Montelukast in the treatment of duodenal eosinophilia in children with dyspepsia: effect on eosinophil density and activation in relation to pharmacokinetics

Craig A Friesen, Nancy A Neilan, Jennifer V Schurman, Debra L Taylor, Gregory L Kearns, Susan M Abdel-Rahman, Craig A Friesen, Nancy A Neilan, Jennifer V Schurman, Debra L Taylor, Gregory L Kearns, Susan M Abdel-Rahman

Abstract

Background: We have previously demonstrated the clinical efficacy of montelukast in a randomized double-blind controlled cross-over trial in patients with dyspepsia in association with duodenal eosinophilia. The mechanism of this clinical response is unknown but could involve a decrease in eosinophil density or activation.

Methods: Twenty-four dyspeptic patients 8-17 years of age underwent initial blood sampling and endoscopy with biopsy. Eighteen of these patients had elevated duodenal eosinophil density and underwent repeat blood sampling and endoscopy following 21 days of therapy with montelukast (10 mg/day). The following were determined: global clinical response on a 5-point Lickert-type scale, eosinophil density utilizing H & E staining, eosinophil activation determined by degranulation indices on electron microscopy, and serum cytokine concentrations. On day 21, pharmacokinetics and duodenal mucosal drug concentrations were determined.

Results: Eighty-three percent of the patients had a positive clinical response to montelukast with regard to relief of pain with 50% having a complete or nearly complete clinical response. The response was unrelated to systemic drug exposure or to mucosal drug concentration. Other than a mild decrease in eosinophil density in the second portion of the duodenum, there were no significant changes in eosinophil density, eosinophil activation, or serum cytokine concentrations following treatment with montelukast. Pre-treatment TNF-alpha concentration was negatively correlated with clinical response.

Conclusion: The short-term clinical response to montelukast does not appear to result from changes in eosinophil density or activation. Whether the effect is mediated through specific mediators or non-inflammatory cells such as enteric nerves remains to be determined.

Trial registration: ClinicalTrials.gov; NCT00148603.

Figures

Figure 1
Figure 1
The percentage of patients exhibiting each grade of pain relief after treatment with montelukast.
Figure 2
Figure 2
Individual montelukast plasma concentration vs. time data.

References

    1. Rasquin-Weber A, Hyman PE, Cucchiara S, Fleisher DR, Hyams JS, Milla PJ, Staiano A. Childhood functional gastrointestinal disorders. Gut. 1999;45(Supl II):II60–II68.
    1. Schurman JV, Friesen CA, Danda CE, Andre L, Welchert E, Lavenbarg T, Cocjin JT, Hyman PE. Diagnosing functional abdominal pain with the Rome II criteria: parent, child, and clinician agreement. J Pediatr Gastroenterol Nutr. 2005;41:291–295. doi: 10.1097/01.mpg.0000178438.64675.c4.
    1. Shaffer SE, Sellman SB, Repucci AH, Hupertz VF, Czinn SJ, Boyle JT. Dyspepsia: Redefining chronic abdominal pain in children. Gastroenterology. 1992;102:163A.
    1. Talley NJ, Walker MM, Aro P, Ronkainen J, Storskrubb T, Hindley LA, Harmsen WS, Zinsmeister AR, Agréus L. Non-ulcer dyspepsia and duodenal eosinophilia: an adult endoscopic population-based case-control study. Clin Gastroenterol Hepatol. 2007;5:1175–1183. doi: 10.1016/j.cgh.2007.05.015.
    1. Erjefalt JS, Greiff L, Andersson M, Adelroth E, Jeffery PK, Persson CGA. Degranulation patterns of eosinophil granulocytes as determinants of eosinophil driven disease. Thorax. 2001;56:341–344. doi: 10.1136/thorax.56.5.341.
    1. Friesen C, Andre L, Garola R, Hodge C, Roberts C. Activated duodenal mucosal eosinophils in dyspepsia in children: A pilot transmission electron microscopic [EM] study. J Pediatr Gastroenterol Nutr. 2002;35:329–333. doi: 10.1097/00005176-200209000-00017.
    1. Muijser RB, Noble S. Montelukast: a review of its therapeutic potential in asthma in children 2 to 14 years of age. Paediatr Drugs. . 2002;4(2):123–139.
    1. Neustrom MR, Friesen C. Treatment of eosinophilic gastroenteritis with montelukast. J Allergy Clin Immunol. 1999;104(2 pt 1):506.
    1. Schwartz DA, Pardi DS, Murray JA. Use of montelukast as steroid-sparing agent for recurrent eosinophilic gastroenteritis. Dig Dis Sci. 2001;46:1787–1790. doi: 10.1023/A:1010682310928.
    1. Vanderhoof JA, Young RJ, Hanner TL, Kettlehut B. Montelukast: use in pediatric patients with eosinophilic gastrointestinal disease. J Pediatr Gastroenterol Nutr. 2003;36:293–294. doi: 10.1097/00005176-200302000-00027.
    1. Friesen CA, Kearns GL, Andre L, Neustrom M, Roberts CC, Abdel-Rahman S. Clinical efficacy and pharmacokinetics of montelukast in dyspeptic children with duodenal eosinophilia. J Pediatr Gastroenterol Nutr. 2004;38:343–351. doi: 10.1097/00005176-200403000-00021.
    1. Migoya E, Kearns GL, Hartford A, Zhao J, van Adelsberg J, Tozzi CA, Knorr B, Deutsch P. Pharmacokinetics of montelukast in asthmatic patients 6 months to 24 months old. J Clin Pharmacol. 2004;44:487–494. doi: 10.1177/0091270004264970.
    1. Attwood SE, Lewis CJ, Bronder CS, Morris CD, Armstrong GR, Whittam J. Eosinophilic oesophagitis: a novel treatment using montelukast. Gut. 2003;52:181–185. doi: 10.1136/gut.52.2.181.
    1. Barbara G, Stanghellini V, De Giorgio R, Corinaldesi R. Functional gastrointestinal disorders and mast cells: implications for therapy. Neurogastroenterol Motil. 2006;18:6–17. doi: 10.1111/j.1365-2982.2005.00685.x.
    1. Hall W, Buckley M, Crotty P, O'Morain CA. Gastric mucosal mast cells are increased in Helicobacter pylori-negative functional dyspepsia. Clin Gastroenterol Hepatol. 2003;1:363–369. doi: 10.1053/S1542-3565(03)00184-8.
    1. Friesen CA, Lin Z, Singh M, Singh V, Schurman JV, Burchell N, Cocjin JT, McCallum RW. Antral inflammatory cells, gastric emptying, and electrogastrography in pediatric functional dyspepsia. Dig Dis Sci. 2008;53:2634–2640. doi: 10.1007/s10620-008-0207-0.
    1. Mellor EA, Austen KF, Boyce JA. Cysteinyl leukotrienes and uridine diphosphate induce cytokine generation by human mast cells through an interleukin 4-regulated pathway that is inhibited by leukotriene receptor antagonists. J Exp Med. 2002;195:583–592. doi: 10.1084/jem.20020044.
    1. Shiota N, Shimoura K, Okunishi H. Pathophysiological role of mast cells in collagen-induced arthritis: study with a cysteinyl leukotriene receptor antagonist, montelukast. Eur J Pharmacol. 2006;548:158–166. doi: 10.1016/j.ejphar.2006.07.046.
    1. Hung CH, Li CY, Hua YM, Chen CJ, Yang KD, Jong YJ. Effects of leukotriene antagonists on monocyte chemotaxis, p38 and cytoplasmic calcium. Pediatr Allergy Immunol. 2006;17:250–258. doi: 10.1111/j.1399-3038.2006.00385.x.
    1. Liu S, Hu H-Z, Gao N, Gao C, Wang G, Wang X, Peck OC, Kim G, Gao X, Xia Y, Wood JD. Neuroimmune interactions in guinea pig stomach and small intestine. Am J Physiol Gastrointest Liver Physiol. 2003;284:G154–G164.
    1. Burakoff R, Nastos E, Won S, Percy WH. Comparison of the effects of leukotrienes B4 and D4 on distal colonic motility in the rabbit in vivo. Am J Physiol. 1989;257(6 Pt 1):G860–G864.
    1. Freedman SM, Wallace JL, Shaffer EA. Characterization of leukotriene-induced contraction of the guinea-pig gallbladder in vitro. Can J Physiol Pharmacol. 1993;71:145–150.
    1. Goldhill JM, Finkelman FD, Morris SC, Shea-Donohue T. Neural control of mouse small intestinal longitudinal muscle: interactions with inflammatory mediators. J Pharmacol Exp Ther. 1995;274:72–77.
    1. Goldenberg MM, Subers EM. The effect of leukotriene D4 on the isolated stomach and colon of the rat. Life Sci. 1983;33:2121–2127. doi: 10.1016/0024-3205(83)90336-3.
    1. Liu S, Hu HZ, Gao C, Gao N, Wang G, Wang X, Gao X, Xia Y, Wood JD. Actions of cysteinyl leukotrienes in the enteric nervous system of guinea-pig stomach and small intestine. Eur J Pharmacol. 2003;459:27–39. doi: 10.1016/S0014-2999(02)02820-0.
    1. Frieling T, Becker K, Rupprecht C, Dobreva G, Häussinger D, Schemann M. Leukotriene-evoked cyclic chloride secretion is mediated by enteric neuronal modulation in guinea-pig colon. Naunyn Schmiedebergs Arch Pharmacol. 1997;355:625–630. doi: 10.1007/PL00004993.
    1. Kim N, Cao W, Song IS, Kim C, Sohn UD, Harnett KM, Biancani P. Leukotriene D4-induced contraction of cat esophageal and lower esophageal sphincter circular smooth muscle. Gastroenterology. 1998;115:919–928. doi: 10.1016/S0016-5085(98)70264-1.
    1. Peters-Golden M, Gleason MM, Togias A. Cysteinyl leukotrienes: multi-functional mediators in allergic rhinitis. Clin Exp Allergy. 2006;36:689–703. doi: 10.1111/j.1365-2222.2006.02498.x.
    1. Can M, Yüksel B, Demirtas S, Tomac N. The effect of montelukast on soluble interleukin-2 receptor and tumor necrosis factor alpha in pediatric asthma. Allergy Asthma Proc. 2006;27:383–386. doi: 10.2500/aap.2006.27.2923.
    1. Stelmach I, Korzeniewska A, Stelmach W, Majak P, Grzelewski T, Jerzynska J. Effects of montelukast treatment on clinical and inflammatory variables in patients with cystic fibrosis. Ann Allergy Asthma Immunol. 2005;95:372–380.
    1. Thomas PS, Heywood G. Effects of inhaled tumor necrosis factor alpha in subjects with mild asthma. Thorax. 2002;57:774–778. doi: 10.1136/thorax.57.9.774.
    1. Liu LY, Bates ME, Jarjour NN, Busse WW, Bertics PJ, Kelly EA. Generation of Th1 and Th2 chemokines by human eosinophils: evidence for a critical role of TNF-alpha. J Immunol. 2007;179:4840–4848.
    1. Maeba S, Ichiyama T, Ueno Y, Makata H, Matsubara T, Furukawa S. Effect of montelukast on nuclear factor κB activation and proinflammatory molecules. Ann Allergy Asthma Immunol. 2005;94:670–674.

Source: PubMed

3
Abonneren