Population Pharmacokinetics of Pyronaridine in Pediatric Malaria Patients

Amal Ayyoub, Janthima Methaneethorn, Michael Ramharter, Abdoulaye A Djimde, Mamadou Tekete, Stephan Duparc, Isabelle Borghini-Fuhrer, Jang-Sik Shin, Lawrence Fleckenstein, Amal Ayyoub, Janthima Methaneethorn, Michael Ramharter, Abdoulaye A Djimde, Mamadou Tekete, Stephan Duparc, Isabelle Borghini-Fuhrer, Jang-Sik Shin, Lawrence Fleckenstein

Abstract

Pyramax is a pyronaridine (PYR)-artesunate (PA) combination for the treatment of uncomplicated malaria in adult and pediatric patients. A granule formulation of this combination is being developed for treatment of uncomplicated P. falciparum and P. vivax malaria in pediatric patients. The aims of this study were to describe the pharmacokinetics of PYR using a total of 1,085 blood PYR concentrations available from 349 malaria patients younger than 16 years of age with mild to moderate uncomplicated malaria and to confirm the dosing regimen for the pediatric granule formulation. Nonlinear mixed-effects modeling using NONMEM software was used to obtain the pharmacokinetic and inter- and intraindividual variability parameter estimates. The population pharmacokinetics of PYR were described by a two-compartment model with first-order absorption and elimination. Allometric scaling was implemented to address the effect of body weight on clearance and volume parameters. The final parameter estimates of PYR apparent clearance (CL/F), central volume of distribution (V2/F), peripheral volume of distribution (V3/F), intercompartmental clearance (Q/F), and absorption rate constant (Ka) were 377 liters/day, 2,230 liters, 3,230 liters, 804 liters/day and 17.9 day(-1), respectively. Covariate model building conducted using forward addition (P < 0.05) followed by backward elimination (P < 0.001) yielded two significant covariate-parameter relationships, i.e., age on V2/F and formulation on Ka. Evaluation of bootstrapping, visual predictive check, and condition number indicated that the final model displayed satisfactory robustness, predictive power, and stability. Simulations of PYR concentration-time profiles generated from the final model show similar exposures across pediatric weight ranges, supporting the proposed labeling for weight-based dosing of Pyramax granules. (These studies have been registered at ClinicalTrials.gov under registration no. NCT00331136 [phase II study] and NCT00541385, NCT00403260, NCT00422084, and NCT00440999 [phase III studies]. The most recent phase III study was registered at pactr.org under registration no. PACTR201105000286876.).

Copyright © 2016 Ayyoub et al.

Figures

FIG 1
FIG 1
Goodness of fit plots of pyronaridine for the final model. The solid lines in the top panels are lines of identity. The broken lines are smoothing lines.
FIG 2
FIG 2
Visual predictive check of the final model. The diamonds represent the observed concentrations, the dashed red lines represent the 5th and 95th percentiles, and the solid red line represents the 50th percentile obtained from the simulations. The shaded areas and corresponding dashed lines represent the simulated data prediction intervals about the observed data percentiles.
FIG 3
FIG 3
Distribution of interindividual variability for pyronaridine clearance from the central compartment (CL/F) (ETA1), volume of the central compartment (V2/F) (ETA2), intercompartmental clearance (Q/F) (ETA3), volume of the peripheral compartment (V3/F) (ETA4), and absorption rate constant (Ka) (ETA5) for the final model.
FIG 4
FIG 4
Fiftieth percentile simulated pyronaridine concentrations for a 5-kg, 6-month-old patient and a 7-kg, 6-month-old patient administered 1 sachet, an 8-kg, 7-month-old patient and a 14-kg, 3-year-old patient administered 2 sachets, and a 15-kg, 3-year-old patient and a 19-kg, 5-year-old patient administered 3 sachets.
FIG 5
FIG 5
Simulated pyronaridine AUC0–∞ (mg · day/liter) versus weight (kg) for malaria-infected subjects after the administration of the tablet dosage form for those weighing ≥20 kg and the granule dosage form for those weighing <20 kg.

References

    1. WHO. 2013. World malaria report. WHO, Geneva, Switzerland: .
    1. Kurth F, Belard S, Adegnika AA, Gaye O, Kremsner PG, Ramharter M. 2010. Do paediatric drug formulations of artemisinin combination therapies improve the treatment of children with malaria? A systematic review and meta-analysis. Lancet Infect Dis 10:125–132. doi:10.1016/S1473-3099(09)70327-5.
    1. Croft SL, Duparc S, Arbe-Barnes SJ, Craft JC, Shin CS, Fleckenstein L, Borghini-Fuhrer I, Rim HJ. 2012. Review of pyronaridine anti-malarial properties and product characteristics. Malar J 11:270. doi:10.1186/1475-2875-11-270.
    1. Kurth F, Pongratz P, Belard S, Mordmuller B, Kremsner PG, Ramharter M. 2009. In vitro activity of pyronaridine against Plasmodium falciparum and comparative evaluation of anti-malarial drug susceptibility assays. Malar J 8:79. doi:10.1186/1475-2875-8-79.
    1. Ramharter M, Kurth F, Schreier AC, Nemeth J, Glasenapp I, Belard S, Schlie M, Kammer J, Koumba PK, Cisse B, Mordmuller B, Lell B, Issifou S, Oeuvray C, Fleckenstein L, Kremsner PG. 2008. Fixed-dose pyronaridine-artesunate combination for treatment of uncomplicated falciparum malaria in pediatric patients in Gabon. J Infect Dis 198:911–919. doi:10.1086/591096.
    1. Duparc S, Borghini-Fuhrer I, Craft CJ, Arbe-Barnes S, Miller RM, Shin CS, Fleckenstein L. 2013. Safety and efficacy of pyronaridine-artesunate in uncomplicated acute malaria: an integrated analysis of individual patient data from six randomized clinical trials. Malar J 12:70. doi:10.1186/1475-2875-12-70.
    1. Kayentao K, Doumbo OK, Penali LK, Offianan AT, Bhatt KM, Kimani J, Tshefu AK, Kokolomami JH, Ramharter M, de Salazar PM, Tiono AB, Ouedraogo A, Bustos MD, Quicho F, Borghini-Fuhrer I, Duparc S, Shin CS, Fleckenstein L. 2012. Pyronaridine-artesunate granules versus artemether-lumefantrine crushed tablets in children with Plasmodium falciparum malaria: a randomized controlled trial. Malar J 11:364. doi:10.1186/1475-2875-11-364.
    1. Rueangweerayut R, Phyo AP, Uthaisin C, Poravuth Y, Binh TQ, Tinto H, Penali LK, Valecha N, Tien NT, Abdulla S, Borghini-Fuhrer I, Duparc S, Shin CS, Fleckenstein L, Pyronaridine-Artesunate Study Team. 2012. Pyronaridine-artesunate versus mefloquine plus artesunate for malaria. N Engl J Med 366:1298–1309. doi:10.1056/NEJMoa1007125.
    1. Tshefu AK, Gaye O, Kayentao K, Thompson R, Bhatt KM, Sesay SS, Bustos DG, Tjitra E, Bedu-Addo G, Borghini-Fuhrer I, Duparc S, Shin CS, Fleckenstein L, Pyronaridine-artesunate Study Team. 2010. Efficacy and safety of a fixed-dose oral combination of pyronaridine-artesunate compared with artemether-lumefantrine in children and adults with uncomplicated Plasmodium falciparum malaria: a randomised non-inferiority trial. Lancet 375:1457–1467. doi:10.1016/S0140-6736(10)60322-4.
    1. Poravuth Y, Socheat D, Rueangweerayut R, Uthaisin C, Pyae Phyo A, Valecha N, Rao BH, Tjitra E, Purnama A, Borghini-Fuhrer I, Duparc S, Shin CS, Fleckenstein L. 2011. Pyronaridine-artesunate versus chloroquine in patients with acute Plasmodium vivax malaria: a randomized, double-blind, non-inferiority trial. PLoS One 6:e14501. doi:10.1371/journal.pone.0014501.
    1. Morris CA, Dueker SR, Lohstroh PN, Wang LQ, Fang XP, Jung D, Lopez-Lazaro L, Baker M, Duparc S, Borghini-Fuhrer I, Pokorny R, Shin JS, Fleckenstein L. 2015. Mass balance and metabolism of the antimalarial pyronaridine in healthy volunteers. Eur J Drug Metab Pharmacokinet 40:75–86. doi:10.1007/s13318-014-0182-0.
    1. Naik H, Imming P, Schmidt MS, Murry DJ, Fleckenstein L. 2007. Development and validation of a liquid chromatography-mass spectrometry assay for the determination of pyronaridine in human blood for application to clinical pharmacokinetic studies. J Pharm Biomed Anal 45:112–119. doi:10.1016/j.jpba.2007.06.018.
    1. Chen YC, Fleckenstein L. 2001. Improved assay method for the determination of pyronaridine in plasma and whole blood by high-performance liquid chromatography for application to clinical pharmacokinetic studies. J Chromatogr B Biomed Sci Appl 752:39–46. doi:10.1016/S0378-4347(00)00512-0.
    1. Blessborn D, Lindegardh N, Ericsson O, Hellgren U, Bergqvist Y. 2003. Determination of pyronaridine in whole blood by automated solid phase extraction and high-performance liquid chromatography. Ther Drug Monit 25:264–270. doi:10.1097/00007691-200306000-00003.
    1. WHO. 2016. The WHO Child Growth Standards. WHO, Geneva, Switzerland: .
    1. Sharma V, McNeill JH. 2009. To scale or not to scale: the principles of dose extrapolation. Br J Pharmacol 157:907–921. doi:10.1111/j.1476-5381.2009.00267.x.
    1. Mandema JW, Verotta D, Sheiner LB. 1992. Building population pharmacokinetic-pharmacodynamic models. I. Models for covariate effects. J Pharmacokinet Biopharm 20:511–528.
    1. Funk RS, Brown JT, Abdel-Rahman SM. 2012. Pediatric pharmacokinetics: human development and drug disposition. Pediatr Clin North Am 59:1001–1016. doi:10.1016/j.pcl.2012.07.003.
    1. Anderson BJ, Holford NH. 2009. Mechanistic basis of using body size and maturation to predict clearance in humans. Drug Metab Pharmacokinet 24:25–36. doi:10.2133/dmpk.24.25.
    1. Anderson BJ, Allegaert K, Holford NH. 2006. Population clinical pharmacology of children: general principles. Eur J Pediatr 165:741–746. doi:10.1007/s00431-006-0188-y.

Source: PubMed

3
Abonneren