Amyloid positron emission tomography and cerebrospinal fluid results from a crenezumab anti-amyloid-beta antibody double-blind, placebo-controlled, randomized phase II study in mild-to-moderate Alzheimer's disease (BLAZE)

Stephen Salloway, Lee A Honigberg, William Cho, Michael Ward, Michel Friesenhahn, Flavia Brunstein, Angelica Quartino, David Clayton, Deborah Mortensen, Tobias Bittner, Carole Ho, Christina Rabe, Stephen P Schauer, Kristin R Wildsmith, Reina N Fuji, Shehnaaz Suliman, Eric M Reiman, Kewei Chen, Robert Paul, Stephen Salloway, Lee A Honigberg, William Cho, Michael Ward, Michel Friesenhahn, Flavia Brunstein, Angelica Quartino, David Clayton, Deborah Mortensen, Tobias Bittner, Carole Ho, Christina Rabe, Stephen P Schauer, Kristin R Wildsmith, Reina N Fuji, Shehnaaz Suliman, Eric M Reiman, Kewei Chen, Robert Paul

Abstract

Background: We investigated the effect of crenezumab, a humanized anti-amyloid-beta (Aβ) immunoglobulin (Ig)G4 monoclonal antibody, on biomarkers of amyloid pathology, neurodegeneration, and disease progression in patients with mild-to-moderate Alzheimer's disease (AD).

Methods: This double-blind, placebo-controlled, randomized phase II study enrolled patients with mild-to-moderate AD and a Mini-Mental State Examination (MMSE) score of 18-26. In part 1 of the study, patients were 2:1 randomized to receive low-dose subcutaneous (SC) 300 mg crenezumab every 2 weeks (q2w) or placebo for 68 weeks; in part 2, patients were 2:1 randomized to receive high-dose intravenous (IV) 15 mg/kg crenezumab every 4 weeks (q4w) or placebo for 68 weeks. The primary endpoint was change in amyloid burden from baseline to week 69 assessed by florbetapir positron emission tomography (PET) in the modified intent-to-treat population. Secondary endpoints were change from baseline to week 69 in cerebrospinal fluid (CSF) biomarkers and fluorodeoxyglucose PET, and change from baseline to week 73 in 12-point Alzheimer's Disease Assessment Scale cognitive subscale (ADAS-Cog12) and Clinical Dementia Rating Sum of Boxes (CDR-SB). Safety was assessed in patients who received at least one dose of study treatment.

Results: From August 2011 to September 2012, 91 patients were enrolled and randomized (low-dose SC cohort: crenezumab (n = 26) or placebo (n = 13); high-dose IV cohort: crenezumab (n = 36) or placebo (n = 16)). The primary endpoint was not met using a prespecified cerebellar reference region to calculate standard uptake value ratios (SUVRs) from florbetapir PET. Exploratory analyses using subcortical white matter reference regions showed nonsignificant trends toward slower accumulation of plaque amyloid in the high-dose IV cohort. In both cohorts, a significant mean increase from baseline in CSF Aβ(1-42) levels versus placebo was observed. Nonsignificant trends toward ADAS-Cog12 and CDR-SB benefits were identified in a mild (MMSE 20-26) subset of the high-dose IV cohort. No amyloid-related imaging abnormalities due to edema/effusion were observed.

Conclusion: The primary endpoint was not met. Exploratory findings suggest potential Aβ target engagement with crenezumab and possible slower accumulation of plaque amyloid. Studies investigating the effects of higher doses of crenezumab on amyloid load and disease progression are ongoing.

Trial registration: ClinicalTrials.gov, NCT01397578 . Registered on 18 July 2011.

Keywords: Alzheimer’s disease; Antibodies; Biomarkers; Humanized; Monoclonal antibodies; Positron emission tomography.

Conflict of interest statement

Authors’ information

MW, CH, SSu, and RP were employees of Genentech Inc., South San Francisco, CA, USA at the time of the study.

Ethics approval and consent to participate

This study was conducted at 21 sites in the US, one site in Spain, and one site in France. The study protocol was approved by the respective institutional review boards prior to participant recruitment and was conducted in accordance with US Food and Drug Administration regulations, International Council on Harmonization E6 Guideline for Good Clinical Practice, and applicable local, state, federal, and country laws. Written informed consent was obtained for all patients prior to performing study-related procedures in accordance with federal and institutional guidelines.

Consent for publication

Not applicable.

Competing interests

LAH, WC, MW, MF, FB, AQ, DC, DM, TB, CH, CR, SPS, KRW, SSu, RNF, and RP are current or former employees of Genentech (a member of the Roche Group), and own stock or stock options in F. Hoffmann-La Roche. SSa received grants and personal fees from Genentech during the conduct of the study, grants and personal fees from Eli Lilly, Biogen Idec, Merck, and Roche, and grants from Functional Neuromodulation, Avid, and Novartis. EMR received grants from Banner Alzheimer’s Institute during the conduct of the study, and is evaluating crenezumab in the Alzheimer’s Prevention Initiative (API) Autosomal Dominant Alzheimer’s Disease Trial. KC declares that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Study disposition. One patient randomized to placebo received one dose of crenezumab treatment and was therefore included in the crenezumab arm of the safety population. IV intravenous, PET positron emission tomography, q2w every 2 weeks, q4w every 4 weeks, SC subcutaneous
Fig. 2
Fig. 2
Amyloid PET analysis. Analysis of the florbetapir change from baseline using three different methods for the calculation of SUVR: in the cerebellar gray MNI-CB (a,d), BAI-WM (b,e), and MNI-WM (c,f). The primary difference between these methods is the choice of reference region: cerebellar gray matter (SUVRMNI-CB) or subcortical white matter (SUVRMNI-WM and SUVRBAI-WM). The reference regions in both the low-dose SC (a–c) and high-dose IV (d–f) cohorts are shown. BAI Banner Alzheimer’s Institute, BL baseline, Cr crenezumab, Diff difference, IV intravenous, MNI molecular neuroimaging, Pl placebo, SC subcutaneous, SE standard error, SUVR standard uptake value ratio, WM white matter, CB cerebellar
Fig. 3
Fig. 3
CSF biomarkers. Analysis of the change in biomarker levels found in CSF (Aβ(1–42) (a,d), t-tau (b,e), and p-tau (c,f)) in both the low-dose SC (ac) and high-dose IV (df) cohorts. CSF t-tau and p-tau was not analyzed for one patient at week 69. BL baseline, Cr crenezumab, CSF cerebrospinal fluid, Diff difference, IV intravenous, Pl placebo, p-tau phosphorylated tau, SC subcutaneous, SE standard error
Fig. 4
Fig. 4
Aβ(1–40) and Aβ(1–42) plasma concentrations. Mean (±SD) Aβ(1–40) and Aβ(1–42) plasma concentrations following low-dose SC or high-dose IV administration to patients with mild-to-moderate AD (weeks 1–69). beta-amyloid, AD Alzheimer’s Disease, IV intravenous, SC subcutaneous, SD standard deviation
Fig. 5
Fig. 5
ADAS-Cog12. Change from baseline of ADAS-Cog12 score in patients with mild-to-moderate AD (a,c) or mild AD (b,d) in both the low-dose SC (a,b) and the high-dose IV (c,d) cohort. % Red percentage reduction, AD Alzheimer’s disease, ADAS-Cog12 12-point Alzheimer’s Disease Assessment Scale cognitive subscale, BL baseline, Cr crenezumab, Diff difference, IV intravenous, MMSE Mini-Mental State Examination, Pl placebo, SC subcutaneous, SE standard error

References

    1. Karran E, Mercken M, De Strooper B. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov. 2011;10:698–712. doi: 10.1038/nrd3505.
    1. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297:353–356. doi: 10.1126/science.1072994.
    1. Selkoe DJ. The molecular pathology of Alzheimer’s disease. Neuron. 1991;6:487–498. doi: 10.1016/0896-6273(91)90052-2.
    1. Adolfsson O, Pihlgren M, Toni N, Varisco Y, Buccarello AL, Antoniello K, et al. An effector-reduced anti-β-amyloid (Aβ) antibody with unique Aβ binding properties promotes neuroprotection and glial engulfment of Aβ. J Neurosci. 2012;32:9677–9689. doi: 10.1523/JNEUROSCI.4742-11.2012.
    1. Ultsch M, Li B, Maurer T, Mathieu M, Adolfsson O, Muhs A, et al. Structure of crenezumab complex with Aβ shows loss of β-hairpin. Sci Rep. 2016;6:39374. doi: 10.1038/srep39374.
    1. Chen K, Roontiva A, Thiyyagura P, Lee W, Liu X, Ayutyanont N, et al. Improved power for characterizing longitudinal amyloid-β PET changes and evaluating amyloid-modifying treatments with a cerebral white matter reference region. J Nucl Med. 2015;56:560–566. doi: 10.2967/jnumed.114.149732.
    1. Brendel M, Högenauer M, Delker A, Sauerbeck J, Bartenstein P, Seibyl J, et al. Improved longitudinal [(18)F]-AV45 amyloid PET by white matter reference and VOI-based partial volume effect correction. NeuroImage. 2015;108:450–459. doi: 10.1016/j.neuroimage.2014.11.055.
    1. Landau SM, Fero A, Baker SL, Koeppe R, Mintun M, Chen K, et al. Measurement of longitudinal β-amyloid change with 18F-florbetapir PET and standardized uptake value ratios. J Nucl Med. 2015;56:567–574. doi: 10.2967/jnumed.114.148981.
    1. Cummings JL, Cohen S, Van Dyck C, Brody M, Curtis C, Cho W, et al. ABBY: a phase 2 randomized trial of crenezumab in mild-to-moderate Alzheimer’s disease. Neurology. 2018;90:e1889–e1897. doi: 10.1212/WNL.0000000000005550.
    1. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–198. doi: 10.1016/0022-3956(75)90026-6.
    1. O'Bryant SE, Waring SC, Cullum CM, Hall J, Lacritz L, Massman PJ, et al. Staging dementia using clinical dementia rating scale sum of boxes scores: a Texas Alzheimer’s research consortium study. Arch Neurol. 2008;65:1091–1095. doi: 10.1001/archneur.65.8.1091.
    1. Berg L, Miller JP, Baty J, Rubin EH, Morris JC, Figiel G. Mild senile dementia of the Alzheimer type. 4. Evaluation of intervention. Ann Neurol. 1992;31:242–249. doi: 10.1002/ana.410310303.
    1. Sano M, Raman R, Emond J, Thomas RG, Petersen R, Schneider LS, et al. Adding delayed recall to the Alzheimer disease assessment scale is useful in studies of mild cognitive impairment but not Alzheimer disease. Alzheimer Dis Assoc Disord. 2011;25:122–127. doi: 10.1097/WAD.0b013e3181f883b7.
    1. Bittner T, Zetterberg H, Teunissen CE, Ostlund RE, Jr, Militello M, Andreasson U, et al. Technical performance of a novel, fully automated electrochemiluminescence immunoassay for the quantitation of β-amyloid (1-42) in human cerebrospinal fluid. Alzheimers Dement. 2016;12:517–526. doi: 10.1016/j.jalz.2015.09.009.
    1. Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL, et al. Unbiased average age-appropriate atlases for pediatric studies. NeuroImage. 2011;54:313–327. doi: 10.1016/j.neuroimage.2010.07.033.
    1. Coupe P, Fonov V, Eskildsen S, Manjón J, Arnold D, Collins L. Influence of the training library composition on a patch-based label fusion method: application to hippocampus segmentation on the ADNI dataset. Alzheimers Dement. 2011;7:S24. doi: 10.1016/j.jalz.2011.05.108.
    1. Smith SM, Zhang Y, Jenkinson M, Chen J, Matthews PM, Federico A, et al. Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. NeuroImage. 2002;17:479–489. doi: 10.1006/nimg.2002.1040.
    1. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage. 2004;23(Suppl 1):S208–S219. doi: 10.1016/j.neuroimage.2004.07.051.
    1. Rinne JO, Brooks DJ, Rossor MN, Fox NC, Bullock R, Klunk WE, et al. 11C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer's disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol. 2010;9:363–372. doi: 10.1016/S1474-4422(10)70043-0.
    1. Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer's disease. N Engl J Med. 2014;370:322–333. doi: 10.1056/NEJMoa1304839.
    1. Ostrowitzki S, Deptula D, Thurfjell L, Barkhof F, Bohrmann B, Brooks DJ, et al. Mechanism of amyloid removal in patients with Alzheimer disease treated with gantenerumab. Arch Neurol. 2012;69:198–207. doi: 10.1001/archneurol.2011.1538.
    1. Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer's disease. Nature. 2016;537:50–56. doi: 10.1038/nature19323.
    1. Siemers ER, Sundell KL, Carlson C, Case M, Sethuraman G, Liu-Seifert H, et al. Phase 3 solanezumab trials: secondary outcomes in mild Alzheimer's disease patients. Alzheimers Dement. 2016;12:110–120. doi: 10.1016/j.jalz.2015.06.1893.
    1. Ostrowitzki S, Lasser RA, Dorflinger E, Scheltens P, Barkhof F, Nikolcheva T, et al. A phase III randomized trial of gantenerumab in prodromal Alzheimer's disease. Alzheimers Res Ther. 2017;9:95. doi: 10.1186/s13195-017-0318-y.
    1. Shokouhi S, Mckay JW, Baker SL, Kang H, Brill AB, Gwirtsman HE, et al. Reference tissue normalization in longitudinal (18)F-florbetapir positron emission tomography of late mild cognitive impairment. Alzheimers Res Ther. 2016;8:2. doi: 10.1186/s13195-016-0172-3.
    1. Fleisher AS, Joshi AD, Sundell KL, Chen YF, Kollack-Walker S, Lu M, et al. Use of white matter reference regions for detection of change in florbetapir positron emission tomography from completed phase 3 solanezumab trials. Alzheimers Dement. 2017;13:1117–1124. doi: 10.1016/j.jalz.2017.02.009.
    1. Chiao P, Bedell BJ, Avants B, Zijdenbos AP, Grand'Maison M, O-Neill P, et al. Impact of reference/target region selection on amyloid PET standard uptake value ratios in the phase 1b PRIME study of aducanumab. J Nucl Med. [Epub ahead of print].
    1. Uenaka K, Nakano M, Willis BA, Friedrich S, Ferguson-Sells L, Dean RA, et al. Comparison of pharmacokinetics, pharmacodynamics, safety, and tolerability of the amyloid β monoclonal antibody solanezumab in Japanese and white patients with mild to moderate Alzheimer disease. Clin Neuropharmacol. 2012;35:25–29. doi: 10.1097/WNF.0b013e31823a13d3.
    1. Ritter A, Cummings J. Fluid biomarkers in clinical trials of Alzheimer's disease therapeutics. Front Neurol. 2015;6:186. doi: 10.3389/fneur.2015.00186.
    1. Cummings JL. Biomarkers in Alzheimer's disease drug development. Alzheimers Dement. 2011;7:e13–e44. doi: 10.1016/j.jalz.2010.06.004.
    1. Retout S, Gieschke R, Weber C, Charoin J, Volz D, Lasser R, et al. The importance of understanding the variable rate of progression among Alzheimer's disease patients: data from the gantenerumab program. J Prev Alzheimers Dis. 2015;2:LB13.
    1. Klein G, Delmar P, Hofmann C, Abi-Saab D, Andjelkovic M, Ristic S, et al. 24-month amyloid PET results of the gantenerumab high-dose open label extension studies. Alzheimer’s Association International Conference July 22–26; Chicago; O1–09-03. 2018.
    1. Swanson CJ, Zhang Y, Dhadda S, Wang J, Kaplow J, Lai RYK, et al. Treatment of early AD subjects with BAN2401, an anti-Aβ protofibril monoclonal antibody, significantly clears amyloid plaque and reduces clinical decline. Alzheimer’s Association International Conference July 22–26; Chicago; DT-01-07. 2018.
    1. Honig LS, Vellas B, Woodward M, Boada M, Bullock R, Borrie M, et al. Trial of Solanezumab for mild dementia due to Alzheimer's disease. N Engl J Med. 2018;378:321–330. doi: 10.1056/NEJMoa1705971.
    1. Blennow K, Zetterberg H, Rinne JO, Salloway S, Wei J, Black R, et al. Effect of immunotherapy with bapineuzumab on cerebrospinal fluid biomarker levels in patients with mild to moderate Alzheimer disease. Arch Neurol. 2012;69:1002–1010. doi: 10.1001/archneurol.2012.90.

Source: PubMed

3
Abonneren