Prognostic value of 18F-FDG PET and PET/CT for assessment of treatment response to neoadjuvant chemotherapy in breast cancer: a systematic review and meta-analysis

Sangwon Han, Joon Young Choi, Sangwon Han, Joon Young Choi

Abstract

Background: We performed a systematic review and meta-analysis to evaluate the prognostic significance of 18F-FDG PET and PET/CT for evaluation of responses to neoadjuvant chemotherapy (NAC) in breast cancer patients.

Methods: We searched PubMed, Embase, and the Cochrane Library databases until June 2020 to identify studies that assessed the prognostic value of 18F-FDG PET scans during or after NAC with regard to overall (OS) and disease-free survival (DFS). Hazard ratios (HRs) and their 95% confidence intervals (CIs) were pooled meta-analytically using a random-effects model.

Results: Twenty-one studies consisting of 1630 patients were included in the qualitative synthesis. Twelve studies investigated the use of PET scans for interim response evaluation (during NAC) and 10 studies assessed post-treatment PET evaluation (after NAC). The most widely evaluated parameter distinguishing metabolic responders from poor responders on interim or post-treatment PET scans was %ΔSUVmax, defined as the percent reduction of SUVmax compared to baseline PET, followed by SUVmax and complete metabolic response (CMR). For the 17 studies included in the meta-analysis, the pooled HR of metabolic responses on DFS was 0.21 (95% confidence interval [CI], 0.14-0.32) for interim PET scans and 0.31 (95% CI, 0.21-0.46) for post-treatment PET scans. Regarding the influence of metabolic responses on OS, the pooled HRs for interim and post-treatment PET scans were 0.20 (95% CI, 0.09-0.44) and 0.26 (95% CI, 0.14-0.51), respectively.

Conclusions: The currently available literature suggests that the use of 18F-FDG PET or PET/CT for evaluation of response to NAC provides significant predictive value for disease recurrence and survival in breast cancer patients and might allow risk stratification and guide rational management.

Keywords: Breast neoplasms; Fluorodeoxyglucose F18; Neoadjuvant therapy; Positron emission tomography; Prognosis.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
PRISMA flow chart showing the study selection process
Fig. 2
Fig. 2
Quality assessment using the QUIPS tool
Fig. 3
Fig. 3
Forest plots showing the pooled HRs of the PET response on interim (a) and post-treatment (b) 18F-FDG PET scans for disease-free survival
Fig. 4
Fig. 4
Funnel plots of studies assessing the PET response on interim (a) and post-treatment (b) 18F-FDG PET scans for disease-free survival
Fig. 5
Fig. 5
Forest plots showing the pooled HRs of the PET response on interim (a) and post-treatment (b) 18F-FDG PET scans for overall survival

References

    1. Gradishar WJ, Anderson BO, Abraham J, Aft R, Agnese D, Allison KH, Blair SL, Burstein HJ. Breast cancer, version 4.2020, NCCN clinical practice guidelines in oncology. 2020.
    1. Fisher B, Bryant J, Wolmark N, Mamounas E, Brown A, Fisher ER, Wickerham DL, Begovic M, DeCillis A, Robidoux A, et al. Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J Clin Oncol. 1998;16(8):2672–2685. doi: 10.1200/JCO.1998.16.8.2672.
    1. Hylton NM, Gatsonis CA, Rosen MA, Lehman CD, Newitt DC, Partridge SC, Bernreuter WK, Pisano ED, Morris EA, Weatherall PT, et al. Neoadjuvant chemotherapy for breast cancer: functional tumor volume by MR imaging predicts recurrence-free survival-results from the ACRIN 6657/CALGB 150007 I-SPY 1 TRIAL. Radiology. 2016;279(1):44–55. doi: 10.1148/radiol.2015150013.
    1. McGuire KP, Toro-Burguete J, Dang H, Young J, Soran A, Zuley M, Bhargava R, Bonaventura M, Johnson R, Ahrendt G. MRI staging after neoadjuvant chemotherapy for breast cancer: does tumor biology affect accuracy? Ann Surg Oncol. 2011;18(11):3149–3154. doi: 10.1245/s10434-011-1912-z.
    1. Loo CE, Straver ME, Rodenhuis S, Muller SH, Wesseling J, Vrancken Peeters MJ, Gilhuijs KG. Magnetic resonance imaging response monitoring of breast cancer during neoadjuvant chemotherapy: relevance of breast cancer subtype. J Clin Oncol. 2011;29(6):660–666. doi: 10.1200/JCO.2010.31.1258.
    1. Wahl RL, Zasadny K, Helvie M, Hutchins GD, Weber B, Cody R: Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation 1993, 11(11):2101–2111.
    1. Tian F, Shen G, Deng Y, Diao W, Jia Z. The accuracy of (18)F-FDG PET/CT in predicting the pathological response to neoadjuvant chemotherapy in patients with breast cancer: a meta-analysis and systematic review. Eur Radiol. 2017;27(11):4786–4796. doi: 10.1007/s00330-017-4831-y.
    1. Mghanga FP, Lan X, Bakari KH, Li C, Zhang Y. Fluorine-18 fluorodeoxyglucose positron emission tomography-computed tomography in monitoring the response of breast cancer to neoadjuvant chemotherapy: a meta-analysis. Clin Breast Cancer. 2013;13(4):271–279. doi: 10.1016/j.clbc.2013.02.003.
    1. Liu Q, Wang C, Li P, Liu J, Huang G, Song S. The role of (18)F-FDG PET/CT and MRI in assessing pathological complete response to neoadjuvant chemotherapy in patients with breast cancer: a systematic review and meta-analysis. Biomed Res Int. 2016;2016:3746232.
    1. Wang Y, Zhang C, Liu J, Huang G. Is 18F-FDG PET accurate to predict neoadjuvant therapy response in breast cancer? A meta-analysis. Breast Cancer Res Treat. 2012;131(2):357–369. doi: 10.1007/s10549-011-1780-z.
    1. Chen L, Yang Q, Bao J, Liu D, Huang X, Wang J. Direct comparison of PET/CT and MRI to predict the pathological response to neoadjuvant chemotherapy in breast cancer: a meta-analysis. Sci Rep. 2017;7(1):8479. doi: 10.1038/s41598-017-08852-8.
    1. Akimoto E, Kadoya T, Kajitani K, Emi A, Shigematsu H, Ohara M, Masumoto N, Okada M. Role of (18)F-PET/CT in predicting prognosis of patients with breast cancer after neoadjuvant chemotherapy. Clin Breast Cancer. 2018;18(1):45–52. doi: 10.1016/j.clbc.2017.09.006.
    1. Champion L, Lerebours F, Alberini JL, Fourme E, Gontier E, Bertrand F, Wartski M. 18F-FDG PET/CT to predict response to neoadjuvant chemotherapy and prognosis in inflammatory breast cancer. J Nucl Med. 2015;56(9):1315–1321. doi: 10.2967/jnumed.115.158287.
    1. Chen S, Ibrahim NK, Yan Y, Wong ST, Wang H, Wong FC. Complete metabolic response on interim (18)F-fluorodeoxyglucose positron emission tomography/computed tomography to predict long-term survival in patients with breast cancer undergoing neoadjuvant chemotherapy. Oncologist. 2017;22(5):526–534. doi: 10.1634/theoncologist.2016-0334.
    1. Dunnwald LK, Doot RK, Specht JM, Gralow JR, Ellis GK, Livingston RB, Linden HM, Gadi VK, Kurland BF, Schubert EK, et al. PET tumor metabolism in locally advanced breast cancer patients undergoing neoadjuvant chemotherapy: value of static versus kinetic measures of fluorodeoxyglucose uptake. Clin Cancer Res. 2011;17(8):2400–2409. doi: 10.1158/1078-0432.CCR-10-2649.
    1. Emmering J, Krak NC, Van der Hoeven JJ, Spreeuwenberg MD, Twisk JW, Meijer S, Pinedo HM, Hoekstra OS. Preoperative [18F] FDG-PET after chemotherapy in locally advanced breast cancer: prognostic value as compared with histopathology. Ann Oncol. 2008;19(9):1573–1577. doi: 10.1093/annonc/mdn185.
    1. Garcia Vicente AM, Amo-Salas M, Relea Calatayud F, Munoz Sanchez Mdel M, Pena Pardo FJ, Jimenez Londono GA, Alvarez Cabellos R, Espinosa Aunion R, Soriano Castrejon A. Prognostic role of early and end-of-neoadjuvant treatment 18F-FDG PET/CT in patients with breast cancer. Clin Nucl Med. 2016;41(7):e313–e322. doi: 10.1097/RLU.0000000000001191.
    1. Groheux D, Sanna A, Majdoub M, de Cremoux P, Giacchetti S, Teixeira L, Espie M, Merlet P, de Roquancourt A, Visvikis D, et al. Baseline tumor 18F-FDG uptake and modifications after 2 cycles of neoadjuvant chemotherapy are prognostic of outcome in ER+/HER2- breast cancer. J Nucl Med. 2015;56(6):824–831. doi: 10.2967/jnumed.115.154138.
    1. Groheux D, Biard L, Giacchetti S, Teixeira L, Hindie E, Cuvier C, Vercellino L, Merlet P, de Roquancourt A, de Cremoux P et al: (1)(8)F-FDG PET/CT for the early evaluation of response to neoadjuvant treatment in triple-negative breast cancer: influence of the chemotherapy regimen. J Nucl Med 2016, 57(4):536–543.
    1. Humbert O, Berriolo-Riedinger A, Cochet A, Gauthier M, Charon-Barra C, Guiu S, Desmoulins I, Toubeau M, Dygai-Cochet I, Coutant C, et al. Prognostic relevance at 5 years of the early monitoring of neoadjuvant chemotherapy using (18)F-FDG PET in luminal HER2-negative breast cancer. Eur J Nucl Med Mol Imaging. 2014;41(3):416–427. doi: 10.1007/s00259-013-2616-3.
    1. Humbert O, Riedinger JM, Vrigneaud JM, Kanoun S, Dygai-Cochet I, Berriolo-Riedinger A, Toubeau M, Depardon E, Lassere M, Tisserand S, et al. 18F-FDG PET-derived tumor blood flow changes after 1 cycle of neoadjuvant chemotherapy predicts outcome in triple-negative breast cancer. J Nucl Med. 2016;57(11):1707–1712. doi: 10.2967/jnumed.116.172759.
    1. Hyun SH, Ahn HK, Park YH, Im YH, Kil WH, Lee JE, Nam SJ, Cho EY, Choi JY. Volume-based metabolic tumor response to neoadjuvant chemotherapy is associated with an increased risk of recurrence in breast cancer. Radiology. 2015;275(1):235–244. doi: 10.1148/radiol.14141129.
    1. Ishiba T, Nakagawa T, Sato T, Nagahara M, Oda G, Sugimoto H, Kasahara M, Hosoya T, Kubota K, Fujioka T, et al. Efficiency of fluorodeoxyglucose positron emission tomography/computed tomography to predict prognosis in breast cancer patients received neoadjuvant chemotherapy. Springerplus. 2015;4:817. doi: 10.1186/s40064-015-1634-y.
    1. Jung SY, Kim SK, Nam BH, Min SY, Lee SJ, Park C, Kwon Y, Kim EA, Ko KL, Park IH, et al. Prognostic impact of [18F] FDG-PET in operable breast cancer treated with neoadjuvant chemotherapy. Ann Surg Oncol. 2010;17(1):247–253. doi: 10.1245/s10434-009-0710-3.
    1. Kim TH, Yoon JK, Kang DK, Kang SY, Jung YS, Han S, Kim JY, Yim H, An YS. Value of volume-based metabolic parameters for predicting survival in breast cancer patients treated with neoadjuvant chemotherapy. Medicine (Baltimore) 2016;95(41):e4605. doi: 10.1097/MD.0000000000004605.
    1. Kitajima K, Nakatani K, Yamaguchi K, Nakajo M, Tani A, Ishibashi M, Hosoya K, Morita T, Kinoshita T, Kaida H, et al. Response to neoadjuvant chemotherapy for breast cancer judged by PERCIST - multicenter study in Japan. Eur J Nucl Med Mol Imaging. 2018;45(10):1661–1671. doi: 10.1007/s00259-018-4008-1.
    1. Kiyoto S, Sugawara Y, Hosokawa K, Nishimura R, Yamashita N, Ohsumi S, Mochizuki T. Predictive ability of (18)F-fluorodeoxyglucose positron emission tomography/computed tomography for pathological complete response and prognosis after neoadjuvant chemotherapy in triple-negative breast cancer patients. Asia Oceania J Nuclear Med Biology. 2016;4(1):3–11.
    1. Kolesnikov-Gauthier H, Vanlemmens L, Baranzelli MC, Vennin P, Servent V, Fournier C, Carpentier P, Bonneterre J. Predictive value of neoadjuvant chemotherapy failure in breast cancer using FDG-PET after the first course. Breast Cancer Res Treat. 2012;131(2):517–525. doi: 10.1007/s10549-011-1832-4.
    1. Lee HW, Lee HM, Choi SE, Yoo H, Ahn SG, Lee MK, Jeong J, Jung WH. The prognostic impact of early change in 18F-FDG PET SUV after neoadjuvant chemotherapy in patients with locally advanced breast cancer. J Nucl Med. 2016;57(8):1183–1188. doi: 10.2967/jnumed.115.166322.
    1. Lian W, Liu C, Gu B, Zhang J, Lu L, Pan H, Yao Z, Wang M, Song S, Zhang Y, et al. The early prediction of pathological response to neoadjuvant chemotherapy and prognosis: comparison of PET response criteria in solid tumors and European Organization for Research and Treatment of Cancer criteria in breast cancer. Nucl Med Commun. 2020;41(3):280–287. doi: 10.1097/MNM.0000000000001145.
    1. Lim I, Noh WC, Park J, Park JA, Kim HA, Kim EK, Park KW, Lee SS, You EY, Kim KM, et al. The combination of FDG PET and dynamic contrast-enhanced MRI improves the prediction of disease-free survival in patients with advanced breast cancer after the first cycle of neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging. 2014;41(10):1852–1860. doi: 10.1007/s00259-014-2797-4.
    1. Zucchini G, Quercia S, Zamagni C, Santini D, Taffurelli M, Fanti S, Martoni AA. Potential utility of early metabolic response by 18F-2-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography in a selected group of breast cancer patients receiving preoperative chemotherapy. Eur J Cancer. 2013;49(7):1539–1545. doi: 10.1016/j.ejca.2012.12.024.
    1. Groheux D, Mankoff D, Espié M, Hindié E. 18F-FDG PET/CT in the early prediction of pathological response in aggressive subtypes of breast cancer: review of the literature and recommendations for use in clinical trials. Eur J Nucl Med Mol Imaging. 2016;43(5):983–993. doi: 10.1007/s00259-015-3295-z.
    1. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. doi: 10.1371/journal.pmed.1000097.
    1. Hayden JA, van der Windt DA, Cartwright JL, Cote P, Bombardier C. Assessing bias in studies of prognostic factors. Ann Intern Med. 2013;158(4):280–286. doi: 10.7326/0003-4819-158-4-201302190-00009.
    1. Guyot P, Ades AE, Ouwens MJ, Welton NJ. Enhanced secondary analysis of survival data: reconstructing the data from published Kaplan-Meier survival curves. BMC Med Res Methodol. 2012;12:9. doi: 10.1186/1471-2288-12-9.
    1. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ (Clinical research ed) 2003;327(7414):557–560. doi: 10.1136/bmj.327.7414.557.
    1. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ (Clinical research ed) 1997;315(7109):629–634. doi: 10.1136/bmj.315.7109.629.
    1. von Minckwitz G, Untch M, Blohmer JU, Costa SD, Eidtmann H, Fasching PA, Gerber B, Eiermann W, Hilfrich J, Huober J, et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol. 2012;30(15):1796–1804. doi: 10.1200/JCO.2011.38.8595.
    1. SEER Cancer Stat Facts: Female breast cancer subtypes. National Cancer Institute. Bethesda, MD, .
    1. Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48(6):932–945. doi: 10.2967/jnumed.106.035774.
    1. Hirai T, Nemoto A, Ito Y, Matsuura M. Meta-analyses on progression-free survival as a surrogate endpoint for overall survival in triple-negative breast cancer. Breast Cancer Res Treat. 2020;181(1):189–198. doi: 10.1007/s10549-020-05615-4.

Source: PubMed

3
Abonneren