Effects of exogenous ketone supplementation on blood ketone, glucose, triglyceride, and lipoprotein levels in Sprague-Dawley rats

Shannon L Kesl, Angela M Poff, Nathan P Ward, Tina N Fiorelli, Csilla Ari, Ashley J Van Putten, Jacob W Sherwood, Patrick Arnold, Dominic P D'Agostino, Shannon L Kesl, Angela M Poff, Nathan P Ward, Tina N Fiorelli, Csilla Ari, Ashley J Van Putten, Jacob W Sherwood, Patrick Arnold, Dominic P D'Agostino

Abstract

Background: Nutritional ketosis induced by the ketogenic diet (KD) has therapeutic applications for many disease states. We hypothesized that oral administration of exogenous ketone supplements could produce sustained nutritional ketosis (>0.5 mM) without carbohydrate restriction.

Methods: We tested the effects of 28-day administration of five ketone supplements on blood glucose, ketones, and lipids in male Sprague-Dawley rats. The supplements included: 1,3-butanediol (BD), a sodium/potassium β-hydroxybutyrate (βHB) mineral salt (BMS), medium chain triglyceride oil (MCT), BMS + MCT 1:1 mixture, and 1,3 butanediol acetoacetate diester (KE). Rats received a daily 5-10 g/kg dose of their respective ketone supplement via intragastric gavage during treatment. Weekly whole blood samples were taken for analysis of glucose and βHB at baseline and, 0.5, 1, 4, 8, and 12 h post-gavage, or until βHB returned to baseline. At 28 days, triglycerides, total cholesterol and high-density lipoprotein (HDL) were measured.

Results: Exogenous ketone supplementation caused a rapid and sustained elevation of βHB, reduction of glucose, and little change to lipid biomarkers compared to control animals.

Conclusions: This study demonstrates the efficacy and tolerability of oral exogenous ketone supplementation in inducing nutritional ketosis independent of dietary restriction.

Keywords: Appetite; Hyperketonemia; Ketogenic diet; Ketone ester; Ketone supplement; Triglycerides; β-hydroxybutyrate.

Figures

Fig. 1
Fig. 1
Effects of ketone supplementation on triglycerides and lipoproteins: Ketone supplementation causes little change in triglycerides and lipoproteins over a 4-week study. Graphs show concentrations at 4-weeks of total cholesterol (a), Triglycerides (b), LDL (c), and HDL (d). MCT supplemented rats had signfiicantly reduced concentration of HDL blood levels compared to control (p < 0.001) (b). One-Way ANOVA with Tukey’s post hoc test, results considered significant if p < 0.05. Error bars represent mean (SD)
Fig. 2
Fig. 2
Effects of ketone supplementation on blood βHB. a, b Blood βHB levels at times 0, 0.5, 1, 4, 8, and 12 h post intragastric gavage for ketone supplements tested. a BMS + MCT and MCT supplementation rapidly elevated and sustained significant βHB elevation compared to controls for the duration of the 4-week dose escalation study. BMS did not significantly elevate βHB at any time point tested compared to controls. b BD and KE supplements, maintained at 5 g/kg, significantly elevated βHB levels for the duration of the 4-week study. Two-Way ANOVA with Tukey’s post hoc test, results considered significant if p < 0.05. Error bars represent mean (SD)
Fig. 3
Fig. 3
Effects of ketone supplementation on blood glucose. a, b Blood glucose levels at times 0, 0.5, 1, 4, 8, and 12 h (for 10 dose) post intragastric gavage for ketone supplements tested. a Ketone supplements BMS + MCT and MCT significantly reduced blood glucose levels compared to controls for the duration of the 4-week study. BMS significantly lowered blood glucose only at 8 h/week 1 and 12 h/week 3 (b) KE, maintained at 5 g/kg, significantly reduced blood glucose compared to controls from week 1–4. BD did not significantly affect blood glucose levels at any time point during the 4-week study. Two-Way ANOVA with Tukey’s post hoc test, results considered significant if p < 0.05. Error bars represent mean (SD)
Fig. 4
Fig. 4
Relationship between blood ketone and glucose levels: a BMS + MCT (5 g/kg) supplemented rats demonstrated a significant inverse relationship between elevated blood ketone levels and decreased blood ketone levels (r2 = 0.4314, p = 0.0203). b At week 4, BMS + MCT (10 g/kg) and MCT (10 g/kg) showed a significant correlation between blood ketone levels and blood glucose levels (r2 = 0.8619, p < 0.0001; r2 = 0.6365, p = 0.0057). Linear regression analysis, results considered significant if p < 0.05
Fig. 5
Fig. 5
Effects of ketone supplementation on organ weight: Data is represented as a percentage of organ weight to body weight. a, b, d, f Ketone supplements did not significantly affect the weight of the brain, lungs, kidneys or heart. c Liver weight was significantly increased as compared to body weight in response to administered MCT ketone supplement compared to control at the end of the study (day 29) (p < 0.001). e Rats supplemented with BMS + MCT, MCT, and BD had significantly smaller spleen percentage as compared to controls (p < 0.05, p < 0.001, p < 0.05). Two-Way ANOVA with Tukey’s post-hoc test; results considered significant if p < 0.05. Error bars represent mean (SD)
Fig. 6
Fig. 6
Effects of ketone supplementation on body weight: Rats administered ketone supplements gained less weight over the 4-week period; however, did not lose weight and maintained healthy range for age. KE supplemented rats gained significantly less weight during the entire 4-week study compared to controls. BMS + MCT, BMS, and BD supplemented rats gained significantly less weight than controls over weeks 2–4.MCT supplemented rats gained significantly less weight than controls over weeks 3–4, Two-Way ANOVA with Tukey’s post hoc test, results considered significant if p < 0.05. Error bars represent mean (SD)
Fig. 7
Fig. 7
Effects of ketone supplementation on basal blood ketone and basal blood glucose levels: Rats administered ketone supplements did not have a significant change in basal blood ketone levels (a) or basal blood glucose levels (b) for the four week study. Two-Way ANOVA with Tukey’s post-hoc test, results considered significant if p < 0.05. Error bars represent mean (SD)

References

    1. Sirven J, Whedon B, Caplan D, Liporace J, Glosser D, O’Dwyer J, et al. The ketogenic diet for intractable epilepsy in adults: preliminary results. Epilepsia. 1999;40(12):1721–6. doi: 10.1111/j.1528-1157.1999.tb01589.x.
    1. Wilder R. The effect of ketonemia on the course of epilepsy. Mayo Clin Bulletin. 1921;2:307–8.
    1. Thiele E. Assessing the efficacy of antiepileptic treatments: the ketogenic diet. Epilepsia. 2003;44(Suppl 7):26–9. doi: 10.1046/j.1528-1157.44.s7.4.x.
    1. Paoli A, Rubini A, Volek JS, Grimaldi KA. Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur J Clin Nutr. 2013;67(8):789–96. doi: 10.1038/ejcn.2013.116.
    1. Foster GD, Wyatt HR, Hill JO, McGuckin BG, Brill C, Mohemmed BS, et al. A randomized trial of a low-carbohydrate diet for obesity. N Engl J Med. 2003;348:2082–90. doi: 10.1056/NEJMoa022207.
    1. Westman EC, Feinman RD, Mavropoulos JC, Vernon MC, Volek JS, Wortman JA, et al. Low-carbohydrate nutrition and metabolism. Am J Clin Nutr. 2007;86:276–84.
    1. Westman EC, Yancy WS, Edman JS, Tomlin KF, Perkins CE. Effect of 6-month adherence to a very low carbohydrate diet program. Am J Med. 2002;113(1):30–6. doi: 10.1016/S0002-9343(02)01129-4.
    1. Forsythe C, Phinney S, Fernandez M, Quann E, Wood R, Bibus D, et al. Comparison of low fat and low carbohydrate diets on circulating fatty acid composition and markers of inflammation. Lipids. 2008;43(1):65–77. doi: 10.1007/s11745-007-3132-7.
    1. Boden G, Sargrad K, Homko C, Mozzoli M, Stein T. Effect of a low-carbohydrate diet on appetite, blood glucose levels, and insulin resistance in obese patients with type 2 diabetes. Ann Intern Med. 2005;142(6):403–11. doi: 10.7326/0003-4819-142-6-200503150-00006.
    1. Gumbiner B, Wendel J, McDermott M. Effects of diet composition and ketosis on glycemia during very-low-energy-diet therapy in obese patients with non-insulin-dependent diabetes mellitus. Am J Clin Nutr. 1996;63(1):110–5.
    1. Nielsen J, Joensson E. Low-carbohydrate diet in type 2 diabetes: stable improvement of bodyweight and glycemic control during 44 months follow-up. Nutr Metab. 2008;5:14. doi: 10.1186/1743-7075-5-14.
    1. Yancy W, Foy M, Chalecki A, Vernon M, Westman E. A low-carbohydrate, ketogenic diet to treat type 2 diabetes. Nutr Metab. 2005;2:34. doi: 10.1186/1743-7075-2-34.
    1. Dashti HM, Al-Zaid NS, Mathew TC, Al-Mousawi M, Talib H, Asfar SK, et al. Long term effects of ketogenic diet in obese subjects with high cholesterol level. Mol Cell Biochem. 2006;286(1–2):1–9. doi: 10.1007/s11010-005-9001-x.
    1. Maalouf M, Rho JM, Mattson MP. The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. Brain Res Rev. 2009;59(2):293–315. doi: 10.1016/j.brainresrev.2008.09.002.
    1. Mavropoulos JC, Yancy WS, Hepburn J, Westman EC. The effects of a low-carbohydrate, ketogenic diet on the polycystic ovary syndrome: a pilot study. Nutr Metab. 2004;2:35. doi: 10.1186/1743-7075-2-35.
    1. Seyfried T, Flores R, Poff A, D’Agostino D. Cancer as a metabolic disease: implications for novel therapeutics. Carcinogenesis. 2014;35:515–27. doi: 10.1093/carcin/bgt480.
    1. Poff AM, Ari C, Arnold P, Seyfried TN, D’Agostino DP. Ketone supplementation decreases tumor cell viability and prolongs survival of mice with metastatic cancer. Int J Cancer. 2014;135:1711–20. doi: 10.1002/ijc.28809.
    1. Poff A, Ari C, Seyfried T, D’Agostino D. The ketogenic diet and hyperbaric oxygen therapy prolong survival in mice with systemic metastatic cancer. PLoS ONE. 2013;8(6) doi: 10.1371/journal.pone.0065522.
    1. Seyfried T, Shelton L. Cancer as a metabolic disease. Nutr Metab. 2010;7:7. doi: 10.1186/1743-7075-7-7.
    1. Fine E, Segal-Isaacson C, Feinman R, Herszkopf S, Romano M, Tomuta N, et al. Targeting insulin inhibition as a metabolic therapy in advanced cancer: a pilot safety and feasibility dietary trial in 10 patients. Nutrition. 2012;28(10):1028–35. doi: 10.1016/j.nut.2012.05.001.
    1. Zhao Z, Lange D, Voustianiouk A, MacGrogan D, Ho L, Suh J, et al. A ketogenic diet as a potential novel therapeutic intervention in amyotrophic lateral sclerosis. BMC Neurosci. 2006;7:29. doi: 10.1186/1471-2202-7-29.
    1. White H, Venkatesh B. Clinical review: ketones and brain injury. Crit Care. 2011;15(2):219. doi: 10.1186/cc10020.
    1. Prins M. Cerebral metabolic adaptation and ketone metabolism after brain injury. J Cereb Blood Flow Metab. 2008;28(1):1–16. doi: 10.1038/sj.jcbfm.9600543.
    1. Henderson S, Vogel J, Barr L, Garvin F, Jones J, Costantini L. Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: a randomized, double-blind, placebo-controlled, multicenter trial. Nutr Metab. 2009;6:31. doi: 10.1186/1743-7075-6-31.
    1. Brownlow M, Benner L, D’Agostino D, Gordon M, Morgan D. Ketogenic diet improves motor performance but not cognition in two mouse models of Alzheimer’s pathology. PLoS ONE. 2013;8(9) doi: 10.1371/journal.pone.0075713.
    1. Kossoff EH, Hartman AL. Ketogenic diets: new advances for metabolism-based therapies. Curr Opin Neurol. 2012;25:173–8. doi: 10.1097/WCO.0b013e3283515e4a.
    1. Kwiterovich P, Vining E, Pyzik P, Skolasky R, Freeman J. Effect of a high-fat ketogenic diet on plasma levels of lipids, lipoproteins, and apolipoproteins in children. JAMA. 2003;290(7):912–20. doi: 10.1001/jama.290.7.912.
    1. Veech RL, Chance B, Kashiwaya Y, Lardy HA, Cahill GF., Jr Ketone bodies, potential therapeutic uses. IUBMB Life. 2001;51(4):241–7. doi: 10.1080/152165401753311780.
    1. D’Agostino D, Pilla R, Held H, Landon C, Puchowicz M, Brunengraber H, et al. Therapeutic ketosis with ketone ester delays central nervous system oxygen toxicity seizures in rats. Am J Physiol Regul Integr Comp Physiol. 2013;304(10):R829–36. doi: 10.1152/ajpregu.00506.2012.
    1. Gasior M, French A, Joy M, Tang R, Hartman A, Rogawski M. The anticonvulsant activity of acetone, the major ketone body in the ketogenic diet, is not dependent on its metabolites acetol, 1,2-propanediol, methylglyoxal, or pyruvic acid. Epilepsia. 2007;48(4):793–800. doi: 10.1111/j.1528-1167.2007.01026.x.
    1. Likhodii S, Nylen K, Burnham W. Acetone as an anticonvulsant. Epilepsia. 2008;49(Suppl 8):83–6. doi: 10.1111/j.1528-1167.2008.01844.x.
    1. Seymour K, Bluml S, Sutherling J, Sutherling W, Ross B. Identification of cerebral acetone by 1H-MRS in patients with epilepsy controlled by ketogenic diet. Magma. 1999;8(1):33–42.
    1. Halevy A, Peleg-Weiss L, Cohen R, Shuper A. An update on the ketogenic diet, 2012. Rambam Maimonides Med J. 2012;3(1) doi: 10.5041/RMMJ.10072.
    1. Amari A, Grace N, Fisher W. Achieving and maintaining compliance with the ketogenic diet. J Appl Behav Anal. 1995;28(3):341–2. doi: 10.1901/jaba.1995.28-341.
    1. Zhang Y, Kuang Y, LaManna J, Puchowicz M. Contribution of brain glucose and ketone bodies to oxidative metabolism. Adv Exp Med Biol. 2013;765:365–70. doi: 10.1007/978-1-4614-4989-8_51.
    1. Maalouf M, Sullivan P, Davis L, Kim D, Rho J. Ketones inhibit mitochondrial production of reactive oxygen species production following glutamate excitotoxicity by increasing NADH oxidation. Neuroscience. 2007;145(1):256–64. doi: 10.1016/j.neuroscience.2006.11.065.
    1. Milder J, Patel M. Modulation of oxidative stress and mitochondrial function by the ketogenic diet. Epilepsy Res. 2012;100(3):295–303. doi: 10.1016/j.eplepsyres.2011.09.021.
    1. Shimazu T, Hirschey M, Newman J, He W, Shirakawa K, Le Moan N, et al. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science. 2013;339:211–4. doi: 10.1126/science.1227166.
    1. Kim DY, Davis L, Sullivan P, Maalouf M, Simeone T, van Brederode J, et al. Ketone bodies are protective against oxidative stress in neocortical neurons. J Neurochem. 2007;101(5):1316–26. doi: 10.1111/j.1471-4159.2007.04483.x.
    1. Veech R. The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot Essent Fat Acids. 2004;70(3):309–19. doi: 10.1016/j.plefa.2003.09.007.
    1. Sato K, Kashiwaya Y, Keon C, Tsuchiya N, King M, Radda G, et al. Insulin, ketone bodies, and mitochondrial energy transduction. FASEB J. 1995;9(8):651–8.
    1. Kashiwaya Y, Sato K, Tsuchiya N, Thomas S, Fell D, Veech R, et al. Control of glucose utilization in working perfused rat heart. J Biol Chem. 1994;269(41):25502–14.
    1. Sullivan P, Rippy N, Dorenbos K, Concepcion R, Agarwal A, Rho J. The ketogenic diet increases mitochondrial uncoupling protein levels and activity. Ann Neurol. 2004;55(4):576–80. doi: 10.1002/ana.20062.
    1. Bough K, Rho J. Anticonvulsant mechanisms of the ketogenic diet. Epilepsia. 2007;48(1):43–58. doi: 10.1111/j.1528-1167.2007.00915.x.
    1. Bough K, Wetherington J, Hassel B, Pare J, Gawryluk J, Greene J, et al. Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol. 2006;60(2):223–35. doi: 10.1002/ana.20899.
    1. Ruskin D, Kawamura M, Masino S. Reduced pain and inflammation in juvenile and adult rats fed a ketogenic diet. PLoS ONE. 2009;4(12) doi: 10.1371/journal.pone.0008349.
    1. Paoli A, Moro T, Bosco G, Bianco A, Grimaldi KA, Camporesi E, et al. Effects of n-3 polyunsaturated fatty acids (ω-3) supplementation on some cardiovascular risk factors with a ketogenic Mediterranean diet. Marine drugs. 2015;13(2):996–1009. doi: 10.3390/md13020996.
    1. Desrochers S, Dubreuil P, Brunet J, Jetté M, David F, Landau BR, et al. Metabolism of (R, S)-1,3-butanediol acetoacetate esters, potential parenteral and enteral nutrients in conscious pigs. Am J Physiol. 1995;268(4 Pt 1):E660–7.
    1. Clarke K, Tchabanenko K, Pawlosky R, Carter E, Knight N, Murray A, et al. Oral 28-day and developmental toxicity studies of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate. Regul Toxicol Pharmacol. 2012;63(2):196–208. doi: 10.1016/j.yrtph.2012.04.001.
    1. Clarke K, Tchabanenko K, Pawlosky R, Carter E, Todd King M, Musa-Veloso K, et al. Kinetics, safety and tolerability of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate in healthy adult subjects. Regul Toxicol Pharmacol. 2012;63(3):401–8. doi: 10.1016/j.yrtph.2012.04.008.
    1. Warnick G, Knopp R, Fitzpatrick V, Branson L. Estimating low-density lipoprotein cholesterol by the Friedewald equation is adequate for classifying patients on the basis of nationally recommended cutpoints. Clin Chem. 1990;36(1):15–9.
    1. Friedewald W, Levy R, Fredrickson D. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502.
    1. Harlan Laboratories Inc U. Sprague Dawley Outbred Rat. In: . 2008. . Accessed date January 30, 2014.
    1. Inc TB. Sprague Dawley Rat. In: . 2014. . Accessed date January 30, 2014.
    1. McPherson P, McEneny J. The biochemistry of ketogenesis and its role in weight management, neurological disease and oxidative stress. J Physiol Biochem. 2012;68(1):141–51. doi: 10.1007/s13105-011-0112-4.
    1. Moore J, Eric C, Westman M. Cholesterol Clarity: What the HDL is Wrong With my Numbers. Las Vegas: Victory Belt Publishing Inc; 2013.
    1. Dekaban A. Plasma lipids in epileptic children treated with the high fat diet. Arch Neurol. 1966;15(2):177–84. doi: 10.1001/archneur.1966.00470140067009.
    1. Chesney D, Brouhard B, Wyllie E, Powaski K. Biochemical abnormalities of the ketogenic diet in children. Clin Pediatr. 1999;38(2):107–9. doi: 10.1177/000992289903800207.
    1. Schwartz R, Boyes S, Aynsley-Green A. Metabolic effects of three ketogenic diets in the treatment of severe epilepsy. Dev Med Child Neurol. 1989;31(2):152–60. doi: 10.1111/j.1469-8749.1989.tb03973.x.
    1. Katyal N, Koehler A, McGhee B, Foley C, Crumrine P. The ketogenic diet in refractory epilepsy: the experience of Children’s Hospital of Pittsburgh. Clin Pediatr. 2000;39(3):153–9. doi: 10.1177/000992280003900303.
    1. Ellenbroek J, van Dijck L, Töns H, Rabelink T, Carlotti F, Ballieux B, et al. Long-term ketogenic diet causes glucose intolerance and reduced beta and alpha cell mass but no weight loss in mice. Am J Physiol Endocrinol Metab. 2014;306(5):E552–8. doi: 10.1152/ajpendo.00453.2013.
    1. Bergqvist A. Long-term monitoring of the ketogenic diet: Do’s and Don’ts. Epilepsy Res. 2012;100(3):261–6. doi: 10.1016/j.eplepsyres.2011.05.020.
    1. Groesbeck D, Bluml R, Kossoff E. Long-term use of the ketogenic diet in the treatment of epilepsy. Dev Med Child Neurol. 2006;48(12):978–81. doi: 10.1017/S0012162206002143.
    1. Patel A, Pyzik P, Turner Z, Rubenstein J, Kossoff E. Long-term outcomes of children treated with the ketogenic diet in the past. Epilepsia. 2010;51(7):1277–82. doi: 10.1111/j.1528-1167.2009.02488.x.
    1. Brehm BJ, Seeley RJ, Daniels SR, D’Alessio DA. A randomized trial comparing a very low carbohydrate diet and a calorie-restricted low fat diet on body weight and cardiovascular risk factors in healthy women. J Clin Endocrinol Metab. 2003;88(4):1617–23. doi: 10.1210/jc.2002-021480.
    1. Shai I, Schwarzfuchs D, Henkin Y, Shahar DR, Witkow S, Greenberg I, et al. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med. 2008;359(3):229–41. doi: 10.1056/NEJMoa0708681.
    1. Volek JS, Phinney SD, Forsythe CE, Quann EE, Wood RJ, Puglisi MJ, et al. Carbohydrate restriction has a more favorable impact on the metabolic syndrome than a low fat diet. Lipids. 2009;44(4):297–309. doi: 10.1007/s11745-008-3274-2.
    1. Feinman RD, Volek JS. Low carbohydrate diets improve atherogenic dyslipidemia even in the absence of weight loss. Nutr Metab. 2006;3:24. doi: 10.1186/1743-7075-3-24.
    1. Sharman MJ, Gomez AL, Kraemer WJ, Volek JS. Very low-carbohydrate and low-fat diets affect fasting lipids and postprandial lipemia differently in overweight men. J Nutr. 2004;134(4):880–5.
    1. Sharman MJ, Kraemer WJ, Love DM, Avery NG, Gomez AL, Scheett TP, et al. A ketogenic diet favorably affects serum biomarkers for cardiovascular disease in normal-weight men. J Nutr. 2002;132(7):1879–85.
    1. Westman EC, Mavropoulos J, Yancy WS, Volek JS. A review of low-carbohydrate ketogenic diets. Curr Atheroscler Rep. 2003;5(6):476–83. doi: 10.1007/s11883-003-0038-6.
    1. Wood RJ, Volek JS, Davis SR, Dell’Ova C, Fernandez ML. Effects of a carbohydrate-restricted diet on emerging plasma markers for cardiovascular disease. Nutr Metab. 2006;3:19. doi: 10.1186/1743-7075-3-19.
    1. Volek JS, Sharman MJ, Forsythe CE. Modification of lipoproteins by very low-carbohydrate diets. J Nutr. 2005;135(6):1339–42.
    1. Volek JS, Westman EC. Very-low-carbohydrate weight-loss diets revisited. Cleve Clin J Med. 2002;69(11):849. doi: 10.3949/ccjm.69.11.849.
    1. Volek JS, Sharman MJ, Gomez AL, DiPasquale C, Roti M, Pumerantz A, et al. Comparison of a very low-carbohydrate and low-fat diet on fasting lipids, LDL subclasses, insulin resistance, and postprandial lipemic responses in overweight women. J Am Coll Nutr. 2004;23(2):177–84. doi: 10.1080/07315724.2004.10719359.
    1. Volek JS, Sharman MJ. Cardiovascular and hormonal aspects of very-low-carbohydrate ketogenic diets. Obes Res. 2004;12(Suppl 2):115s–23. doi: 10.1038/oby.2004.276.
    1. Volek JS, Sharman MJ, Gomez AL, Scheett TP, Kraemer WJ. An isoenergetic very low carbohydrate diet improves serum HDL cholesterol and triacylglycerol concentrations, the total cholesterol to HDL cholesterol ratio and postprandial pipemic responses compared with a low fat diet in normal weight, normolipidemic women. J Nutr. 2003;133(9):2756–61.
    1. Schoeler NE, Wood S, Aldridge V, Sander JW, Cross JH, Sisodiya SM. Ketogenic dietary therapies for adults with epilepsy: feasibility and classification of response. Epilepsy & behavior : E&B. 2014;37:77–81. doi: 10.1016/j.yebeh.2014.06.007.
    1. Sengupta P. The laboratory Rat: relating its Age with Human’s. Int J Prev Med. 2013;4(6):624–30.
    1. Tsuchiya N, Harada Y, Taki M, Minematsu S, Maemura S, Amagaya S. Age-related changes and sex differences on the serum chemistry values in Sprague–Dawley rats--I. 6–30 weeks of age. Exp Anim. 1995;43(5):671–8.
    1. Saito K, Ishikawa M, Murayama M, Urata M, Senoo Y, Toyoshima K, et al. Effects of sex, age, and fasting conditions on plasma lipidomic profiles of fasted Sprague–Dawley rats. PLoS ONE. 2013;9(11):e112266. doi: 10.1371/journal.pone.0112266.
    1. Ellington A, Kullo I. Atherogenic lipoprotein subprofiling. Adv Clin Chem. 2008;46:295–317. doi: 10.1016/S0065-2423(08)00408-3.
    1. Mudd J, Borlaug B, Johnston P, Kral B, Rouf R, Blumenthal R, et al. Beyond low-density lipoprotein cholesterol: defining the role of low-density lipoprotein heterogeneity in coronary artery disease. J Am Coll Cardiol. 2007;50(18):1735–41. doi: 10.1016/j.jacc.2007.07.045.
    1. Sacks F, Campos H. Clinical review 163: cardiovascular endocrinology: Low-density lipoprotein size and cardiovascular disease: a reappraisal. J Clin Endocrinol Metab. 2003;88(10):4525–32. doi: 10.1210/jc.2003-030636.
    1. Wierzbicki A. Quality as well as quantity? Beyond low-density lipoprotein-cholesterol - the role of particle size. Int J Clin Pract. 2007;61(11):1780–2. doi: 10.1111/j.1742-1241.2007.01571.x.
    1. Tantibhedhyangkul P, Hashim S, Van Itallie T. Effects of ingestion of long-chain triglycerides on glucose tolerance in man. Diabetes. 1967;16(11):796–9. doi: 10.2337/diab.16.11.796.
    1. Eckel R, Hanson A, Chen A, Berman J, Yost T, Brass E. Dietary substitution of medium-chain triglycerides improves insulin-mediated glucose metabolism in NIDDM subjects. Diabetes. 1992;41(5):641–7. doi: 10.2337/diab.41.5.641.
    1. Yost T, Erskine J, Gregg T, Podlecki D, Brass E, Eckel R. Dietary substitution of medium chain triglycerides in subjects with non-insulin-dependent diabetes mellitus in an ambulatory setting: impact on glycemic control and insulin-mediated glucose metabolism. J Am Coll Nutr. 1994;13(6):615–22. doi: 10.1080/07315724.1994.10718457.
    1. Kashiwaya Y, Pawlosky R, Markis W, King MT, Bergman C, Srivastava S, et al. A ketone ester diet increases brain malonyl-CoA and Uncoupling proteins 4 and 5 while decreasing food intake in the normal Wistar Rat. J Biol Chem. 2010;285(34):25950–6. doi: 10.1074/jbc.M110.138198.
    1. Senior B, Loridan L. Direct regulatory effect of ketones on lipolysis and on glucose concentrations in man. Nature. 1968;219(5149):83–4. doi: 10.1038/219083a0.
    1. Miles JM, Haymond MW, Gerich JE. Suppression of glucose production and stimulation of insulin secretion by physiological concentrations of ketone bodies in man. J Clin Endocrinol Metab. 1980;52(1):34–7. doi: 10.1210/jcem-52-1-34.
    1. Kristian HM, Thomas S, Niels HS, Thomas G, Gerrit van H. Systemic, cerebral and skeletal muscle ketone body and energy metabolism during acute hyper-D-β-hydroxybutyrataemia in post-absorptive healthy males. J Clin Endocrin Metabol. 2014. doi:10.1210/jc.2014-2608
    1. Owen OE, Morgan AP, Kemp HG, Sullivan JM, Herrera MG, Cahill GF. Brain metabolism during fasting. J Clin Invest. 1967;46(10):1589–95. doi: 10.1172/JCI105650.
    1. Papamandjaris AA, MacDougall DE, Jones PJ. Medium chain fatty acid metabolism and energy expenditure: obesity treatment implications. Life Sci. 1997;62(14):1203–15. doi: 10.1016/S0024-3205(97)01143-0.
    1. Linde R, Hasselbalch S, Topp S, Paulson O, Madsen P. Global cerebral blood flow and metabolism during acute hyperketonemia in the awake and anesthetized rat. J Cereb Blood Flow Metab. 2006;26(2):170–80. doi: 10.1038/sj.jcbfm.9600177.
    1. Azzam R, Azar N. Marked seizure reduction after MCT supplementation. Case reports in neurological medicine. 2013;2013:809151. doi: 10.1155/2013/809151.
    1. Corwin RL. Binge-type eating induced by limited access in rats does not require energy restriction on the previous day. Appetite. 2004;42(2):139–42. doi: 10.1016/j.appet.2003.08.010.
    1. Keenan KP, Ballam GC, Dixit R, Soper KA, Laroque P, Mattson BA, et al. The effects of diet, overfeeding and moderate dietary restriction on Sprague–Dawley rat survival, disease and toxicology. J Nutr. 1997;127(5 Suppl):851S–6.
    1. Keenan KP, Smith PF, Hertzog P, Soper K, Ballam GC, Clark RL. The effects of overfeeding and dietary restriction on Sprague–Dawley Rat survival and early pathology biomarkers of aging. Toxicol Pathol. 1994
    1. Kashiwaya Y, Bergman C, Lee J-H, Wan R, King M, Mughal M, et al. A ketone ester diet exhibits anxiolytic and cognition-sparing properties, and lessens amyloid and tau pathologies in a mouse model of Alzheimer’s disease. Neurobiol Aging. 2013;34(6):1530–9. doi: 10.1016/j.neurobiolaging.2012.11.023.
    1. Birkhahn R, McCombs C, Clemens R, Hubbs J. Potential of the monoglyceride and triglyceride of DL-3-hydroxybutyrate for parenteral nutrition: synthesis and preliminary biological testing in the rat. Nutrition. 1997;13(3):213–9. doi: 10.1016/S0899-9007(96)00404-2.
    1. Puchowicz M, Smith C, Bomont C, Koshy J, David F, Brunengraber H. Dog model of therapeutic ketosis induced by oral administration of R, S-1,3-butanediol diacetoacetate. J Nutr Biochem. 2000;11(5):281–7. doi: 10.1016/S0955-2863(00)00079-6.
    1. Brunengraber H. Potential of ketone body esters for parenteral and oral nutrition. Nutrition. 1997;13(3):233–5. doi: 10.1016/S0899-9007(96)00409-1.

Source: PubMed

3
Abonneren