1) is an anatomical abnormality characterised by the cerebellar tonsils descending at least 5 mm below the foramen magnum. CM1 causes obstruction of cerebrospinal fluid (CSF) circulation as well as direct compression on the brainstem, thus causing typical consequences (syringomyelia), and typical clinical features (characteristic headaches and neurological impairment). Surgery is the only available treatment, indicated when symptomatology is present. However, sometimes patients have atypical complaints, which are often suggestive of otolaryngological (ears, nose and throat, ENT) involvement. This may be difficult for a neurosurgeon to explain. Our study aims to investigate the relationship between one of these atypical symptoms, for example, postural instability, in a paediatric population using a Computerised Dynamic Posturography (Equitest, NeuroCom, Clackamas, OR). To our knowledge, there are no previously published studies carried out on children with CM1, using dynamic posturography.

Methods and analysis: Forty-five children aged 6-18 years old presenting with radiologically confirmed CM1 and presenting ENT clinical complaints will be included in the study for a duration of 3 years. As primary endpoint, posturographic results will be described in the population study. Second, posturographic results will be compared between patients with and without indication for surgery. Finally, preoperative and postoperative posturographic results, as well as CSF circulation quality at foramen magnum level, syringomyelia, sleep apnoea syndrome, scoliosis and behaviour will be compared in the operated patient group.

Ethics and dissemination: This protocol received ethical approval from the Clinical Research Delegation of Nancy University Hospital, in accordance with the National Commission on Informatics and Liberties (Commission Nationale de l'Informatique et des Libertés) (protocol number 2019PI256-107). Our data treatment was in accordance with the Methodology of reference Methodology Reference-004 specification for data policy. The study findings will be disseminated via peer-reviewed publications and conference presentations, especially to the Neurosphynx's rare disease healthcare network.

Trial registration number: NCT04679792; Pre-results.

Keywords: Neurotology; Paediatric neurosurgery; Paediatric otolaryngology.

Conflict of interest statement

Competing interests: None declared.

© Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

Figures

Figure 1
Figure 1
Decision making flow chart for management of CM1 patients. CM1, Chiari I malformation.
Figure 2
Figure 2
Posturographic results (Equitest, NeuroCom, Clackamas, or) in one of operated patients. Sensory Organisation Test: the composite equilibrium score increased from 68 before surgery (figure 2A) to 77 after surgery (figure 2B). Somatosensory (SOM), visual (VIS) and vestibular (VEST) ratios increased, respectively, from 90 to 96, 85 to 91 and 51 to 60 before to after the surgery.

References

    1. Raybaud C, Jallo GI. Chiari 1 deformity in children: etiopathogenesis and radiologic diagnosis. Handb Clin Neurol 2018;155:25–48. 10.1016/B978-0-444-64189-2.00002-0
    1. Meadows J, Kraut M, Guarnieri M, et al. . Asymptomatic Chiari type I malformations identified on magnetic resonance imaging. J Neurosurg 2000;92:920–6. 10.3171/jns.2000.92.6.0920
    1. Chatrath A, Marino A, Taylor D, et al. . Chiari I malformation in children-the natural history. Childs Nerv Syst 2019;35:1793–9. 10.1007/s00381-019-04310-0
    1. Tulpius N. Observationes medicae. Lugduni Batavorum [Leiden]. Joh. du Vivie 1716; RACS Catalogue No.: C 474.
    1. Chiari H. Concerning alterations in the cerebellum resulting from cerebral hydrocephalus. 1891. Pediatr Neurosci 1987;13:3–8. 10.1159/000120293
    1. Chiari H. Über Veränderungen des Kleinhirns, des pons und Der medulla oblongata in Folge von congenitaler Hydrocephalie des Grosshirns. Denkschr Kais Akad Wiss 1896;63:71–116.
    1. Piper RJ, Afshari FT, Soon WC, et al. . Uk Chiari 1 study: protocol for a prospective, observational, multicentre study. BMJ Open 2021;11:e043712. 10.1136/bmjopen-2020-043712
    1. Piper RJ, Pike M, Harrington R, et al. . Chiari malformations: principles of diagnosis and management. BMJ 2019;365:l1159. 10.1136/bmj.l1159
    1. Steinbok P. Clinical features of Chiari I malformations. Childs Nerv Syst 2004;20:329–31. 10.1007/s00381-003-0879-x
    1. Fernández AA, Guerrero AI, Martínez MI, et al. . Malformations of the craniocervical junction (Chiari type I and syringomyelia: classification, diagnosis and treatment). BMC Musculoskelet Disord 2009;10 Suppl 1:S1. 10.1186/1471-2474-10-S1-S1
    1. Kahn EN, Muraszko KM, Maher CO. Prevalence of Chiari I malformation and syringomyelia. Neurosurg Clin N Am 2015;26:501–7. 10.1016/j.nec.2015.06.006
    1. Alexander H, Tsering D, Myseros JS, et al. . Management of Chiari I malformations: a paradigm in evolution. Child's Nervous System 2019;35:1809–26. 10.1007/s00381-019-04265-2
    1. Novegno F. Clinical diagnosis-part II: what is attributed to Chiari I. Childs Nerv Syst 2019;35:1681–93. 10.1007/s00381-019-04192-2
    1. Saez RJ, Onofrio BM, Yanagihara T. Experience with Arnold-Chiari malformation, 1960 to 1970. J Neurosurg 1976;45:416–22. 10.3171/jns.1976.45.4.0416
    1. Milhorat TH, Chou MW, Trinidad EM, et al. . Chiari I malformation redefined: clinical and radiographic findings for 364 symptomatic patients. Neurosurgery 1999;44:1005–17. 10.1097/00006123-199905000-00042
    1. Langridge B, Phillips E, Choi D. Chiari malformation type 1: a systematic review of natural history and conservative management. World Neurosurg 2017;104:213–9. 10.1016/j.wneu.2017.04.082
    1. Jarski P, Zimny M, Linart M, et al. . Results of the surgical treatment in children with Chiari malformation type I. Child's Nervous System 2019;35:1911–4. 10.1007/s00381-019-04247-4
    1. Hersh DS, Groves ML, Boop FA. Management of Chiari malformations: opinions from different centers-a review. Childs Nerv Syst 2019;35:1869–73. 10.1007/s00381-019-04176-2
    1. Rydell RE, Pulec JL. Arnold-Chiari malformation. neuro-otologic symptoms. Arch Otolaryngol 1971;94:8–12. 10.1001/archotol.1971.00770070044002
    1. Spooner JW, Baloh RW. Arnold-Chiari malformation: improvement in eye movements after surgical treatment. Brain 1981;104:51–60. 10.1093/brain/104.1.51
    1. Longridge NS, Mallinson AI. Arnold-Chiari malformation and the otolaryngologist: place of magnetic resonance imaging and electronystagmography. Laryngoscope 1985;95:335–9.
    1. Zimmerman CF, Roach ES, Troost BT. See-Saw nystagmus associated with Chiari malformation. Arch Neurol 1986;43:299–300. 10.1001/archneur.1986.00520030085024
    1. Mossman SS, Bronstein AM, Gresty MA, et al. . Convergence nystagmus associated with Arnold-Chiari malformation. Arch Neurol 1990;47:357–9. 10.1001/archneur.1990.00530030139030
    1. Albers FW, Ingels KJ. Otoneurological manifestations in Chiari-I malformation. J Laryngol Otol 1993;107:441–3. 10.1017/S0022215100123370
    1. Ahmmed AU, Mackenzie I, Das VK, et al. . Audio-vestibular manifestations of Chiari malformation and outcome of surgical decompression: a case report. J Laryngol Otol 1996;110:1060–4. 10.1017/S0022215100135753
    1. Sperling NM, Franco RA, Milhorat TH. Otologic manifestations of Chiari I malformation. Otol Neurotol 2001;22:678–81. 10.1097/00129492-200109000-00020
    1. Naya Gálvez MJ, Fraile Rodrigo JJ, Liesa RF, et al. . Otorhinolaryngologic manifestations in Chiari malformation. Am J Otolaryngol 2002;23:99–104. 10.1053/ajot.2002.30635
    1. Simons JP, Ruscetta MN, Chi DH. Sensorineural hearing impairment in children with Chiari I malformation. Ann Otol Rhinol Laryngol 2008;117:443–7. 10.1177/000348940811700607
    1. Korres S, Balatsouras DG, Zournas C, et al. . Periodic alternating nystagmus associated with Arnold-Chiari malformation. J Laryngol Otol 2001;115:1001–4. 10.1258/0022215011909602
    1. Kumar A, Patni AH, Charbel F. The Chiari I malformation and the neurotologist. Otol Neurotol 2002;23:727–35. 10.1097/00129492-200209000-00021
    1. Al-Awami A, Flanders ME, Andermann F, et al. . Resolution of periodic alternating nystagmus after decompression for Chiari malformation. Can J Ophthalmol 2005;40:778–80. 10.1016/S0008-4182(05)80101-2
    1. Liebenberg WA, Georges H, Demetriades AK, et al. . Does posterior fossa decompression improve oculomotor and vestibulo-ocular manifestations in Chiari 1 malformation? Acta Neurochir 2005;147:1239–40. 10.1007/s00701-005-0612-5
    1. Unal M, Bagdatoglu C. Arnold-Chiari type I malformation presenting as benign paroxysmal positional vertigo in an adult patient. J Laryngol Otol 2007;121:296–8. 10.1017/S0022215106003082
    1. Guerra Jiménez G, Mazón Gutiérrez Ángel, Marco de Lucas E, et al. . Audio-vestibular signs and symptoms in Chiari malformation type I. Case series and literature review. Acta Otorrinolaringol Esp 2015;66:28–35. 10.1016/j.otoeng.2014.05.019
    1. Nashner LM, Black FO, Wall C. Adaptation to altered support and visual conditions during stance: patients with vestibular deficits. J Neurosci 1982;2:536–44. 10.1523/JNEUROSCI.02-05-00536.1982
    1. Forssberg H, Nashner LM. Ontogenetic development of postural control in man: adaptation to altered support and visual conditions during stance. J Neurosci 1982;2:545–52. 10.1523/JNEUROSCI.02-05-00545.1982
    1. Shumway-Cook A, Woollacott MH. The growth of stability: postural control from a development perspective. J Mot Behav 1985;17:131–47. 10.1080/00222895.1985.10735341
    1. Hsu Y-S, Kuan C-C, Young Y-H. Assessing the development of balance function in children using stabilometry. Int J Pediatr Otorhinolaryngol 2009;73:737–40. 10.1016/j.ijporl.2009.01.016
    1. Hirabayashi S, Iwasaki Y. Developmental perspective of sensory organization on postural control. Brain Dev 1995;17:111–3. 10.1016/0387-7604(95)00009-Z
    1. Barozzi S, Socci M, Soi D, et al. . Reliability of postural control measures in children and young adolescents. Eur Arch Otorhinolaryngol 2014;271:2069–77. 10.1007/s00405-014-2930-9
    1. Rine RM, Rubish K, Feeney C. Measurement of sensory system effectiveness and maturational changes in postural control in young children. Pediatr Phys Ther 1998;10:16???22–22. 10.1097/00001577-199801010-00004
    1. Sinno S, Dumas G, Mallinson A, et al. . Changes in the sensory weighting strategies in balance control throughout maturation in children. J Am Acad Audiol 2021;32:122–36. 10.1055/s-0040-1718706
    1. Palamar D, Güler H, Hancı M, et al. . Posturographic examination of body balance in patients with Chiari type I malformation and correlation with the presence of syringomyelia and degree of cerebellar ectopia. Turk J Phys Med Rehabil 2019;65:74–9. 10.5606/tftrd.2019.2003
    1. Perrin P, Mallinson A, Van Nechel C, et al. . Defining Clinical-Posturographic and Intra-Posturographic Discordances: what do these two concepts mean? J Int Adv Otol 2018;14:127–9. 10.5152/iao.2018.4349
    1. Black FO, Paloski WH, Doxey-Gasway DD, et al. . Vestibular plasticity following orbital spaceflight: recovery from postflight postural instability. Acta Otolaryngol Suppl 1995;520 Pt 2:450–4. 10.3109/00016489509125296
    1. Nashner LM. Computerized dynamic posturography. In: Jacobson GP, Newman CW, Kartush JM, eds. Handbook of balance function testing. London: Thompson Learning, 1997.
    1. Kingma H, Gauchard GC, de Waele C, et al. . Stocktaking on the development of posturography for clinical use. J Vestib Res 2011;21:117–25. 10.3233/VES-2011-0397
    1. Haumont T, Gauchard GC, Lascombes P, et al. . Postural instability in early-stage idiopathic scoliosis in adolescent girls. Spine 2011;36:E847–54. 10.1097/BRS.0b013e3181ff5837
    1. Lion A, Haumont T, Gauchard GC, et al. . Visuo-oculomotor deficiency at early-stage idiopathic scoliosis in adolescent girls. Spine 2013;38:238–44. 10.1097/BRS.0b013e31826a3b05
    1. Paloski WH, Wood SJ, Feiveson AH, et al. . Destabilization of human balance control by static and dynamic head tilts. Gait Posture 2006;23:315–23. 10.1016/j.gaitpost.2005.04.009
    1. Honaker JA, Converse CM, Shepard NT. Modified head shake computerized dynamic posturography. Am J Audiol 2009;18:108–13. 10.1044/1059-0889
    1. Mishra A, Davis S, Speers R, et al. . Head shake computerized dynamic posturography in peripheral vestibular lesions. Am J Audiol 2009;18:53–9. 10.1044/1059-0889
    1. Honaker JA, Janky KL, Patterson JN, et al. . Modified head shake sensory organization test: sensitivity and specificity. Gait Posture 2016;49:67–72. 10.1016/j.gaitpost.2016.06.024
    1. Nashner LM, McCollum G. The organization of human postural movements: a formal basis and experimental synthesis. Behav Brain Sci 1985;8:135–50. 10.1017/S0140525X00020008
    1. Perrin P, Deviterne D, Hugel F, et al. . Judo, better than dance, develops sensorimotor adaptabilities involved in balance control. Gait Posture 2002;15:187–94. 10.1016/S0966-6362(01)00149-7
    1. Duchene Y, Mornieux G, Petel A, et al. . The trunk's contribution to postural control under challenging balance conditions. Gait Posture 2021;84:102–7. 10.1016/j.gaitpost.2020.11.020
    1. Lion A, Bosser G, Gauchard GC, et al. . Exercise and dehydration: a possible role of inner ear in balance control disorder. J Electromyogr Kinesiol 2010;20:1196–202. 10.1016/j.jelekin.2010.07.016

Source: PubMed

3
Abonneren