The Biological Activities of Oleocanthal from a Molecular Perspective

Kok-Lun Pang, Kok-Yong Chin, Kok-Lun Pang, Kok-Yong Chin

Abstract

Oleocanthal is a minor constituent of olive oil with strong anti-inflammatory activities. Since the pathogenesis of many chronic diseases involves inflammatory and oxidative components, oleocanthal is a promising agent to prevent these conditions. This review aimed to summarise the current beneficial health effects of oleocanthal and the molecular basis of its biological actions. The anti-inflammatory, antioxidative, antimicrobial, anticancer and neuroprotective activities of oleocanthal have been examined by previous studies. Of these, studies on the anticancer effects have been the most extensive. Oleocanthal was reported to suppress melanoma, breast, liver, and colon cancer cells. Neurological studies focused on the effects of oleocanthal against Alzheimer’s disease. Oleocanthal improved clearance of the amyloid beta protein from neurons and reduced the inflammation of astrocytes. Despite the positive results, validation of the biological effects of oleocanthal in animal disease models is limited and should be emphasized in the future. As a conclusion, oleocanthal may act together with other bioactive compounds in olive oil to achieve its therapeutic potential. The use of oleocanthal alone as a single therapeutic measure awaits validation from future studies.

Keywords: Alzheimer’s disease; antioxidant; cancer; inflammation; neuroprotection; oleocanthal; olive.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Chemical structure of natural oleocanthal (OC).
Figure 2
Figure 2
Anti-inflammatory, antioxidant and antimicrobial activities of OC. Abbreviation: ↓ stands for downregulation; NOX = nicotinamide adenine dinucleotide phosphate oxidase; ROS = reactive oxygen species; COX 1/2 = cyclooxygenase 1/2; 5-LOX = 5-lipoxygenase; iNOS = inducible nitric oxide synthase; eNOS = endothelial nitric oxide synthase; NO = nitric oxide; GFAP = glial fibrillary acidic protein; IL-1β = interleukin-1β; IL-6 = interleukin-6; GM-CSF = granulocyte-macrophage colony-stimulating factor; MIP-1α = macrophage inflammatory protein-1α; TBI = traumatic brain injury; LPS = lipopolysaccharide;TNF-α = tumour necrosis factor-α
Figure 3
Figure 3
Anticancer properties of OC and the molecular mechanisms of action. Abbreviation: ↓ stands for downregulation; ↑ stands for upregulation; AMPK = adenosine monophosphate-activated protein kinase; ROS = reactive oxygen species; MIP-1α = macrophage inflammatory protein-1α; RANKL = receptor activator of nuclear factor κB ligand; ERK 1/2 = extracellular signal-regulated kinase 1/2; mTOR = mammalian targets of rapamycin; Bcl-2 = B cell lymphoma-2; Bcl-XL = B cell lymphoma-XL; Mcl-1 = myeloid cell leukemia-1; gp80 = interleukin-6 receptor; gp130 = interleukin-6 receptor’s signal-transducing subunit; SHP-1 = Src homology 2 domain tyrosine phosphatase-1; JAK 1/2 = Janus kinase 1/2; STAT3 = signal transducer and activator of transcription 3; VEGF = vascular endothelial growth factor; Hsp90 = heat shock protein 90; Cdk4 = cyclin-dependent kinase 4; Cdk6 = cyclin-dependent kinase 6; MMP 2/9 = matrix metalloproteinase 2/9; EMT = epithelial-to-mesenchymal transition; C8 = caspase-8; ERα/β = oestrogen receptor α and β isoform; LMP = lysosomal membrane permeabilization.
Figure 4
Figure 4
Neuroprotective effects of OC and the molecular mechanisms of action. Abbreviation: ↓ stands for downregulation; ↑ stands for upregulation; Aβ = amyloid β; P-gp = P-glycoprotein; LRP1 = low-density lipoprotein receptor-related protein 1; ABCA1 = ATP-binding cassette transporter-A1; ApoE = apolipoprotein E; IDE = insulin-degrading enzyme; NEP = neprilysin; PPARγ = peroxisome proliferator-activated receptor γ; GFAP = glial fibrillary acidic protein; IL-1β = interleukin-1β; IL-6 = interleukin-6; GLT1 = glutamate transporter-1; GLUT1 = glucose transporter-1; PSD-95 = postsynaptic marker postsynaptic density protein 95; SNAP-25 = synaptosomal-associated protein 25.

References

    1. Fogliano V., Sacchi R. Oleocanthal in olive oil: Between myth and reality. Mol. Nutr. Food Res. 2006;50:5–6. doi: 10.1002/mnfr.200690002.
    1. Vissers M.N., Zock P.L., Roodenburg A.J.C., Leenen R., Katan M.B. Olive oil phenols are absorbed in humans. Hum. Nutr. Metab. 2001;132:409–417. doi: 10.1093/jn/132.3.409.
    1. Pelucchi C., Bosetti C., Lipworth L., La Vecchia C. Olive oil and cancer risk: An update of epidemiological findings through 2010. Curr. Pharm. Des. 2011;17:805–812. doi: 10.2174/138161211795428920.
    1. Berry E.M., Arnoni Y., Aviram M. The middle eastern and biblical origins of the Mediterranean diet. Public Health Nutr. 2011;14:2288–2295. doi: 10.1017/S1368980011002539.
    1. Scarmeas N., Luchsinger J.A., Schupf N., Brickman A.M., Cosentino S., Tang M.X., Stern Y. Physical activity, diet, and risk of Alzheimer disease. JAMA. 2009;302:627–637. doi: 10.1001/jama.2009.1144.
    1. Ruiz-Canela M., Martinez-Gonzalez M.A. Olive oil in the primary prevention of cardiovascular disease. Maturitas. 2011;68:245–250. doi: 10.1016/j.maturitas.2010.12.002.
    1. Chin K.Y., Pang K.L. Therapeutic effects of olive and its derivatives on osteoarthritis: From bench to bedside. Nutrients. 2017;9:1060. doi: 10.3390/nu9101060.
    1. Chin K.-Y., Ima-Nirwana S. Olives and bone: A green osteoporosis prevention option. Int. J. Environ. Res. Public Health. 2016;13:755. doi: 10.3390/ijerph13080755.
    1. Maalej A., Mahmoudi A., Bouallagui Z., Fki I., Marrekchi R., Sayadi S. Olive phenolic compounds attenuate deltamethrin-induced liver and kidney toxicity through regulating oxidative stress, inflammation and apoptosis. Food Chem. Toxicol. 2017;106:455–465. doi: 10.1016/j.fct.2017.06.010.
    1. Takashima T., Sakata Y., Iwakiri R., Shiraishi R., Oda Y., Inoue N., Nakayama A., Toda S., Fujimoto K. Feeding with olive oil attenuates inflammation in dextran sulfate sodium-induced colitis in rat. J. Nutr. Biochem. 2014;25:186–192. doi: 10.1016/j.jnutbio.2013.10.005.
    1. Zheng A., Li H., Xu J., Cao K., Li H., Pu W., Yang Z., Peng Y., Long J., Liu J., et al. Hydroxytyrosol improves mitochondrial function and reduces oxidative stress in the brain of db/db mice: Role of AMP-activated protein kinase activation. Br. J. Nutr. 2015;113:1667–1676. doi: 10.1017/S0007114515000884.
    1. Camargo A., Rangel-Zuniga O.A., Haro C., Meza-Miranda E.R., Pena-Orihuela P., Meneses M.E., Marin C., Yubero-Serrano E.M., Perez-Martinez P., Delgado-Lista J., et al. Olive oil phenolic compounds decrease the postprandial inflammatory response by reducing postprandial plasma lipopolysaccharide levels. Food Chem. 2014;162:161–171. doi: 10.1016/j.foodchem.2014.04.047.
    1. Carnevale R., Pignatelli P., Nocella C., Loffredo L., Pastori D., Vicario T., Petruccioli A., Bartimoccia S., Violi F. Extra virgin olive oil blunt post-prandial oxidative stress via NOX2 down-regulation. Atherosclerosis. 2014;235:649–658. doi: 10.1016/j.atherosclerosis.2014.05.954.
    1. Lauretti E., Iuliano L., Pratico D. Extra-virgin olive oil ameliorates cognition and neuropathology of the 3xTg mice: Role of autophagy. Ann. Clin. Transl. Neurol. 2017;4:564–574. doi: 10.1002/acn3.431.
    1. Aguilera C.M., Mesa M.D., Ramirez-Tortosa M.C., Nestares M.T., Ros E., Gil A. Sunflower oil does not protect against LDL oxidation as virgin olive oil does in patients with peripheral vascular disease. Clin. Nutr. 2004;23:673–681. doi: 10.1016/j.clnu.2003.11.005.
    1. Medina E., de Castro A., Romero C., Brenes M. Comparison of the concentrations of phenolic compounds in olive oils and other plant oils: Correlation with antimicrobial activity. J. Agric. Food Chem. 2006;54:4954–4961. doi: 10.1021/jf0602267.
    1. Tripoli E., Giammanco M., Tabacchi G., Majo D.D., Giammanco S., Guardia M.L. The phenolic compounds of olive oil: Structure, biological activity and beneficial effects on human health. Nutr. Res. Rev. 2005;18:98–112. doi: 10.1079/NRR200495.
    1. Cicerale S., Conlan X.A., Barnett N.W., Sinclair A.J., Keast R.S. Influence of heat on biological activity and concentration of oleocanthal—A natural anti-inflammatory agent in virgin olive oil. J. Agric. Food Chem. 2009;57:1326–1330. doi: 10.1021/jf803154w.
    1. Servili M., Esposto S., Fabiani R., Urbani S., Taticchi A., Mariucci F., Selvaggini R., Montedoro G.F. Phenolic compounds in olive oil: Antioxidant, health and organoleptic activities according to their chemical structure. Inflammopharmacology. 2009;17:76–84. doi: 10.1007/s10787-008-8014-y.
    1. Montedoro G., Servili M., Baldioli M., Miniati E. Simple and hydrolyzable phenolic compounds in virgin olive oil. 1. Their extraction, separation, and quantitative and semiquantitative evaluation by HPLC. J. Agric. Food Chem. 1992;40:1571–1576. doi: 10.1021/jf00021a019.
    1. Montedoro G., Servili M., Baldioli M., Miniati E. Simple and hydrolyzable phenolic compounds in virgin olive oil. 2. Initial characterization of the hydrolyzable fraction. J. Agric. Food Chem. 1992;40:1577–1580. doi: 10.1021/jf00021a020.
    1. Montedoro G., Servili M., Baldioli M., Selvaggini R., Miniati E., Macchioni A. Simple and hydrolyzable compounds in virgin olive oil. 3. Spectroscopic characterizations of the secoiridoid derivatives. J. Agric. Food Chem. 1993;41:2228–2234. doi: 10.1021/jf00035a076.
    1. Smith A.B., Han Q., Breslin P.A.S., Beauchamp G.K. Synthesis and assignment of absolute configuration of (−)-oleocanthal: A potent, naturally occurring non-steroidal anti-inflammatory and anti-oxidant agent derived from extra virgin olive oils. Org. Lett. 2005;7:5075–5078. doi: 10.1021/ol052106a.
    1. Smith A.B., 3rd, Sperry J.B., Han Q. Syntheses of (−)-oleocanthal, a natural NSAID found in extra virgin olive oil, the (−)-deacetoxy-oleuropein aglycone, and related analogues. J. Org. Chem. 2007;72:6891–6900. doi: 10.1021/jo071146k.
    1. Valli M., Peviani E.G., Porta A., D’Alfonso A., Zanoni G., Vidari G. A concise and efficient total synthesis of oleocanthal. Eur. J. Org. Chem. 2013;2013:4332–4336. doi: 10.1002/ejoc.201300324.
    1. English B.J., Williams R.M. Synthesis of (+/−)-oleocanthal via a tandem intramolecular Michael cyclization-HWE olefination. Tetrahedron Lett. 2009;50:2713. doi: 10.1016/j.tetlet.2009.03.145.
    1. Takahashi K., Morita H., Honda T. Formal synthesis of (−)-oleocanthal by means of a SmI2-promoted intramolecular coupling of bromoalkyne with α,β-unsaturated ester. Tetrahedron Lett. 2012;53:3342–3345. doi: 10.1016/j.tetlet.2012.04.085.
    1. Beauchamp G.K., Keast R.S., Morel D., Lin J., Pika J., Han Q., Lee C.H., Smith A.B., Breslin P.A. Phytochemistry: Ibuprofen-like activity in extra-virgin olive oil. Nature. 2005;437:45–46. doi: 10.1038/437045a.
    1. Cicerale S., Breslin P.A., Beauchamp G.K., Keast R.S. Sensory characterization of the irritant properties of oleocanthal, a natural anti-inflammatory agent in extra virgin olive oils. Chem. Senses. 2009;34:333–339. doi: 10.1093/chemse/bjp006.
    1. Abuznait A.H., Qosa H., Busnena B.A., El Sayed K.A., Kaddoumi A. Olive-oil-derived oleocanthal enhances β-amyloid clearance as a potential neuroprotective mechanism against Alzheimer’s disease: In vitro and in vivo studies. ACS Chem. Neurosci. 2013;4:973–982. doi: 10.1021/cn400024q.
    1. Des Gachons C.P., Uchida K., Bryant B., Shima A., Sperry J.B., Dankulich-Nagrudny L., Tominaga M., Smith A.B., 3rd, Beauchamp G.K., Breslin P.A. Unusual pungency from extra-virgin olive oil is attributable to restricted spatial expression of the receptor of oleocanthal. J. Neurosci. 2011;31:999–1009. doi: 10.1523/JNEUROSCI.1374-10.2011.
    1. Garcia-Villalba R., Carrasco-Pancorbo A., Nevedomskaya E., Mayboroda O.A., Deelder A.M., Segura-Carretero A., Fernandez-Gutierrez A. Exploratory analysis of human urine by LC–ESI-TOF MS after high intake of olive oil: Understanding the metabolism of polyphenols. Anal. Bioanal. Chem. 2010;398:463–475. doi: 10.1007/s00216-010-3899-x.
    1. Fini L., Hotchkiss E., Fogliano V., Graziani G., Romano M., De Vol E.B., Qin H., Selgrad M., Boland C.R., Ricciardiello L. Chemopreventive properties of pinoresinol-rich olive oil involve a selective activation of the ATM-p53 cascade in colon cancer cell lines. Carcinogenesis. 2008;29:139–146. doi: 10.1093/carcin/bgm255.
    1. Casamenti F., Stefani M. Olive polyphenols: New promising agents to combat aging-associated neurodegeneration. Expert Rev. Neurother. 2017;17:345–358. doi: 10.1080/14737175.2017.1245617.
    1. Romero C., Medina E., Vargas J., Brenes M., De Castro A. In vitro activity of olive oil polyphenols against Helicobacter pylori. J. Agric. Food Chem. 2007;55:680–686. doi: 10.1021/jf0630217.
    1. ChemSpider Oleocanthal. [(accessed on 25 March 2018)]; Available online: .
    1. Fito M., de la Torre R., Farre-Albaladejo M., Khymenetz O., Marrugat J., Covas M.-I. Bioavailability and antioxidant effects of olive oil phenolic compounds in humans: A review. Annali dell'Istituto Superiore Di Sanita. 2007;43:375–381.
    1. Corona G., Tzounis X., Dessi M.A., Deiana M., Debnam E.S., Visioli F., Spencer J.P.E. The fate of olive oil polyphenols in the gastrointestinal tract: Implications of gastric and colonic microflora-dependent biotransformation. Free Radic. Res. 2006;40:647–658. doi: 10.1080/10715760500373000.
    1. Andrewes P., Busch J.L., de Joode T., Groenewegen A., Alexandre H. Sensory properties of virgin olive oil polyphenols: Identification of deacetoxy-ligstroside aglycon as a key contributor to pungency. J. Agric. Food Chem. 2003;51:1415–1420. doi: 10.1021/jf026042j.
    1. Bautista D.M., Pellegrino M., Tsunozaki M. TRPA1: A gatekeeper for inflammation. Annu. Rev. Physiol. 2013;75:181–200. doi: 10.1146/annurev-physiol-030212-183811.
    1. Gouin O., L’Herondelle K., Lebonvallet N., Le Gall-Ianotto C., Sakka M., Buhe V., Plee-Gautier E., Carre J.L., Lefeuvre L., Misery L., et al. TRPV1 and TRPA1 in cutaneous neurogenic and chronic inflammation: Pro-inflammatory response induced by their activation and their sensitization. Protein Cell. 2017;8:644–661. doi: 10.1007/s13238-017-0395-5.
    1. Meseguer V., Alpizar Y.A., Luis E., Tajada S., Denlinger B., Fajardo O., Manenschijn J.A., Fernandez-Pena C., Talavera A., Kichko T., et al. TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins. Nat. Commun. 2014;5:3125. doi: 10.1038/ncomms4125.
    1. Rosignoli P., Fuccelli R., Fabiani R., Servili M., Morozzi G. Effect of olive oil phenols on the production of inflammatory mediators in freshly isolated human monocytes. J. Nutr. Biochem. 2013;24:1513–1519. doi: 10.1016/j.jnutbio.2012.12.011.
    1. Vougogiannopoulou K., Lemus C., Halabalaki M., Pergola C., Werz O., Smith A.B., 3rd, Michel S., Skaltsounis L., Deguin B. One-step semisynthesis of oleacein and the determination as a 5-lipoxygenase inhibitor. J. Nat. Prod. 2014;77:441–445. doi: 10.1021/np401010x.
    1. Pergola C., Werz O. 5-lipoxygenase inhibitors: A review of recent developments and patents. Expert Opin. Ther. Pat. 2010;20:355–375. doi: 10.1517/13543771003602012.
    1. Murphy R.C., Gijon M.A. Biosynthesis and metabolism of leukotrienes. Biochem. J. 2007;405:379–395. doi: 10.1042/BJ20070289.
    1. Leone S., Ottani A., Bertolini A. Dual acting anti-inflammatory drugs. Curr. Top. Med. Chem. 2007;7:265–275. doi: 10.2174/156802607779941341.
    1. Burnett B.P., Levy R.M. 5-Lipoxygenase metabolic contributions to NSAID-induced organ toxicity. Adv. Ther. 2012;29:79–98. doi: 10.1007/s12325-011-0100-7.
    1. Laidlaw T.M., Boyce J.A. Pathogenesis of aspirin-exacerbated respiratory disease and reactions. Immunol. Allergy Clin. N. Am. 2013;33:195–210. doi: 10.1016/j.iac.2012.11.006.
    1. Scotece M., Gomez R., Conde J., Lopez V., Gomez-Reino J.J., Lago F., Smith A.B., 3rd, Gualillo O. Further evidence for the anti-inflammatory activity of oleocanthal: Inhibition of MIP-1α and IL-6 in J774 macrophages and in ATDC5 chondrocytes. Life Sci. 2012;91:1229–1235. doi: 10.1016/j.lfs.2012.09.012.
    1. Iacono A., Gomez R., Sperry J., Conde J., Bianco G., Meli R., Gomez-Reino J.J., Smith A.B., 3rd, Gualillo O. Effect of oleocanthal and its derivatives on inflammatory response induced by lipopolysaccharide in a murine chondrocyte cell line. Arthritis Rheumatol. 2010;62:1675–1682. doi: 10.1002/art.27437.
    1. Qosa H., Batarseh Y.S., Mohyeldin M.M., El Sayed K.A., Keller J.N., Kaddoumi A. Oleocanthal enhances amyloid-β clearance from the brains of TgSwDI mice and in vitro across a human blood-brain barrier model. ACS Chem. Neurosci. 2015;6:1849–1859. doi: 10.1021/acschemneuro.5b00190.
    1. Mete M., Aydemir I., Unsal U.U., Collu F., Vatandas G., Gurcu B., Duransoy Y.K., Taneli F., Tugrul M.I., Selcuki M. Neuroprotective effects of oleocanthal, a compound in virgin olive oil, in a rat model of traumatic brain injury. Turk. Neurosurg. 2017 doi: 10.5137/1019-5149.JTN.21417-17.2.
    1. Cicerale S., Lucas L.J., Keast R.S.J. Antimicrobial, antioxidant and anti-inflammatory phenolic activities in extra virgin olive oil. Curr. Opin. Biotechnol. 2012;23:129–135. doi: 10.1016/j.copbio.2011.09.006.
    1. Liu Y., McKeever L.C., Malik N.S. Assessment of the antimicrobial activity of olive leaf extract against foodborne bacterial pathogens. Front. Microbiol. 2017;8:113. doi: 10.3389/fmicb.2017.00113.
    1. Sudjana A.N., D’Orazio C., Ryan V., Rasool N., Ng J., Islam N., Riley T.V., Hammer K.A. Antimicrobial activity of commercial olea europaea (olive) leaf extract. Int. J. Antimicrob. Agents. 2009;33:461–463. doi: 10.1016/j.ijantimicag.2008.10.026.
    1. Medina E., de Castro A., Romero C., Ramirez E., Brenes M. Effect of antimicrobial compounds from olive products on microorganisms related to health, food and agriculture. In: Mendez-Vilas A., editor. Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education. Volume 2. Formatex Research Center; Badajoz, Spain: 2013. pp. 1087–1094.
    1. Medina E., Brenes M., Garcia A., Romero C., De Castro A. Bactericidal activity of glutaraldehyde-like compounds from olive products. J. Food Prot. 2009;72:2611–2614. doi: 10.4315/0362-028X-72.12.2611.
    1. Tagliafierro L., Officioso A., Sorbo S., Basile A., Manna C. The protective role of olive oil hydroxytyrosol against oxidative alterations induced by mercury in human erythrocytes. Food Chem. Toxicol. 2015;82:59–63. doi: 10.1016/j.fct.2015.04.029.
    1. Kalaiselvan I., Dicson S.M., Kasi P.D. Olive oil and its phenolic constituent tyrosol attenuates dioxin-induced toxicity in peripheral blood mononuclear cells via an antioxidant-dependent mechanism. Nat. Prod. Res. 2015;29:2129–2132. doi: 10.1080/14786419.2014.989393.
    1. Galvano F., La Fauci L., Graziani G., Ferracane R., Masella R., Di Giacomo C., Scacco A., D’Archivio M., Vanella L., Galvano G. Phenolic compounds and antioxidant activity of Italian extra virgin olive oil Monti Iblei. J. Med. Food. 2007;10:650–656. doi: 10.1089/jmf.2007.409.
    1. Majumder M., Dunn L., Liu L., Hasan A., Vincent K., Brackstone M., Hess D., Lala P.K. COX-2 induces oncogenic micro RNA miR655 in human breast cancer. Sci Rep. 2018;8:327. doi: 10.1038/s41598-017-18612-3.
    1. Charalambous M.P., Lightfoot T., Speirs V., Horgan K., Gooderham N.J. Expression of COX-2, NF-κB-p65, NF-κB-p50 and IKKα in malignant and adjacent normal human colorectal tissue. Br. J. Cancer. 2009;101:106–115. doi: 10.1038/sj.bjc.6605120.
    1. Fogli S., Arena C., Carpi S., Polini B., Bertini S., Digiacomo M., Gado F., Saba A., Saccomanni G., Breschi M.C., et al. Cytotoxic activity of oleocanthal isolated from virgin olive oil on human melanoma cells. Nutr. Cancer. 2016;68:873–877. doi: 10.1080/01635581.2016.1180407.
    1. Gu Y., Wang J., Peng L. (−)-Oleocanthal exerts anti-melanoma activities and inhibits STAT3 signaling pathway. Oncol. Rep. 2017;37:483–491. doi: 10.3892/or.2016.5270.
    1. Elnagar A.Y., Sylvester P.W., El Sayed K.A. (−)-Oleocanthal as a c-Met inhibitor for the control of metastatic breast and prostate cancers. Planta Med. 2011;77:1013–1019. doi: 10.1055/s-0030-1270724.
    1. Busnena B.A., Foudah A.I., Melancon T., El Sayed K.A. Olive secoiridoids and semisynthetic bioisostere analogues for the control of metastatic breast cancer. Bioorg. Med. Chem. 2013;21:2117–2127. doi: 10.1016/j.bmc.2012.12.050.
    1. Mohyeldin M.M., Akl M.R., Ebrahim H.Y., Dragoi A.M., Dykes S., Cardelli J.A., El Sayed K.A. The oleocanthal-based homovanillyl sinapate as a novel c-Met inhibitor. Oncotarget. 2016;7:32247–32273. doi: 10.18632/oncotarget.8681.
    1. Mohyeldin M.M., Busnena B.A., Akl M.R., Dragoi A.M., Cardelli J.A., El Sayed K.A. Novel c-Met inhibitory olive secoiridoid semisynthetic analogs for the control of invasive breast cancer. Eur. J. Med. Chem. 2016;118:299–315. doi: 10.1016/j.ejmech.2016.04.043.
    1. Akl M.R., Ayoub N.M., Mohyeldin M.M., Busnena B.A., Foudah A.I., Liu Y.Y., Sayed K.A. Olive phenolics as c-Met inhibitors: (−)-Oleocanthal attenuates cell proliferation, invasiveness, and tumor growth in breast cancer models. PLoS ONE. 2014;9:e97622. doi: 10.1371/journal.pone.0097622.
    1. Khanfar M.A., Bardaweel S.K., Akl M.R., El Sayed K.A. Olive oil-derived oleocanthal as potent inhibitor of mammalian target of rapamycin: Biological evaluation and molecular modeling studies. Phytother. Res. 2015;29:1776–1782. doi: 10.1002/ptr.5434.
    1. Pei T., Meng Q., Han J., Sun H., Li L., Song R., Sun B., Pan S., Liang D., Liu L. (−)-Oleocanthal inhibits growth and metastasis by blocking activation of STAT3 in human hepatocellular carcinoma. Oncotarget. 2016;7:43475–43491. doi: 10.18632/oncotarget.9782.
    1. Cusimano A., Balasus D., Azzolina A., Augello G., Emma M.R., Di Sano C., Gramignoli R., Strom S.C., McCubrey J.A., Montalto G., et al. Oleocanthal exerts antitumor effects on human liver and colon cancer cells through ROS generation. Int. J. Oncol. 2017;51:533–544. doi: 10.3892/ijo.2017.4049.
    1. Khanal P., Oh W.K., Yun H.J., Namgoong G.M., Ahn S.G., Kwon S.M., Choi H.K., Choi H.S. p-HPEA-EDA, a phenolic compound of virgin olive oil, activates AMP-activated protein kinase to inhibit carcinogenesis. Carcinogenesis. 2011;32:545–553. doi: 10.1093/carcin/bgr001.
    1. Scotece M., Gomez R., Conde J., Lopez V., Gomez-Reino J.J., Lago F., Smith A.B., 3rd, Gualillo O. Oleocanthal inhibits proliferation and MIP-1α expression in human multiple myeloma cells. Curr. Med. Chem. 2013;20:2467–2475. doi: 10.2174/0929867311320190006.
    1. Fabiani R., De Bartolomeo A., Rosignoli P., Servili M., Selvaggini R., Montedoro G.F., Di Saverio C., Morozzi G. Virgin olive oil phenols inhibit proliferation of human promyelocytic leukemia cells (HL60) by inducing apoptosis and differentiation. Nutr. Dis. 2006;136:614–619. doi: 10.1093/jn/136.3.614.
    1. LeGendre O., Breslin P.A., Foster D.A. (−)-Oleocanthal rapidly and selectively induces cancer cell death via lysosomal membrane permeabilization. Mol. Cell. Oncol. 2015;2:e1006077. doi: 10.1080/23723556.2015.1006077.
    1. Ayoub N.M., Siddique A.B., Ebrahim H.Y., Mohyeldin M.M., El Sayed K.A. The olive oil phenolic (−)-oleocanthal modulates estrogen receptor expression in luminal breast cancer in vitro and in vivo and synergizes with tamoxifen treatment. Eur. J. Pharmacol. 2017;810:100–111. doi: 10.1016/j.ejphar.2017.06.019.
    1. Margarucci L., Monti M.C., Cassiano C., Mozzicafreddo M., Angeletti M., Riccio R., Tosco A., Casapullo A. Chemical proteomics-driven discovery of oleocanthal as an Hsp90 inhibitor. Chem. Commun. 2013;49:5844–5846. doi: 10.1039/c3cc41858h.
    1. Cassiano C., Casapullo A., Tosco A., Monti M.C., Riccio R. In cell interactome of oleocanthal, an extra virgin olive oil bioactive component. Nat. Prod. Commun. 2015;10:1013–1016.
    1. Keiler A.M., Zierau O., Bernhardt R., Scharnweber D., Lemonakis N., Termetzi A., Skaltsounis L., Vollmer G., Halabalaki M. Impact of a functionalized olive oil extract on the uterus and the bone in a model of postmenopausal osteoporosis. Eur. J. Nutr. 2014;53:1073–1081. doi: 10.1007/s00394-013-0609-4.
    1. Keiler A.M., Djiogue S., Ehrhardt T., Zierau O., Skaltsounis L., Halabalaki M., Vollmer G. Oleocanthal modulates estradiol-induced gene expression involving estrogen receptor α. Planta Med. 2015;81:1263–1269. doi: 10.1055/s-0035-1546194.
    1. Abuznait A.H., Qosa H., O’Connell N.D., Akbarian-Tefaghi J., Sylvester P.W., El Sayed K.A., Kaddoumi A. Induction of expression and functional activity of P-glycoprotein efflux transporter by bioactive plant natural products. Food Chem.Toxicol. 2011;49:2765–2772. doi: 10.1016/j.fct.2011.08.004.
    1. Wu L.X., Xu J.H., Zhang K.Z., Lin Q., Huang X.W., Wen C.X., Chen Y.Z. Disruption of the Bcr-Abl/Hsp90 protein complex: A possible mechanism to inhibit Bcr-Abl-positive human leukemic blasts by novobiocin. Leukemia. 2008;22:1402–1409. doi: 10.1038/leu.2008.89.
    1. Knoblauch R., Garabedian M.J. Role for Hsp90-associated cochaperone p23 in estrogen receptor signal transduction. Mol. Cell. Biol. 1999;19:3748–3759. doi: 10.1128/MCB.19.5.3748.
    1. Fliss A.E., Benzeno S., Rao J., Caplan A.J. Control of estrogen receptor ligand binding by Hsp90. J. Steroid Biochem. Mol. Biol. 2000;72:223–230. doi: 10.1016/S0960-0760(00)00037-6.
    1. Schopf F.H., Biebl M.M., Buchner J. The Hsp90 chaperone machinery. Nat. Rev. Mol. Cell. Biol. 2017;18:345–360. doi: 10.1038/nrm.2017.20.
    1. Wang K., Ma Q., Ren Y., He J., Zhang Y., Zhang Y., Chen W. Geldanamycin destabilizes HER2 tyrosine kinase and suppresses Wnt/β-catenin signaling in HER2 overexpressing human breast cancer cells. Oncol. Rep. 2007;17:89–96. doi: 10.3892/or.17.1.89.
    1. McCleese J.K., Bear M.D., Fossey S.L., Mihalek R.M., Foley K.P., Ying W., Barsoum J., London C.A. The novel Hsp90 inhibitor STA-1474 exhibits biologic activity against osteosarcoma cell lines. Int. J. Cancer. 2009;125:2792–2801. doi: 10.1002/ijc.24660.
    1. Webb C.P., Hose C.D., Koochekpour S., Jeffers M., Oskarsson M., Sausville E., Monks A., Woude G.F.V. The geldanamycins are potent inhibitors of the hepatocyte growth factor/scatter factor-Met-urokinase plasminogen activator-plasmin proteolytic network. Cancer Res. 2000;60:342–349.
    1. Wang S., Pashtan I., Tsutsumi S., Xu W., Neckers L. Cancer cells harboring MET gene amplification activate alternative signaling pathways to escape MET inhibition but remain sensitive to Hsp90 inhibitors. Cell Cycle. 2009;8:2050–2056. doi: 10.4161/cc.8.13.8861.
    1. Bocchini C.E., Kasembeli M.M., Roh S.H., Tweardy D.J. Contribution of chaperones to STAT pathway signaling. JAKSTAT. 2014;3:e970459. doi: 10.4161/21623988.2014.970459.
    1. Subik K., Lee J.-F., Baxter L., Strzepek T., Costello D., Crowley P., Xing L., Hung M.-C., Bonfiglio T., Hicks D.G., et al. The expression patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by immunohistochemical analysis in breast cancer cell lines. Breast Cancer Basic Clin. Res. 2010;4:35–41. doi: 10.1177/117822341000400004.
    1. De Mattos-Arruda L., Cortes J. Breast cancer and Hsp90 inhibitors: Is there a role beyond the HER2-positive subtype? Breast. 2012;21:604–607. doi: 10.1016/j.breast.2012.04.002.
    1. Zhang Y.J., Dai Q., Sun D.F., Xiong H., Tian X.Q., Gao F.H., Xu M.H., Chen G.Q., Han Z.G., Fang J.Y. mTOR signaling pathway is a target for the treatment of colorectal cancer. Ann. Surg. Oncol. 2009;16:2617–2628. doi: 10.1245/s10434-009-0555-9.
    1. Zhang Y.J., Tian X.Q., Sun D.F., Zhao S.L., Xiong H., Fang J.Y. Combined inhibition of MEK and mTOR signaling inhibits initiation and progression of colorectal cancer. Cancer Investig. 2009;27:273–285. doi: 10.1080/07357900802314893.
    1. Zhang Y., Zheng X.F. mTOR-independent 4E-BP1 phosphorylation is associated with cancer resistance to mTOR kinase inhibitors. Cell Cycle. 2012;11:594–603. doi: 10.4161/cc.11.3.19096.
    1. van Assema D.M., Lubberink M., Bauer M., van der Flier W.M., Schuit R.C., Windhorst A.D., Comans E.F., Hoetjes N.J., Tolboom N., Langer O., et al. Blood-brain barrier P-glycoprotein function in Alzheimer's disease. Brain. 2012;135:181–189. doi: 10.1093/brain/awr298.
    1. Miceli T.S., Colson K., Faiman B.M., Miller K., Tariman J.D., International Myeloma Foundation Nurse Leadership B. Maintaining bone health in patients with multiple myeloma: Survivorship care plan of the International Myeloma Foundation Nurse Leadership Board. Clin. J. Oncol. Nurs. 2011;15:9–23. doi: 10.1188/11.S1.CJON.9-23.
    1. Terpos E., Politou M., Viniou N., Rahemtulla A. Significance of macrophage inflammatory protein-1 alpha (MIP-1α) in multiple myeloma. Leuk Lymphoma. 2005;46:1699–1707. doi: 10.1080/10428190500175049.
    1. Tsubaki M., Kato C., Manno M., Ogaki M., Satou T., Itoh T., Kusunoki T., Tanimori Y., Fujiwara K., Matsuoka H., et al. Macrophage inflammatory protein-1α (MIP-1α) enhances a receptor activator of nuclear factor κB ligand (RANKL) expression in mouse bone marrow stromal cells and osteoblasts through MAPK and PI3K/Akt pathways. Mol. Cell. Biochem. 2007;304:53–60. doi: 10.1007/s11010-007-9485-7.
    1. Choi S.J., Cruz J.C., Craig F., Chung H., Devlin R.D., Roodman G.D., Alsina M. Macrophage inflammatory protein 1-alpha is a potential osteoclast stimulatory factor in multiple myeloma. Blood. 2000;96:671–675.
    1. Li W., Sperry J.B., Crowe A., Trojanowski J.Q., Smith A.B., 3rd, Lee V.M. Inhibition of tau fibrillization by oleocanthal via reaction with the amino groups of tau. J. Neurochem. 2009;110:1339–1351. doi: 10.1111/j.1471-4159.2009.06224.x.
    1. Monti M.C., Margarucci L., Tosco A., Riccio R., Casapullo A. New insights on the interaction mechanism between tau protein and oleocanthal, an extra-virgin olive-oil bioactive component. Food Funct. 2011;2:423–428. doi: 10.1039/c1fo10064e.
    1. Monti M.C., Margarucci L., Riccio R., Casapullo A. Modulation of tau protein fibrillization by oleocanthal. J. Nat. Prod. 2012;75:1584–1588. doi: 10.1021/np300384h.
    1. Cirrito J.R., Deane R., Fagan A.M., Spinner M.L., Parsadanian M., Finn M.B., Jiang H., Prior J.L., Sagare A., Bales K.R., et al. P-glycoprotein deficiency at the blood-brain barrier increases amyloid-βdeposition in an Alzheimer disease mouse model. J. Clin. Investig. 2005;115:3285–3290. doi: 10.1172/JCI25247.
    1. Yamada K., Hashimoto T., Yabuki C., Nagae Y., Tachikawa M., Strickland D.K., Liu Q., Bu G., Basak J.M., Holtzman D.M., et al. The low density lipoprotein receptor-related protein 1 mediates uptake of amyloid βpeptides in an in vitro model of the blood-brain barrier cells. J. Biol. Chem. 2008;283:34554–34562. doi: 10.1074/jbc.M801487200.
    1. Pitt J., Roth W., Lacor P., Smith A.B., Blankenship M., Velasco P., De Felice F., Breslin P., Klein W.L. Alzheimer's-associated aβ oligomers show altered structure, immunoreactivity and synaptotoxicity with low doses of oleocanthal. Toxicol. Appl. Pharmacol. 2009;240:189–197. doi: 10.1016/j.taap.2009.07.018.
    1. Batarseh Y.S., Mohamed L.A., Al Rihani S.B., Mousa Y.M., Siddique A.B., El Sayed K.A., Kaddoumi A. Oleocanthal ameliorates amyloid-βoligomers' toxicity on astrocytes and neuronal cells: In vitro studies. Neuroscience. 2017;352:204–215. doi: 10.1016/j.neuroscience.2017.03.059.
    1. Selkoe D.J. Soluble oligomers of the amyloid β-protein impair synaptic plasticity and behavior. Behav. Brain Res. 2008;192:106–113. doi: 10.1016/j.bbr.2008.02.016.
    1. Katsouri L., Parr C., Bogdanovic N., Willem M., Sastre M. PPARγ co-activator-1α (PGC-1α) reduces amyloid-β generation through a PPARγ-dependent mechanism. J. Alzheimers Dis. 2011;25:151–162.
    1. Heneka M.T., Reyes-Irisarri E., Hüll M., Kummer M.P. Impact and therapeutic potential of PPARs in Alzheimer's disease. Curr. Neuropharmacol. 2011;9:643–650. doi: 10.2174/157015911798376325.
    1. Sastre M., Dewachter I., Landreth G.E., Willson T.M., Klockgether T., van Leuven F., Heneka M.T. Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-γ agonists modulate immunostimulated processing of amyloid precursor protein through regulation of β-secretase. J. Neurosci. 2003;23:9796–9804. doi: 10.1523/JNEUROSCI.23-30-09796.2003.
    1. Toutain P.-L., Ferran A., Bousquet-Mélou A. Species differences in pharmacokinetics and pharmacodynamics. In: Cunningham F., Elliott J., Lees P., editors. Comparative and Veterinary Pharmacology. Springer; Berlin/Heidelberg, Germany: 2010. pp. 19–48.
    1. Musther H., Olivares-Morales A., Hatley O.J., Liu B., Rostami Hodjegan A. Animal versus human oral drug bioavailability: Do they correlate? Eur. J. Pharm. Sci. 2014;57:280–291. doi: 10.1016/j.ejps.2013.08.018.
    1. De la Torre R. Bioavailability of olive oil phenolic compounds in humans. Inflammopharmacology. 2008;16:245–247. doi: 10.1007/s10787-008-8029-4.

Source: PubMed

3
Abonneren