Association between suspected Zika virus disease during pregnancy and giving birth to a newborn with congenital microcephaly: a matched case-control study

Ticiane Henriques Santa Rita, Renata Barcelos Barra, Gisele Pasquali Peixoto, Pedro Goes Mesquita, Gustavo Barcelos Barra, Ticiane Henriques Santa Rita, Renata Barcelos Barra, Gisele Pasquali Peixoto, Pedro Goes Mesquita, Gustavo Barcelos Barra

Abstract

Objective: In early 2015, an outbreak of an acute exanthematous illness with dengue-like symptoms occurred in northeastern Brazil. By the end of the same year, an unexpected increase in the number of cases of microcephaly was observed in the region. The microcephaly outbreak cause was unknown and rumors pointing to various potential causes arose. Since we were unaware at the time if this scenario would attract the interest of the broader scientific community, due to the neglected regions associated and as often happens with many others health conditions related to infectious diseases in Latin America. This coupled with the fact that diagnostic testing for Zika virus was not available, prompted us to design a study that could demonstrate the correlation between the development of an exanthematous illness with Zika-like symptoms during pregnancy and the delivery of a newborn with congenital microcephaly.

Results: Mothers who experienced symptoms associated with the Zika virus during pregnancy had 10 times higher odds of delivering newborns with congenital microcephaly when compared with mothers who did not exhibit Zika-like symptoms. Thus, the acute exanthematous illness outbreak could be associated with the congenital microcephaly outbreak. We could not distinguish which virus caused the acute exanthematous illness in the study subjects (Zika, dengue or chikungunya), but these results could help to reduce the misquided speculation in regards to the cause of the microcephaly and could have expedited public health policies intended for controlling the mosquito vector. In addition to the lower head circumference, microcephalic neonates also had lower thoracic circumference, lower height and lower weight compared to non-microcephalic babies suggesting intrauterine growth restriction. Additionally, we found borderline association between mothers classified as homemakers and, who had past dengue infections with microcephaly. Prior contraction of dengue virus seems to play a role in the risk for the condition reflecting the domestication of the Aedes Aegypti and the enhancement of the Zika virus infection by dengue antibodies, respectively. The limitations of this study are: (a) participants recall bias, (b) absence of laboratory test results for Zika virus and other arboviruses and (c) incomplete test results for other pathogens that could lead to microcephaly. The study protocol was registered at ClinicalTrial.gov under the identifier NCT02741882. Registered on April 13th, 2016.

Keywords: Case–control study; Microcephaly; Zika virus.

Figures

Fig. 1
Fig. 1
Maps of Sergipe and South America (insert) showing the place of residence of each case together with its two matched controls included in the study. Map templete: ©OpenStreetMaps contributors (open-source). ©CartoDB, CartoDB attribution

References

    1. Pessoa R, Patriota JV, Lourdes de Souza M, Felix AC, Mamede N, Sanabani SS. Investigation into an outbreak of dengue-like illness in Pernambuco, Brazil, revealed a cocirculation of Zika, Chikungunya, and dengue virus type 1. Medicine. 2016;95(12):e3201. doi: 10.1097/MD.0000000000003201.
    1. Cardoso CW, Paploski IA, Kikuti M, Rodrigues MS, Silva MM, Campos GS, Sardi SI, Kitron U, Reis MG, Ribeiro GS. Outbreak of exanthematous illness associated with Zika, chikungunya, and dengue viruses, Salvador¸ Brazil. Emerg Infect Dis. 2015;21(12):2274–2276. doi: 10.3201/eid2112.151167.
    1. Campos GS, Bandeira AC, Sardi SI. Zika virus outbreak, Bahia, Brazil. Emerg Infect Dis. 2015;21(10):1885–1886. doi: 10.3201/eid2110.150847.
    1. Schuler-Faccini L, Ribeiro EM, Feitosa IM, Horovitz DD, Cavalcanti DP, Pessoa A, Doriqui MJ, Neri JI, Neto JM, Wanderley HY, et al. Possible association between Zika virus infection and microcephaly—Brazil, 2015. MMWR Morb Mortal Wkly Rep. 2016;65(3):59–62. doi: 10.15585/mmwr.mm6503e2.
    1. McNeil DG. Zika virus rumors and theories that you should doubt. New York: The New York Times; 2016.
    1. Calvet G, Aguiar RS, Melo AS, Sampaio SA, de Filippis I, Fabri A, Araujo ES, de Sequeira PC, de Mendonca MC, de Oliveira L, et al. Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study. Lancet Infect Dis. 2016;16(6):653–660. doi: 10.1016/S1473-3099(16)00095-5.
    1. Fauci AS, Morens DM. Zika virus in the Americas—yet another arbovirus threat. N Engl J Med. 2016;374(7):601–604. doi: 10.1056/NEJMp1600297.
    1. Heymann DL, Hodgson A, Sall AA, Freedman DO, Staples JE, Althabe F, Baruah K, Mahmud G, Kandun N, Vasconcelos PF, et al. Zika virus and microcephaly: why is this situation a PHEIC? Lancet. 2016;387(10020):719–721. doi: 10.1016/S0140-6736(16)00320-2.
    1. Rasmussen SA, Jamieson DJ, Honein MA, Petersen LR. Zika virus and birth defects—reviewing the evidence for causality. N Engl J Med. 2016;374(20):1981–1987. doi: 10.1056/NEJMsr1604338.
    1. Johansson MA, Mier-y-Teran-Romero L, Reefhuis J, Gilboa SM, Hills SL. Zika and the risk of microcephaly. N Engl J Med. 2016;375(1):1–4. doi: 10.1056/NEJMp1605367.
    1. Brasil P, Pereira JP, Jr, Moreira ME, Ribeiro Nogueira RM, Damasceno L, Wakimoto M, Rabello RS, Valderramos SG, Halai UA, Salles TS, et al. Zika virus infection in pregnant women in Rio de Janeiro. N Engl J Med. 2016;375(24):2321–2334. doi: 10.1056/NEJMoa1602412.
    1. Screening, assessment and management of neonates and infants with complications associated with Zika virus exposure in utero. .
    1. Duffy MR, Chen TH, Hancock WT, Powers AM, Kool JL, Lanciotti RS, Pretrick M, Marfel M, Holzbauer S, Dubray C, et al. Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med. 2009;360(24):2536–2543. doi: 10.1056/NEJMoa0805715.
    1. PAHO WHO interim case definition, “Suspected case of Zika virus disease”. 2016.
    1. Aragao MDFV, van der Linden V, Brainer-Lima AM, Coeli RR, Rocha MA, da Silva PS, de Carvalho MDCG, van der Linden A, de Holanda AC, Valenca MM. Clinical features and neuroimaging (CT and MRI) findings in presumed Zika virus related congenital infection and microcephaly: retrospective case series study. Bmj. 2016;353:i1901. doi: 10.1136/bmj.i1901.
    1. Moore CA, Staples JE, Dobyns WB, Pessoa A, Ventura CV, Fonseca EB, Ribeiro EM, Ventura LO, Neto NN, Arena JF, et al. Characterizing the pattern of anomalies in congenital Zika syndrome for pediatric clinicians. JAMA Pediatr. 2016;171:288. doi: 10.1001/jamapediatrics.2016.3982.
    1. Paz-Bailey G, Rosenberg ES, Doyle K, Munoz-Jordan J, Santiago GA, Klein L, Perez-Padilla J, Medina FA, Waterman SH, Gubern CG, et al. Persistence of Zika virus in body fluids—preliminary report. N Engl J Med. 2016
    1. Rabe IB, Staples JE, Villanueva J, Hummel KB, Johnson JA, Rose L, MTS. Hills S, Wasley A, Fischer M, et al. Interim guidance for interpretation of Zika virus antibody test results. MMWR Morb Mortal Wkly Rep. 2016;65(21):543–546. doi: 10.15585/mmwr.mm6521e1.
    1. Cugola FR, Fernandes IR, Russo FB, Freitas BC, Dias JL, Guimaraes KP, Benazzato C, Almeida N, Pignatari GC, Romero S, et al. The Brazilian Zika virus strain causes birth defects in experimental models. Nature. 2016;534(7606):267–271.
    1. Halstead SB. Biologic evidence required for Zika disease enhancement by dengue antibodies. Emerg Infect Dis. 2017;23(4):569–573. doi: 10.3201/eid2304.161879.
    1. Kopec JA, Esdaile JM. Bias in case-control studies. A review. J Epidemiol Community Health. 1990;44(3):179–186. doi: 10.1136/jech.44.3.179.
    1. Franca GV, Schuler-Faccini L, Oliveira WK, Henriques CM, Carmo EH, Pedi VD, Nunes ML, Castro MC, Serruya S, Silveira MF, et al. Congenital Zika virus syndrome in Brazil: a case series of the first 1501 livebirths with complete investigation. Lancet. 2016;388:891. doi: 10.1016/S0140-6736(16)30902-3.

Source: PubMed

3
Abonneren