Coenzyme Q10 supplementation improves adipokine profile in dyslipidemic individuals: a randomized controlled trial

Peiwen Zhang, Ke Chen, Taiping He, Honghui Guo, Xu Chen, Peiwen Zhang, Ke Chen, Taiping He, Honghui Guo, Xu Chen

Abstract

Background: In previous study, we found that coenzyme Q10 (CoQ10) improved glucolipid profile in dyslipidemic individuals, but the mechanism is not yet clear. Adipokines have been demonstrated to be vital targets of metabolic diseases. The hypothesis that adipokines mediate the association of CoQ10 on glucolipid metabolism needs to be further studied in human.

Methods: In this randomized, double-blinded, placebo-controlled trial, 101 dyslipidemic individuals were administrated to 120 mg CoQ10 or placebo for 24 weeks. Anthropometric parameters, glucolipid profile, serum total adiponectin, leptin, and resistin were evaluated at baseline, week 12 and week 24.

Results: CoQ10 treatment significantly increased serum adiponectin levels at week 12 (165 [0, 362] ng/mL, p < 0.001) and at week 24 (523 [0, 1056] ng/mL, p < 0.001]), which was significant different compared with placebo (p < 0.001). The increase of adiponectin was negative associated with decrease in index of homeostasis model assessment of insulin resistance (HOMA-IR, r = - 0.465, p = 0.001), triglyceride (TG, r = - 0.297, p = 0.047), and low-density lipoprotein cholesterol (LDL-c, r = - 0.440, p = 0.002) at week 24 only in CoQ10-treated group. Resistin was reduced by CoQ10 only at week 24 (- 1.19 [- 4.35, 0.00] ng/mL, p < 0.001), which was significant different compared with placebo (p < 0.001). Reduction of resistin was positively correlated with the change in HOMA-IR (r = 0.343, p = 0.021) and TG (r = 0.323, p = 0.030) at week 24 in CoQ10-treated group but not placebo group. Leptin was not influenced by CoQ10 treatment. Mediation analysis indicated that the improvement of HOMA-IR, TG and LDL-c by CoQ10 was mediated by adiponectin but not resistin.

Conclusions: Our study shows that CoQ10 ameliorates glucolipid profile and adipokines dysfunction in dyslipidemic patients in 24 weeks' intervention. The beneficial effect of CoQ10 on glucolipid profile was mediated by adiponectin.

Trial registration: ClinicalTrials.gov, NCT02407548. Registered on April 3, 2015, https://ichgcp.net/clinical-trials-registry/NCT02407548 .

Keywords: Adipokine; Clinical trial; Coenzyme Q10; Dietary supplement; Dyslipidemia; Mediating effect.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Mediation model for the association between CoQ10 intervention and glucolipid profiles with adipokines as mediators. a represents the regression coefficients for the association between intervention grouping and adipokines; b represents the regression coefficients for the association between adipokines and glucolipid profiles; a*b equals to the mediation effect of adipokines between intervention grouping and glucolipid profiles; c’ represents the regression coefficients for the association between intervention grouping and glucolipid profiles, that is the directly effect of them
Fig. 2
Fig. 2
Flow diagram and study design
Fig. 3
Fig. 3
Correlation of adipokines with glucolipid profile. Correlation analysis between the 24-week change in serum adiponectin and HOMA-IR index (a), LDL-c (b) and TG (c) in placebo and CoQ10 group, respectively. Correlation analysis between the 24-week change in serum resistin and HOMA-IR index (d) and TG (e) in placebo and CoQ10 group, respectively. (n = 50 in placebo and = 51 in CoQ10 group). The data were evaluated by Pearson correlation coefficient (r). HOMA-IR, homeostasis model assessment of insulin resistance; LDL-c, low-density lipoprotein cholesterol; TG, triglyceride

References

    1. Zhang M, Deng Q, Wang L, Huang Z, Zhou M, Li Y, Zhao Z, Zhang Y, Wang L. Prevalence of dyslipidemia and achievement of low-density lipoprotein cholesterol targets in Chinese adults: a nationally representative survey of 163,641 adults. Int J Cardiol. 2018;260:196–203.
    1. Lee YH, Lee SG, Lee MH, Kim JH, Lee BW, Kang ES, Lee HC, Cha BS. Serum cholesterol concentration and prevalence, awareness, treatment, and control of high low-density lipoprotein cholesterol in the Korea National Health and Nutrition Examination Surveys 2008–2010: Beyond the Tip of the Iceberg. J Am Heart Assoc. 2014;3:e650.
    1. Carroll MD, Lacher DA, Sorlie PD, Cleeman JI, Gordon DJ, Wolz M, Grundy SM, Johnson CL. Trends in serum lipids and lipoproteins of adults, 1960–2002. JAMA. 2005;294:1773–1781.
    1. Arai H, Yamamoto A, Matsuzawa Y, Saito Y, Yamada N, Oikawa S, Mabuchi H, Teramoto T, Sasaki J, Nakaya N, Itakura H, Ishikawa Y, Ouchi Y, Horibe H, Shirahashi N, Kita T. Prevalence of metabolic syndrome in the general Japanese population in 2000. J Atheroscler Thromb. 2006;13:202–208.
    1. Casula M, Mozzanica F, Scotti L, Tragni E, Pirillo A, Corrao G, Catapano AL. Statin use and risk of new-onset diabetes: a meta-analysis of observational studies. Nutr Metab Cardiovasc Dis. 2017;27:396–406.
    1. Preiss D, Seshasai SR, Welsh P, Murphy SA, Ho JE, Waters DD, DeMicco DA, Barter P, Cannon CP, Sabatine MS, Braunwald E, Kastelein JJ, de Lemos JA, Blazing MA, Pedersen TR, Tikkanen MJ, Sattar N, Ray KK. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: a meta-analysis. JAMA. 2011;305:2556–2564.
    1. Unamuno X, Gomez-Ambrosi J, Rodriguez A, Becerril S, Fruhbeck G, Catalan V. Adipokine dysregulation and adipose tissue inflammation in human obesity. Eur J Clin Invest. 2018;48:e12997.
    1. Vekic J, Zeljkovic A, Stefanovic A, Jelic-Ivanovic Z, Spasojevic-Kalimanovska V. Obesity and dyslipidemia. Metabolism. 2019;92:71–81.
    1. Schindler M, Pendzialek M, Grybel KJ, Seeling T, Gurke J, Fischer B, Navarrete SA. Adiponectin stimulates lipid metabolism via AMPK in rabbit blastocysts. Hum Reprod. 2017;32:1382–1392.
    1. Ayer A, Macdonald P, Stocker R. CoQ(1)(0) function and role in heart failure and ischemic heart disease. Annu Rev Nutr. 2015;35:175–213.
    1. Kalen A, Appelkvist EL, Dallner G. Age-related changes in the lipid compositions of rat and human tissues. Lipids. 1989;24:579–584.
    1. Folkers K, Vadhanavikit S, Mortensen SA. Biochemical rationale and myocardial tissue data on the effective therapy of cardiomyopathy with coenzyme Q10. Proc Natl Acad Sci U S A. 1985;82:901–904.
    1. Shults CW, Haas RH, Passov D, Beal MF. Coenzyme Q10 levels correlate with the activities of complexes I and II/III in mitochondria from parkinsonian and nonparkinsonian subjects. Ann Neurol. 1997;42:261–264.
    1. Kishi T, Kishi H, Watanabe T, Folkers K. Bioenergetics in clinical medicine. XI. Studies on coenzyme Q and diabetes mellitus. J Med. 1976;7:307–321.
    1. Stojanovic M, Radenkovic M. A meta-analysis of randomized and placebo-controlled clinical trials suggests that coenzyme Q10 at low dose improves glucose and HbA1c levels. Nutr Res. 2017;38:1–12.
    1. Suksomboon N, Poolsup N, Juanak N. Effects of coenzyme Q10 supplementation on metabolic profile in diabetes: a systematic review and meta-analysis. J Clin Pharm Ther. 2015;40:413–418.
    1. Zhang P, Yang C, Guo H, Wang J, Lin S, Li H, Yang Y, Ling W. Treatment of coenzyme Q10 for 24 weeks improves lipid and glycemic profile in dyslipidemic individuals. J Clin Lipidol. 2018;12:417–427.
    1. Anderson RL, Hamman RF, Savage PJ, Saad MF, Laws A, Kades WW, Sands RE, Cefalu W. Exploration of simple insulin sensitivity measures derived from frequently sampled intravenous glucose tolerance (FSIGT) tests. The Insulin Resistance Atherosclerosis Study. Am J Epidemiol. 1995;142:724–732.
    1. Chew GT, Watts GF, Davis TM, Stuckey BG, Beilin LJ, Thompson PL, Burke V, Currie PJ. Hemodynamic effects of fenofibrate and coenzyme Q10 in type 2 diabetic subjects with left ventricular diastolic dysfunction. Diabetes Care. 2008;31:1502–1509.
    1. Preacher KJ, Hayes AF. Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav Res Methods. 2008;40:879–891.
    1. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SJ, Spertus JA, Costa F. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005;112:2735–2752.
    1. Mehrdadi P, Kolahdouz MR, Alipoor E, Eshraghian MR, Esteghamati A, Hosseinzadeh-Attar MJ. The effect of coenzyme Q10 supplementation on circulating levels of novel adipokine adipolin/CTRP12 in overweight and obese patients with type 2 diabetes. Exp Clin Endocrinol Diabetes. 2017;125:156–162.
    1. Raygan F, Rezavandi Z, Dadkhah TS, Farrokhian A, Asemi Z. The effects of coenzyme Q10 administration on glucose homeostasis parameters, lipid profiles, biomarkers of inflammation and oxidative stress in patients with metabolic syndrome. Eur J Nutr. 2016;55:2357–2364.
    1. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL, Et A. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996;334:292–295.
    1. Bidulescu A, Dinh PJ, Sarwary S, Forsyth E, Luetke MC, King DB, Liu J, Davis SK, Correa A. Associations of leptin and adiponectin with incident type 2 diabetes and interactions among African Americans: the Jackson heart study. BMC Endocr Disord. 2020;20:31.
    1. Ostlund RJ, Yang JW, Klein S, Gingerich R. Relation between plasma leptin concentration and body fat, gender, diet, age, and metabolic covariates. J Clin Endocrinol Metab. 1996;81:3909–3913.
    1. Farsi F, Mohammadshahi M, Alavinejad P, Rezazadeh A, Zarei M, Engali KA. Functions of coenzyme Q10 supplementation on liver enzymes, markers of systemic inflammation, and adipokines in patients affected by nonalcoholic fatty liver disease: a double-blind, placebo-controlled, randomized clinical trial. J Am Coll Nutr. 2016;35:346–353.
    1. Gholami M, Zarei P, Sadeghi Sedeh B, Rafiei F, Khosrowbeygi A. Effects of coenzyme Q10 supplementation on serum values of adiponectin, leptin, 8-isoprostane and malondialdehyde in women with type 2 diabetes. Gynecol Endocrinol. 2018;34:1059–1063.
    1. Bagheri NN, Mozaffari-Khosravi H, Najarzadeh A, Salehifar E. The effect of coenzyme Q10 supplementation on pro-inflammatory factors and adiponectin in mildly hypertensive patients: a randomized, double-blind, placebo-controlled trial. Int J Vitam Nutr Res. 2015;85:156–164.
    1. Dludla PV, Orlando P, Silvestri S, Marcheggiani F, Cirilli I, Nyambuya TM, Mxinwa V, Mokgalaboni K, Nkambule BB, Johnson R, Mazibuko-Mbeje SE, Muller C, Louw J, Tiano L. Coenzyme Q10 supplementation improves adipokine levels and alleviates inflammation and lipid peroxidation in conditions of metabolic syndrome: a meta-analysis of randomized controlled trials. Int J Mol Sci 2020;21.
    1. Moazen M, Mazloom Z, Ahmadi A, Dabbaghmanesh MH, Roosta S. Effect of coenzyme Q10 on glycaemic control, oxidative stress and adiponectin in type 2 diabetes. J Pak Med Assoc. 2015;65:404–408.
    1. Gokbel H, Gergerlioglu HS, Okudan N, Gul I, Buyukbas S, Belviranli M. Effects of coenzyme Q10 supplementation on plasma adiponectin, interleukin-6, and tumor necrosis factor-alpha levels in men. J Med Food. 2010;13:216–218.
    1. Maeda N, Funahashi T, Matsuzawa Y, Shimomura I. Adiponectin, a unique adipocyte-derived factor beyond hormones. Atherosclerosis. 2020;292:1–9.
    1. Fang H, Judd RL. Adiponectin regulation and function. Compr Physiol. 2018;8:1031–1063.
    1. Rahmani E, Jamilian M, Samimi M, Zarezade MM, Aghadavod E, Akbari E, Tamtaji OR, Asemi Z. The effects of coenzyme Q10 supplementation on gene expression related to insulin, lipid and inflammation in patients with polycystic ovary syndrome. Gynecol Endocrinol. 2018;34:217–222.
    1. Lee TI, Kao YH, Chen YC, Chen YJ. Proinflammatory cytokine and ligands modulate cardiac peroxisome proliferator-activated receptors. Eur J Clin Invest. 2009;39:23–30.
    1. Patel L, Buckels AC, Kinghorn IJ, Murdock PR, Holbrook JD, Plumpton C, Macphee CH, Smith SA. Resistin is expressed in human macrophages and directly regulated by PPAR gamma activators. Biochem Biophys Res Commun. 2003;300:472–476.
    1. Bo S, Gambino R, Pagani A, Guidi S, Gentile L, Cassader M, Pagano GF. Relationships between human serum resistin, inflammatory markers and insulin resistance. Int J Obes (Lond) 2005;29:1315–1320.
    1. Bokarewa M, Nagaev I, Dahlberg L, Smith U, Tarkowski A. Resistin, an adipokine with potent proinflammatory properties. J Immunol. 2005;174:5789–5795.
    1. Nagaev I, Bokarewa M, Tarkowski A, Smith U. Human resistin is a systemic immune-derived proinflammatory cytokine targeting both leukocytes and adipocytes. PLoS ONE. 2006;1:e31.
    1. Reilly MP, Lehrke M, Wolfe ML, Rohatgi A, Lazar MA, Rader DJ. Resistin is an inflammatory marker of atherosclerosis in humans. Circulation. 2005;111:932–939.
    1. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA. The hormone resistin links obesity to diabetes. Nature. 2001;409:307–312.
    1. Chu S, Ding W, Li K, Pang Y, Tang C. Plasma resistin associated with myocardium injury in patients with acute coronary syndrome. Circ J. 2008;72:1249–1253.
    1. Weber C, Bysted A, Holmer G. Coenzyme Q10 in the diet–daily intake and relative bioavailability. Mol Aspects Med. 1997;18(Suppl):S251–S254.

Source: PubMed

3
Abonneren