Acute nutritional ketosis: implications for exercise performance and metabolism

Pete J Cox, Kieran Clarke, Pete J Cox, Kieran Clarke

Abstract

Ketone bodies acetoacetate (AcAc) and D-β-hydroxybutyrate (βHB) may provide an alternative carbon source to fuel exercise when delivered acutely in nutritional form. The metabolic actions of ketone bodies are based on sound evolutionary principles to prolong survival during caloric deprivation. By harnessing the potential of these metabolic actions during exercise, athletic performance could be influenced, providing a useful model for the application of ketosis in therapeutic conditions. This article examines the energetic implications of ketone body utilisation with particular reference to exercise metabolism and substrate energetics.

Keywords: Exercise performance; Ketone body; Ketone ester; Ketosis; Nutrition.

Figures

Figure 1
Figure 1
Endogenous and exogenous ketosis. Contrast between ketosis induced by starvation or high-fat diet (endogenous ketosis) and that generated by nutritional ketone ester ingestion (exogenous ketosis). Ketone bodies are endogenously produced in the liver from high circulating free fatty acids (FFA) from adipolysis. In contrast, nutritional ketone esters are cleaved in the gut and are absorbed through the gut epithelium and monocarboxylate transporters (MCT) into the circulation or undergo first-pass metabolism to ketone bodies in the liver. High concentrations of ketone bodies inhibit the nicotinic acid receptor (PUMA-G)-controlling adipolysis. Once released into the bloodstream, the ketones are metabolised by extrahepatic tissues in an identical fashion and being transported across the plasma and mitochondrial membranes by MCTs. D-β-Hydroxybutyrate (D-βHB) is converted to acetoacetate by D-β-hydroxybutyrate dehydrogenase (D-βHB DH) before entering the tricarboxylic acid (TCA) cycle as acetyl-CoA.

References

    1. Krebs HA, Johnson WA. Metabolism of ketonic acids in animal tissues. Biochem J. 1937;31(4):645–60.
    1. Rolfe DFS, Brown GC. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev. 1997;77(3):731–758.
    1. Palange P, Ward SA, Carlsen KH, Casaburi R, Gallagher CG, Gosselink R, O'Donnell DE, Puente-Maestu L, Schols AM, Singh S, Whipp BJ. Recommendations on the use of exercise testing in clinical practice. Eur Respir J. 2007;29(1):185–209.
    1. Ats. ATS/ACCP statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003;167(2):211–277.
    1. Spina RJ, Chi M, Hopkins MG, Nemeth P, Lowry O, Holloszy J. Mitochondrial enzymes increase in muscle in response to 7–10 days of cycle exercise. J Appl Physiol. 1996;80(6):2250–2254.
    1. Holloszy JO. Biochemical adaptations in muscle effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem. 1967;242(9):2278–2282.
    1. Deuster P, Chrousos G, Luger A, DeBolt J, Bernier L, Trostmann U, Kyle S, Montgomery L, Loriaux D. Hormonal and metabolic responses of untrained, moderately trained, and highly trained men to three exercise intensities. Metabolism. 1989;38(2):141–148. doi: 10.1016/0026-0495(89)90253-9.
    1. Barnard RJ, Edgerton VR, Peter J. Effect of exercise on skeletal muscle. I. Biochemical and histochemical properties. J Appl Physiol. 1970;28(6):762–766.
    1. Tarnopolsky MA, Rennie CD, Robertshaw HA, Fedak-Tarnopolsky SN, Devries MC, Hamadeh MJ. Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am J Physiol Regul Integr Comp Physiol. 2007;292(3):R1271–R1278.
    1. Martin WH, Dalsky GP, Hurley BF, Matthews DE, Bier DM, Hagberg JM, Rogers MA, King DS, Holloszy JO. Effect of endurance training on plasma-free fatty-acid turnover and oxidation during exercise. Am J Physiol. 1993;265(5):E708–E714.
    1. Coggan AR, Kohrt WM, Spina RJ, Bier D, Holloszy J. Endurance training decreases plasma glucose turnover and oxidation during moderate-intensity exercise in men. J Appl Physiol. 1990;68(3):990–996.
    1. Kiens B, Essen-Gustavsson B, Christensen NJ, Saltin B. Skeletal muscle substrate utilization during submaximal exercise in man: effect of endurance training. J Physiol. 1993;469(1):459–478.
    1. Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol. 1984;56(4):831–838.
    1. Cox JH, Cortright RN, Dohm GL, Houmard JA. Effect of aging on response to exercise training in humans: skeletal muscle GLUT-4 and insulin sensitivity. J Appl Physiol. 1999;86(6):2019–2025.
    1. Zierath JR. Invited review: exercise training-induced changes in insulin signaling in skeletal muscle. J Appl Physiol. 2002;93(2):773–781.
    1. Etgen G Jr, Brozinick J Jr, Kang H, Ivy J. Effects of exercise training on skeletal muscle glucose uptake and transport. Am J Physiol Cell Physiol. 1993;264(3):C727–C733.
    1. Hawley JA. Adaptations of skeletal muscle to prolonged, intense endurance training. Clin Exp Pharmacol Physiol. 2002;29(3):218–222. doi: 10.1046/j.1440-1681.2002.03623.x.
    1. Winder WW, Baldwin KM, Holloszy JO. Enzymes involved in ketone utilization in different types of muscle: adaptation to exercise. Eur J Biochem. 1974;47(3):461–467. doi: 10.1111/j.1432-1033.1974.tb03713.x.
    1. Johnson R, Walton J, Krebs H, Williamson D. Metabolic fuels during and after severe exercise in athletes and non-athletes. Lancet. 1969;294(7618):452–455. doi: 10.1016/S0140-6736(69)90164-0.
    1. Bloom S, Johnson R, Park D, Rennie M, Sulaiman W. Differences in the metabolic and hormonal response to exercise between racing cyclists and untrained individuals. J Physiol. 1976;258(1):1–18.
    1. Robinson AM, Williamson DH. Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol Rev. 1980;60(1):143–87.
    1. Laffel L. Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev. 1999;15(6):412–426. doi: 10.1002/(SICI)1520-7560(199911/12)15:6<412::AID-DMRR72>;2-8.
    1. Cahill GF Jr. Fuel metabolism in starvation. Annu Rev Nutr. 2006;26:1–22. doi: 10.1146/annurev.nutr.26.061505.111258.
    1. Fukao T, Lopaschuk GD, Mitchell GA. Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry. Prostag Leukotr Essent Fatty Acids. 2004;70(3):243–251. doi: 10.1016/j.plefa.2003.11.001.
    1. McCue MD. Starvation physiology: reviewing the different strategies animals use to survive a common challenge. Comp Biochem Physiol A Mol Integr Physiol. 2010;156(1):1–18. doi: 10.1016/j.cbpa.2010.01.002.
    1. Cahill G Jr, Felig P, Owen O, Wahren J. Metabolic adaptation to prolonged starvation in man. Nordisk Med. 1970;83(3):89.
    1. Cahill GF Jr, Owen OE. Starvation and survival. Trans Am Clin Climatol Assoc. 1968;79:13.
    1. Owen OE, Morgan AP, Kemp HG, Sullivan JM, Herrera MG, Cahill GF. Brain metabolism during fasting. J Clin Invest. 1967;46(10):1589. doi: 10.1172/JCI105650.
    1. Felig P, Owen OE, Wahren J, Cahill GF. Amino acid metabolism during prolonged starvation. J Clin Invest. 1969;48(3):584. doi: 10.1172/JCI106017.
    1. Bergstrom J, Hermansen L, Hultman E, Saltin B. Diet, muscle glycogen and physical performance. Acta Physiologica Scandinavia. 1967;71(2):140–50.
    1. Bergstrom J, Hultman E. Nutrition for maximal sports performance. J Am Med Assoc. 1972;221(9):999–1006. doi: 10.1001/jama.1972.03200220033009.
    1. Bosch AN, Dennis SC, Noakes TD. Influence of carbohydrate ingestion on fuel substrate turnover and oxidation during prolonged exercise. J Appl Physiol. 1994;76(6):2364–2372.
    1. van Loon LJ, Greenhaff PL, Constantin-Teodosiu D, Saris WH, Wagenmakers AJ. The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol. 2001;536(Pt 1):295–304.
    1. Romijn J, Coyle E, Sidossis L, Zhang X, Wolfe R. Relationship between fatty acid delivery and fatty acid oxidation during strenuous exercise. J Appl Physiol. 1995;79(6):1939–1945.
    1. Brooks GA, Mercier J. Balance of carbohydrate and lipid utilization during exercise: the “crossover” concept. J Appl Physiol. 1994;76(6):2253–2261.
    1. Koeslag J. Post-exercise ketosis and the hormone response to exercise: a review. Med Sci Sports Exerc. 1982;14(5):327–334. doi: 10.1249/00005768-198205000-00002.
    1. Johnson RH, Walton JL, Krebs HA, Williams DH. Metabolic fuels during and after severe exercise in athletes and non-athletes. Lancet. 1969;2(7618):452.
    1. Randle PJ, Garland PB, Newsholme EA, Hales CN. Glucose fatty-acid cycle. Its role in insulin sensitivity and metabolic disturbances of diabetes mellitus. Lancet. 1963;1(728):785.
    1. Romijn J, Coyle E, Sidossis L, Gastaldelli A, Horowitz J, Endert E, Wolfe R. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol Endocrinol Metab. 1993;265(3):E380–E391.
    1. Hermansen L, Hultman E, Saltin B. Muscle glycogen during prolonged severe exercise. Acta Physiologica Scandinavica. 1967;71(2–3):129–139.
    1. Coyle EF. Substrate utilization during exercise in active people. Am J Clin Nutr. 1995;61(4):S968–S979.
    1. ACSM DOC. A Joint Position Statement: nutrition and athletic performance. American College of Sports Medicine, American Dietetic Association, and Dietitians of Canada. Med Sci Sports Exerc. 2000;32(12):2130–2145.
    1. Coyle E, Hagberg J, Hurley B, Martin W, Ehsani A, Holloszy J. Carbohydrate feeding during prolonged strenuous exercise can delay fatigue. J Appl Physiol. 1983;55(1):230–235.
    1. Currell K, Jeukendrup AE. Superior endurance performance with ingestion of multiple transportable carbohydrates. Med Sci Sports Exerc. 2008;40(2):275. doi: 10.1249/mss.0b013e31815adf19.
    1. Jeukendrup AE. Carbohydrate feeding during exercise. Eur J Sport Sci. 2008;8(2):77–86. doi: 10.1080/17461390801918971.
    1. Jeukendrup AE. Carbohydrate intake during exercise and performance. Nutrition. 2004;20(7):669–677.
    1. Burke LM, Hawley JA. Carbohydrate and exercise. Curr Opin Clin Nutr Metab Care. 1999;2(6):515. doi: 10.1097/00075197-199911000-00015.
    1. Hargreaves M, Hawley JA, Jeukendrup A. Pre-exercise carbohydrate and fat ingestion: effects on metabolism and performance. J Sports Sci. 2004;22(1):31–38. doi: 10.1080/0264041031000140536.
    1. Jeukendrup A, Saris W, Wagenmakers A. Fat metabolism during exercise: a review. Int J Sports Med. 1998;19:371–9. doi: 10.1055/s-2007-971932.
    1. Hawley JA. Effect of increased fat availability on metabolism and exercise capacity. Med Sci Sports Exerc. 2002;34(9):1485–1491. doi: 10.1097/00005768-200209000-00014.
    1. Cameron-Smith D, Burke LM, Angus DJ, Tunstall RJ, Cox GR, Bonen A, Hawley JA, Hargreaves M. A short-term, high-fat diet up-regulates lipid metabolism and gene expression in human skeletal muscle. Am J Clin Nutr. 2003;77(2):313–318.
    1. Vukovich MD, Costill DL, Hickey MS, Trappe SW, Cole KJ, Fink WJ. Effect of fat emulsion infusion and fat feeding on muscle glycogen utilization during cycle exercise. J Appl Physiol. 1993;75(4):1513–1518.
    1. Bonen A, Malcolm SA, Kilgour RD, Macintyre KP, Belcastro AN. Glucose-Ingestion before and during intense exercise. J Appl Physiol. 1981;50(4):766–771.
    1. Flynn MG, Costill DL, Hawley JA, Fink WJ, Neufer PD, Fielding RA, Sleeper MD. Influence of selected carbohydrate drinks on cycling performance and glycogen use. Med Sci Sports Exerc. 1987;19(1):37–40.
    1. Madsen K, MacLean DA, Kiens B, Christensen D. Effects of glucose, glucose plus branched-chain amino acids, or placebo on bike performance over 100 km. J Appl Physiol. 1996;81(6):2644–2650.
    1. Murray R, Paul GL, Seifert JG, Eddy DE, Halaby GA. The effects of glucose, fructose, and sucrose ingestion during exercise. Med Sci Sports Exerc. 1989;21(3):275–282.
    1. Mitchell JB, Costill DL, Houmard JA, Fink WJ, Pascoe DD, Pearson DR. Influence of carbohydrate dosage on exercise performance and glycogen metabolism. J Appl Physiol. 1989;67(5):1843–9.
    1. Jentjens R, Cale C, Gutch C, Jeukendrup A. Effects of pre-exercise ingestion of differing amounts of carbohydrate on subsequent metabolism and cycling performance. Eur J Appl Physiol. 2003;88(4):444–452. doi: 10.1007/s00421-002-0727-9.
    1. Heneghan C, Perera R, Nunan D, Mahtani K, Gill P. Forty years of sports performance research and little insight gained. Br Med J. 2012;345:e4797. doi: 10.1136/bmj.e4797.
    1. Maizels EZ, Ruderman NB, Goodman MN, Lau D. Effect of acetoacetate on glucose-metabolism in soleus and extensor digitorum longus muscles of rat. Biochem J. 1977;162(3):557–568.
    1. Ruderman NB, Saha AK, Vavvas D, Witters LA. Malonyl-CoA, fuel sensing, and insulin resistance. Am J Physiol Endocrinol Metab. 1999;276(1):E1–E18.
    1. Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol. 1983;55(2):628–634.
    1. Halestrap AP, Meredith D. The SLC16 gene family—from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Eur J Physiol. 2004;447(5):619–628. doi: 10.1007/s00424-003-1067-2.
    1. Hagenfeldt L, Wahren J. Human forearm muscle metabolism during exercise. 6. Substrate utilization in prolonged fasting. Scand J Clin Lab Invest. 1971;27(4):299. doi: 10.3109/00365517109080222.
    1. Hagenfeldt L, Wahren J. Human forearm muscle metabolism during exercise. 3. Uptake release and oxidation of beta-hydroxybutyrate and observations on beta-hydroxybutyrate/acetoacetate ratio. Scand J Clin Lab Invest. 1968;21(4):314. doi: 10.3109/00365516809076999.
    1. Ahlborg G, Felig P, Hagenfeldt L, Hendler R, Wahren J. Substrate turnover during prolonged exercise in man. Splanchnic and leg metabolism of glucose, free fatty acids, and amino acids. J Clin Invest. 1974;53(4):1080–1090. doi: 10.1172/JCI107645.
    1. Beylot M, Beaufrere B, Normand S, Riou JP, Cohen R, Mornex R. Determination of human ketone-body kinetics using stable-isotope labeled tracers. Diabetologia. 1986;29(2):90–96. doi: 10.1007/BF00456116.
    1. Fery F, Balasse EO. Response of ketone-body metabolism to exercise during transition from postabsorptive to fasted state. Am J Physiol. 1986;250(5):E495–E501.
    1. Fery F, Balasse EO. Ketone body turnover during and after exercise in overnight-fasted and starved humans. Am J Physiol. 1983;245(4):E318–E325.
    1. Fery F, Balasse EO. Ketone body production and disposal in diabetic ketosis - a comparison with fasting ketosis. Diabetes. 1985;34(4):326–332. doi: 10.2337/diab.34.4.326.
    1. Balasse EO, Fery F, Neef MA. Changes induced by exercise in rates of turnover and oxidation of ketone bodies in fasting man. J Appl Physiol. 1978;44(1):5–11.
    1. Fery F, Balasse EO. Effect of exercise on the disposal of infused ketone bodies in humans. J Clin Endocrinol Metab. 1988;67(2):245–250. doi: 10.1210/jcem-67-2-245.
    1. Gibbs JW. A method of geometrical representation of the thermodynamic properties of substances by means of surfaces. 1873. pp. 382–404. Reprinted in Sci Pap1, pp 33-54.
    1. Alberty RA. Standard Gibbs free energy, enthalpy, and entropy changes as a function of pH and pMg for several reactions involving adenosine phosphates. J Biol Chem. 1969;244(12):3290.
    1. Veech RL. The determination of the redox states and phosphorylation potential in living tissues and their relationship to metabolic control of disease phenotypes. Biochem Mol Biol Educ. 2006;34(3):168–179. doi: 10.1002/bmb.2006.49403403168.
    1. Briggs GE, Haldane JBS. A note on the kinetics of enzyme action. Biochem J. 1925;19(2):338.
    1. Stubbs M, Veech R, Krebs H. Control of the redox state of the nicotinamide-adenine dinucleotide couple in rat liver cytoplasm. Biochem J. 1972;126(1):59.
    1. Krebs H, Veech R. Equilibrium relations between pyridine nucleotides and adenine nucleotides and their roles in the regulation of metabolic processes. Adv Enzyme Regul. 1969;7:397–413.
    1. Veech R, Raijman L, Krebs H. Equilibrium relations between the cytoplasmic adenine nucleotide system and nicotinamide-adenine nucleotide system in rat liver. Biochem J. 1970;117(3):499.
    1. Veech RL, Eggleston LV, Krebs HA. The redox state of free nicotinamide-adenine dinucleotide phosphate in the cytoplasm of rat liver. Biochem J. 1969;115(4):609–19.
    1. Veech RL, Eggleston LV, Krebs HA. The energetics of ion distribution: the origin of the resting electric potential of cells. IUBMB Life. 2002;54(5):241–52. doi: 10.1080/15216540215678.
    1. Kashiwaya Y, King MT, Veech RL. Substrate signaling by insulin: a ketone bodies ratio mimics insulin action in heart. Am J Cardiol. 1997;80(3A):50A–64A.
    1. Wilson DF, Stubbs M, Veech RL, Erecińska M, Krebs HA. Equilibrium relations between the oxidation-reduction reactions and the adenosine triphosphate synthesis in suspensions of isolated liver cells. Biochem J. 1974;140(1):57.
    1. Veech RL, Lawson J, Cornell N, Krebs HA. Cytosolic phosphorylation potential. J Biol Chem. 1979;254(14):6538.
    1. Veech RL, Fell DA. Distribution control of metabolic flux. Cell Biochem Funct. 1996;14(4):229–36. doi: 10.1002/cbf.697.
    1. Rider O, Cox P, Tyler D, Clarke K, Neubauer S. Myocardial substrate metabolism in obesity. Int J Obes. 2013;37(7):972–979. doi: 10.1038/ijo.2012.170.
    1. Mitchell PD. Chemiosmotic coupling and energy transduction. J Bioenerget. 1968;3:5–24.
    1. Hue L, Taegtmeyer H. The Randle cycle revisited: a new head for an old hat. Am J Physiol Endocrinol Metab. 2009;297(3):E578–E591. doi: 10.1152/ajpendo.00093.2009.
    1. Veech RL, Chance B, Kashiwaya Y, Lardy HA, Cahill GR. Ketone bodies, potential therapeutic uses. IUBMB Life. 2001;51(4):241–247. doi: 10.1080/152165401753311780.
    1. Sato K, Kashiwaya Y, Keon C, Tsuchiya N, King M, Radda G, Chance B, Clarke K, Veech R. Insulin, ketone bodies, and mitochondrial energy transduction. FASEB J. 1995;9(8):651–658.
    1. Veech RL. Ketone ester effects on metabolism and transcription. J Lipid Res. 2014. doi: 10.1194/jlr.R046292.
    1. Kashiwaya Y, King MT, Veech RL. Substrate signaling by insulin: a ketone bodies ratio mimics insulin action in heart. Am J Cardiol. 1997;80(3A):A50–A64.
    1. Plecko B, Stoeckler-Ipsiroglu S, Schober E, Harrer G, Mlynarik V, Gruber S, Moser E, Moeslinger D, Silgoner H, Ipsiroglu O. Oral beta-hydroxybutyrate supplementation in two patients with hyperinsulinemic hypoglycemia: monitoring of beta-hydroxybutyrate levels in blood and cerebrospinal fluid, and in the brain by in vivo magnetic resonance spectroscopy. Pediatr Res. 2002;52(2):301–6.
    1. Keller U, Lustenberger M, Stauffacher W. Effect of insulin on ketone-body clearance studied by a ketone body “clamp” technique in normal man. Diabetologia. 1988;31(1):24–29.
    1. Kwiterovich PO Jr, Vining EP, Pyzik P, Skolasky R Jr, Freeman JM. Effect of a high-fat ketogenic diet on plasma levels of lipids, lipoproteins, and apolipoproteins in children. J Am Med Assoc. 2003;290(7):912–20. doi: 10.1001/jama.290.7.912.
    1. Veech RL. The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostag Leukotr Essent Fatty Acids. 2004;70(3):309–319. doi: 10.1016/j.plefa.2003.09.007.
    1. Hashim SA, VanItallie TB. Ketone body therapy: from ketogenic diet to oral administration of ketone ester. J Lipid Res. 2014. doi: 10.1194/jlr.R046599.
    1. Clarke K, Tchabanenko K, Pawlosky R, Carter E, Todd King M, Musa-Veloso K, Ho M, Roberts A, Robertson J, Vanitallie TB, Veech RL. Kinetics, safety and tolerability of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate in healthy adult subjects. Regul Toxicol Pharmacol. 2012;63(3):401–8. doi: 10.1016/j.yrtph.2012.04.008.
    1. Birkhahn RH, Border JR. Intravenous feeding of rat with short chain fatty acid esters. II. Monoacetoacetin. Am J Clin Nutr. 1978;31(3):436–441.
    1. Birkhahn RH, Mcmenamy RH, Border JR. Monoglyceryl acetoacetate: ketone body carbohydrate substrate for parenteral-feeding of the rat. J Nutr. 1979;109(7):1168–1174.
    1. Desrochers S, David F, Garneau M, Jette M, Brunengraber H. Metabolism of R- or S-1,3-butanediol in perfused livers from meal-fed and starved rats. Biochem J. 1992;285:647–653.
    1. Tobin RB, Garthoff LH, Mehlman MA, Veech RL. Metabolite levels, redox states, and gluconeogenic enzyme-activities in livers of rats fed diets containing 1,3-butanediol. J Environ Pathol Toxicol. 1978;2(2):389–398.
    1. Kies C, Tobin RB, Fox HM, Mehlman MA. Utilization of 1,3-butanediol and nonspecific nitrogen in human adults. J Nutr. 1973;103(8):1155–1163.
    1. Scofield RF, Brady PS, Schumann WC, Kumaran K, Ohgaku S, Margolis JM, Landau BR. On the lack of formation of L-(+)-3-hydroxybutyrate by liver. Arch Biochem Biophys. 1982;214(1):268–272. doi: 10.1016/0003-9861(82)90030-3.
    1. Webber RJ, Edmond J. Utilization of L(+)-3-hydroxybutyrate, D(-)-3-hydroxybutyrate, acetoacetate, and glucose for respiration and lipid-synthesis in 18-day-old rat. J Biol Chem. 1977;252(15):5222–5226.
    1. Lincoln BC, Desrosiers C, Brunengraber H. Metabolism of S-3-hydroxybutyrate in the perfused-rat-liver. Arch Biochem Biophys. 1987;259(1):149–156. doi: 10.1016/0003-9861(87)90480-2.
    1. Desrochers S, Quinze K, Dugas H, Dubreuil P, Bomont C, David F, Agarwal KC, Kumar A, Soloviev MV, Powers L, Landau BR, Brunengraber H. R, S-1,3-butanediol acetoacetate esters, potential alternates to lipid emulsions for total parenteral nutrition. J Nutr Biochem. 1995;6(2):111–118. doi: 10.1016/0955-2863(94)00011-A.
    1. Bravata DM, Sanders L, Huang J, Krumholz HM, Olkin I, Gardner CD, Bravata DM. Efficacy and safety of low-carbohydrate diets: a systematic review. J Am Med Assoc. 2003;289(14):1837–1850. doi: 10.1001/jama.289.14.1837.
    1. Atkins RC. Dr. Atkins’ New Diet Revolution. London: Ebury Press; 2002.
    1. Phinney SD, Horton ES, Sims EAH, Hanson JS, Danforth E Jr, Lagrange BM. Capacity for moderate exercise in obese subjects after adaptation to a hypocaloric, ketogenic diet. J Clin Invest. 1980;66(5):1152. doi: 10.1172/JCI109945.
    1. Phinney SD. Ketogenic diets and physical performance. Nutr Metab (Lond) 2004;1(1):2. doi: 10.1186/1743-7075-1-2.
    1. Lambert EV, Speechly DP, Dennis SC, Noakes TD. Enhanced endurance in trained cyclists during moderate intensity exercise following 2 weeks adaptation to a high-fat diet. Eur J Appl Physiol. 1994;69(4):287–293. doi: 10.1007/BF00392032.
    1. Phinney SD, Bistrian BR, Wolfe RR, Blackburn GL. The human metabolic response to chronic ketosis without caloric restriction: physical and biochemical adaptation. Metabolism. 1983;32(8):757–68. doi: 10.1016/0026-0495(83)90105-1.
    1. Nosadini R, Avogaro A, Doria A, Fioretto P, Trevisan R, Morocutti A. Ketone body metabolism: a physiological and clinical overview. Diabetes Metab Rev. 1989;5(3):299–319. doi: 10.1002/dmr.5610050307.
    1. Edwards LM, Murray AJ, Holloway CJ, Carter EE, Kemp GJ, Codreanu I, Brooker H, Tyler DJ, Robbins PA, Clarke K. Short-term consumption of a high-fat diet impairs whole-body efficiency and cognitive function in sedentary men. FASEB J. 2011;25(3):1088–1096. doi: 10.1096/fj.10-171983.

Source: PubMed

3
Abonneren