Intranasal dexamethasone: a new clinical trial for the control of inflammation and neuroinflammation in COVID-19 patients

Graciela Cárdenas, María Chávez-Canales, Ana María Espinosa, Antonio Jordán-Ríos, Daniel Anica Malagon, Manlio Fabio Márquez Murillo, Laura Victoria Torres Araujo, Ricardo Leopoldo Barajas Campos, Rosa María Wong-Chew, Luis Esteban Ramirez González, Karent Ibet Cresencio, Enrique García Velázquez, Mariana Rodriguez de la Cerda, Yoana Leyva, Joselin Hernández-Ruiz, María Luisa Hernández-Medel, Mireya León-Hernández, Karen Medina Quero, Anahí Sánchez Monciváis, Sergio Hernández Díaz, Ignacia Rosalia Zeron Martínez, Adriana Martínez-Cuazitl, Iván Noé Martínez Salazar, Eduardo Beltrán Sarmiento, Aldo Figueroa Peña, Patricia Saraí Hernández, Rafel Ignacio Aguilar Reynoso, Daniela Murillo Reyes, Luis Rodrigo Del Río Ambriz, Rogelio Antonio Alfaro Bonilla, Jocelyn Cruz, Leonor Huerta, Nora Alma Fierro, Marisela Hernández, Mayra Pérez-Tapia, Gabriela Meneses, Erick Espíndola-Arriaga, Gabriela Rosas, Alberto Chinney, Sergio Rosales Mendoza, Juan Alberto Hernández-Aceves, Jaquelynne Cervantes-Torres, Anai Fuentes Rodríguez, Roxana Olguin Alor, Sandra Ortega Francisco, Evelyn Alvarez Salazar, Hugo Besedovsky, Marta C Romano, Raúl J Bobes, Helgi Jung, Gloria Soldevila, Juan López-Alvarenga, Gladis Fragoso, Juan Pedro Laclette, Edda Sciutto, Graciela Cárdenas, María Chávez-Canales, Ana María Espinosa, Antonio Jordán-Ríos, Daniel Anica Malagon, Manlio Fabio Márquez Murillo, Laura Victoria Torres Araujo, Ricardo Leopoldo Barajas Campos, Rosa María Wong-Chew, Luis Esteban Ramirez González, Karent Ibet Cresencio, Enrique García Velázquez, Mariana Rodriguez de la Cerda, Yoana Leyva, Joselin Hernández-Ruiz, María Luisa Hernández-Medel, Mireya León-Hernández, Karen Medina Quero, Anahí Sánchez Monciváis, Sergio Hernández Díaz, Ignacia Rosalia Zeron Martínez, Adriana Martínez-Cuazitl, Iván Noé Martínez Salazar, Eduardo Beltrán Sarmiento, Aldo Figueroa Peña, Patricia Saraí Hernández, Rafel Ignacio Aguilar Reynoso, Daniela Murillo Reyes, Luis Rodrigo Del Río Ambriz, Rogelio Antonio Alfaro Bonilla, Jocelyn Cruz, Leonor Huerta, Nora Alma Fierro, Marisela Hernández, Mayra Pérez-Tapia, Gabriela Meneses, Erick Espíndola-Arriaga, Gabriela Rosas, Alberto Chinney, Sergio Rosales Mendoza, Juan Alberto Hernández-Aceves, Jaquelynne Cervantes-Torres, Anai Fuentes Rodríguez, Roxana Olguin Alor, Sandra Ortega Francisco, Evelyn Alvarez Salazar, Hugo Besedovsky, Marta C Romano, Raúl J Bobes, Helgi Jung, Gloria Soldevila, Juan López-Alvarenga, Gladis Fragoso, Juan Pedro Laclette, Edda Sciutto

Abstract

Background: By end December of 2021, COVID-19 has infected around 276 million individuals and caused over 5 million deaths worldwide. Infection results in dysregulated systemic inflammation, multi-organ dysfunction, and critical illness. Cells of the central nervous system are also affected, triggering an uncontrolled neuroinflammatory response. Low doses of glucocorticoids, administered orally or intravenously, reduce mortality among moderate and severe COVID-19 patients. However, low doses administered by these routes do not reach therapeutic levels in the CNS. In contrast, intranasally administered dexamethasone can result in therapeutic doses in the CNS even at low doses.

Methods: This is an approved open-label, multicenter, randomized controlled trial to compare the effectiveness of intranasal versus intravenous dexamethasone administered in low doses to moderate and severe COVID-19 adult patients. The protocol is conducted in five health institutions in Mexico City. A total of 120 patients will be randomized into two groups (intravenous vs. intranasal) at a 1:1 ratio. Both groups will be treated with the corresponding dexamethasone scheme for 10 days. The primary outcome of the study will be clinical improvement, defined as a statistically significant reduction in the NEWS-2 score of patients with intranasal versus intravenous dexamethasone administration. The secondary outcome will be the reduction in mortality during hospitalization.

Conclusions: This protocol is currently in progress to improve the efficacy of the standard therapeutic dexamethasone regimen for moderate and severe COVID-19 patients.

Trial registration: ClinicalTrials.gov NCT04513184 . Registered November 12, 2020. Approved by La Comisión Federal para la Protección contra Riesgos Sanitarios (COFEPRIS) with identification number DI/20/407/04/36. People are currently being recruited.

Keywords: COVID-19; Dexamethasone; Inflammation; Intranasal administration; Neuroinflammation.

Conflict of interest statement

The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Inflammatory phenomena associated with SARS-CoV-2 infection and its neurological and respiratory manifestations. The SARS-CoV-2 virus mainly enters the respiratory tract and reaches the lungs through direct ventilation and the CNS through the olfactory and trigeminal nerves. The entry of the virus is facilitated by NRP-1, ACE2 receptors, and protein S activation by TMPRSS2. In the CNS, the virus infects neurons, glial cells, and endothelial cells, increasing the permeability of the BBB. This may cause cerebral edema, intracranial hypertension, and neuroinflammation. If the viral infection continues, the damage spreads throughout the body, causing heart and systemic failure. This damage is associated with increased neuroinflammation directed by microglia and oligodendrocytes, causing damage to the brain stem and dysfunction of the heart and lungs. The exacerbated inflammation and intravascular coagulation induce respiratory arrest, possibly leading to the patient’s death. The inflammation is triggered by viral components (PAMPS) that activate TLR3, 7, and 8 receptors on the cell surface. Consequently, there is an increased production of pro-inflammatory cytokines (TNFα and IL 1β) and ROS, which can modify the P2X7 receptor in the brain and activate the inflammasome by the decrease of K+. The activation of the inflammasome increases the production of IL-6 and pyroptosis. This diagram is based on the knowledge at the time of writing the manuscript
Fig. 2
Fig. 2
Outline of the REVIVAL trial clinical protocol. Initially, patients will be informed about the clinical trial; if they accept and sign the consent, they will be randomized using the Sealed envelope® software. Group A will receive intranasal DXM; Group B will receive intravenous DXM. Both groups will be sampled on days 0, 3, 6, and 10 post-treatment to collect sera and nasopharyngeal swabs. Patients will be monitored throughout the study. The results will be tested for statistical differences between groups

References

    1. Medzhitov R. Origin and physiological role of inflammation. Nature. 2008;454:428–435. doi: 10.1038/nature07201.
    1. Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020;92(6):552–555. doi: 10.1002/jmv.25728.
    1. Zhou Z, Kang H, Li S, Zhao X. Understanding the neurotropic characteristics of SARS-CoV-2: from neurological manifestations of COVID-19 to potential neurotropic mechanisms. J Neurol. 2020;267(8):2179–2184. doi: 10.1007/s00415-020-09929-7.
    1. Kwong NK, Chong K, Mehta PR, Shukla G, Mehta AR. COVID-19, SARS and MERS: a neurological perspective. J Clin Neurosci Churchill Livingstone. 2020;77:13–16. doi: 10.1016/j.jocn.2020.04.124.
    1. Li YC, Bai WZ, Hirano N, Hayashida T, Hashikawa T. Coronavirus infection of rat dorsal root ganglia: ultrastructural characterization of viral replication, transfer, and the early response of satellite cells. Virus Res. 2012;163(2):628–635. doi: 10.1016/j.virusres.2011.12.021.
    1. Desforges M, Le coupanec A, Dubeau P, Bourgouin A, Lajoie L, Dubé M, Talbot PJ. Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system. Viruses. 2019;12(1):14. doi: 10.3390/v12010014.
    1. Gasmi A, Noor S, Menzel A, Dosa A, Pivina L, Bjoorklund G. Obesity and insulin resistance: associations with chronic inflammation, genetic and epigenetic factors. Curr Med Chem. 2020;28(4):800–826. doi: 10.2174/0929867327666200824112056.
    1. Danlin L, Richardson G, Benli FM, Park C, de Souza JV, Bronowska AK, Spyridopoulos Inflammageing in the cardiovascular system: mechanisms, emerging targets, and novel therapeutic strategies. Clin Sci (Lond) 2020;134(17):2243–2262. doi: 10.1042/CS20191213.
    1. Meinhardt J, Radke J, Dittmayer C, Franz J, Thomas C, Mothes R, Laue M, Schneider J, Brünink S, Greuel S, Lehmann M, Hassan O, Aschman T, Schumann E, Chua RL, Conrad C, Eils R, Stenzel W, Windgassen M, Rößler L, Goebel HH, Gelderblom HR, Martin H, Nitsche A, Schulz-Schaeffer WJ, Hakroush S, Winkler MS, Tampe B, Scheibe F, Körtvélyessy P, Reinhold D, Siegmund B, Kühl AA, Elezkurtaj S, Horst D, Oesterhelweg L, Tsokos M, Ingold-Heppner B, Stadelmann C, Drosten C, Corman VM, Radbruch H, Heppner FL. Olfactory transmucosal SARS-CoV-2 invasion as a port of a central nervous system entry in individuals with COVID-19. Nat Neurosci. 2021;24(2):1698–1175. doi: 10.1038/s41593-020-00758-5.
    1. Dos Santos MF, Devalle S, Aran V, Capra D, Roque NR, Coelho-Aguiar JM. Spohr TCLSE, Subilaga JG, Pereira CM, D’Andrea Meira I, Niemeyer Soares Filho P, Moura-Neto V. Neuromechanisms of SARS-CoV-2: a review. Front Neuroanat. 2020;14:37. doi: 10.3389/fnana.2020.00037.
    1. Somolon IH, Normandin E, Bhattacharyya S, Mukerji SS, Kellner K, Ali AS, Adams G, Hornick JL, Padera RF, Jr, Sabeti P. Neuropathological features of COVID-19. N Engl J Med. 2020;383(10):989–992. doi: 10.1056/NEJMc2019373.
    1. Paniz-Mondolfi A, Bryce C, Grimes Z, Gordon RE, Reidy J, Lednicky J, Sordillo EM, Fowkes M. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) J Med Virol. 2020;92(7):699–702. doi: 10.1002/jmv.25915.
    1. Kanberg N, Ashton NJ, Andersson LM, Yilmaz A, Lindh M, Nilsson S, Price RW, Blennow K, Zetterberg H, Gisslén M. Neurochemical evidence of astrocytic and neuronal injury commonly found in COVID-19. Neurology. 2020;95(12):e1754–e1759. doi: 10.1212/WNL.0000000000010111.
    1. Andrews MG, Mukhtar T, Enze UC, Simoneau CR, Perez Y, Mostajo-Radji MA, et al. Tropism of SARS-CoV-2 for developing human cortical astrocytes. Version 1. bioRxiv. Preprint. 2021 Jan;18. 10.1101/2021.01.17.427024.
    1. Ramani A, Müller L, Ostermann PN, Gabriel E, Abida-Islam P, Müller-Schiffmann A, Mariappan A, Goureau O, Gruell H, Walker A, Andrée M, Hauka S, Houwaart T, Dilther A, Wohlgemuth K, Omran H, Klein F, Wieczorek D, Adams O, Timm J, Korth C, Schaal H, Gopalakrishnan J. SARS-CoV-2 targets neurons of 3D human brain organoids. EMBO J. 2020;39(20):e106230. doi: 10.15252/embj.2020106230.
    1. Song E, Ce Z, Israelow B, Lu-Culligan A, Veites Prado A, Skriabine S, Lu P, Orr-El Weizman L, Lui F, Dai Y, Szigeti-Buck K, Yasumoto Y, Wang G, Castaldi C, Heltke J, Ng E, Wheeler J, Madel Alfajaro M, Levavasseur E, Fontes B, Ravindra NG, van Dijk D, Gunel M, Ring A, Jaffar Kazmi SA, Khang K, Willen CB, Horvath TL, Plu I, Haik S, Thomas JL, Louvi A, Farhadian SF, Huttner A, Seilhean D, Renier N, Bilguvar K, Iwaski A. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Exp Med. 2021;218:e20202135. doi: 10.1084/jem.20202135.
    1. Siddiqi HS, Mehra MR. COVID-19 illness in native and immunosuppressed states: a clinical-therapeutic staging proposal. J Heart Lung Transplant. 2020;39(5):405–407. doi: 10.1016/j.healun.2020.03.012.
    1. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280.e8. doi: 10.1016/j.cell.2020.02.052.
    1. Sungnak W, Huang N, Becavin C, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med. 2020;26(5):681–687. doi: 10.1038/s41591-020-0868-6.
    1. Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S, van der Meer F, Kallio K, Kaya T, Anastasina M, Smura T, Levanov L, Szirovicza L, Tobi A, Kallio-Kokko H, Österlund P, Joensuu M, Meunier FA, Butcher SJ, Winkler MS, Mollenhauer B, Helenius A, Gokce O, Teesalu T, Hepojoko J, Vapalahti O, Stadelmann C, Balistreri G, Simons M. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 2020;370(6518):856–860. doi: 10.1126/science.abd2985.
    1. Davies J, Randeva HS, Chatha K, Hall M, Spandidos DA, Karteris E, Kyrou I. Neuropilin-1 as a new potential SARS-CoV-2 infection mediator implicated in the neurologic features and central nervous system involvement of COVID-19. Mol Med Rep. 2020;22(5):4221–4226. doi: 10.3892/mmr.2020.11510.
    1. Butowt R, Bilinska K. SARS-CoV-2: Olfaction, brain infection and the urgent need for clinical samples allowing earlier virus detection. ACS Chem Neurosci. 2020;11(9):1200–1203. doi: 10.1021/acschemneuro.0c00172.
    1. Yap JKY, Moriyama M, Iwasaki A. Inflammasomes and pyroptosis as therapeutic targets for COVID-19. J Immunol. 2020;205(2):307–312. doi: 10.4049/jimmunol.2000513.
    1. Freeman TL, Swartz TH. Targeting the NLRP3 inflammasome in severe COVID-19. Front Immunol. 2020;11:1518. doi: 10.3389/fimmu.2020.01518.
    1. Ribeiro Dem Oliveira-Giacomelli A, Glaser T, Arnaud-Sampaio VF, Andrejew R, Diekmann L, Baranova J, Lameu C, Ratajczak M, Ulrich H. Hyperactivation of P2X7 receptors as a culprit of COVID-19 neuropathology. Mol Psychiatry. 2020;26(4):1–16. doi: 10.1038/s41380-020-00965-3.
    1. Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008;82(15):7264–7275. doi: 10.1128/JVI.00737-08.
    1. Wu Y, Xu X, Chen Z, Duan J, Hashimoto K, Yang L. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav. Immun. 2020;20:30357–30353. doi: 10.1016/j.bbi.2020.03.031.
    1. Zhou L, Zhang M, Wang J, Gao J. Sars-Cov-2: underestimated damage to nervous system. Travel Med Infect Dis. 2020;36:101642. doi: 10.1016/j.tmaid.2020.101642.
    1. Sun T, Guan J. Novel coronavirus and central nervous system. Eur. J. Neurol. 2020;27(9). 10.1111/ene.14227.
    1. Cai Y, Hay M, Bishop VS. Synaptic connections and interactions between area postrema and nucleus tractus solitarius. Brain Res. 1996;724(1):121–124. doi: 10.1016/0006-8993(96)00282-X.
    1. Goodchild AK, Moon EA. Maps of cardiovascular and respiratory regions of rat ventral medulla: focus on the caudal medulla. J Chem Neuroanat. 2009;38(3):209–221. doi: 10.1016/j.jchemneu.2009.06.002.
    1. Delgado-Roche L, Mesta F. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Arch Med Res. 2020;51(5):384–387. doi: 10.1016/j.arcmed.2020.04.019.
    1. Hamrahian AH. Fleseriu M; AACE adrenal scientific committee. Evaluation and management of adrenal insufficiency in critically ill patients: disease state review. Endocr Pract. 2017;23(6):716–725. doi: 10.4158/EP161720.RA.
    1. Mateos Moreno L, Palacios Garcia N, Estrada Garcia FJ. Adrenal insufficiency in critical patients: new ethiopathogenic concepts and therapeutic implications. Endocrinol Diabetes Nutr. 2017;64(10):557–563. doi: 10.1016/j.endinu.2017.09.004.
    1. Hamming I, Timens W, Bultuis MLC, Lely AT, Navis GJ, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631–637. doi: 10.1002/path.1570.
    1. Ding YQ, Wang HJ, Shen H, Li ZG, Geng J, Han HX, Cai JJ, Li X, Kang W, Weng DS, Lu YD, Yao KT. Study on etiology and pathology of severe acute respiratory syndrome. Zhonghua Bing Li Xue Za Zhi. 2003;32(3):195–200.
    1. Leow MKS, Kwek DSK, Ng AWK, Kaw GJL, Lee LSU. Hypocortisolism in survivors of severe acute respiratory syndrome (SARS) Clin Endocrinol (Oxf) 2005;63:197–202. doi: 10.1111/j.1365-2265.2005.02325.x.
    1. Alzahrani AS, Mukhtar N, Aljomaiah A, Aljamei H, Barkhsh A, Alsudani N, Elsayed T, Alrashidi N, Fadel R, Alqahtani E, Raef H, Butt MI, Sulaiman O. The Impact of COVID-19 Viral Infection on the Hypothalamic-Pituitary-Adrenal Axis. Endocr Pract. 2021;27(2):83–89. doi: 10.1016/j.eprac.2020.10.014.
    1. Pal R. COVID-19, hypothalamo-pituitary-adrenal axis and clinical implications. Endocrine. 2020;68(2):251–252. doi: 10.1007/s12020-020-02325-1.
    1. Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol. 2011;335(1):2–13. doi: 10.1016/j.mce.2010.04.005.
    1. Van Der Velden VHJ. Glucocorticoids: mechanisms of action and anti-inflammatory potential in asthma. Mediators inflamm. 1998;(7):229–37.
    1. Ronchetti S, Migliorati G, Bruscoli S, Riccardi C. Defining the role of glucocorticoids in inflammation. Clin Sci (Lond). 2018;132(14):1529–1543. doi: 10.1042/CS20171505.
    1. Pinto A, Jacobsen M, Geoghegan PA, Cangelosi A, Cejudo ML, Tironi-Farinati C, Goldstein J. Dexamethasone rescues neurovascular unit integrity from cell damage caused by systemic administration of shiga toxin 2 and lipopolysaccharide in mice motor cortex. PLoS ONE. 2013;8(7):e70020. doi: 10.1371/journal.pone.0070020.
    1. RECOVERY Collaborative Group, Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, et al. Dexamethasone in hospitalized patients with Covid-19- Preliminary report. N Engl J Med. 2021;384(8):693-704.
    1. Erdó F, Bors LA, Farkas D, Bajza Á, Gizurarson S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull. 2018;143:155–170. doi: 10.1016/j.brainresbull.2018.10.009.
    1. Meneses G, Cárdenas G, Espinosa A, Rassy D, Pérez-Osorio IN, Bárcena B, Fleury A, Besedovsky H, Fragoso G, Sciutto E. Sepsis: developing new alternatives to reduce neuroinflammation and attenuate brain injury. Ann N Y Acad Sci. 2019;1437(1):43–56. doi: 10.1111/nyas.13985.
    1. Espinosa A, Meneses G, Chavarría A, Mancilla R, Pedraza-Chaverri J, Fleury A, Barcena B, Pérez Osorio IN, Besedovsky H, Arauz A, Fragoso G, Sciutto E. Intranasal dexamethasone reduces mortality and brain damage in a mouse experimental ischemic stroke model. Neurotherapeutics. 2020;17(4):1907–1918. doi: 10.1007/s13311-020-00884-9.
    1. Meneses G, Gevorkian G, Florentino A, Bautista MA, Espinosa A, Acero G, Díaz G, Fleury A, Pérez Osorio IN, del Rey A, Fragoso G, Sciutto E, Besedovsky H. Intranasal delivery of dexamethasone efficiently controls LPS-induced murine neuroinflammation. Clin Exp Immunol. 2017;190(3):304–314. doi: 10.1111/cei.13018.
    1. Rassy D, Bárcena B, Pérez-Osorio IN, Espinosa A, Peón AN, Terrazas LI, Meneses G, Besedovsky HO, Fragoso G, Sciutto E. Intranasal methylprednisolone effectively reduces neuroinflammation in mice with experimental autoimmune encephalitis. J Neuropathol Exp Neurol. 2020;79(2):226–237. doi: 10.1093/jnen/nlz128.
    1. Zhang Y, Hu S, Wang J, Xue Z, Wang C, Wang N. Dexamethasone inhibits SARS-CoV-2 spike pseudotyped virus viropexis by binding to ACE2. Virology. 2021;554:83–88. doi: 10.1016/j.virol.2020.12.001.
    1. Finney LJ, Glaville N, Farne H, et al. Inhaled corticosteroids downregulate the SARS-CoV-2 receptor ACE2 in COPD through suppression of type I interferon. BioRxiv. 2020. 10.1101/202.06.13.149039.
    1. Wang T, Zhao Y, Fan F, Hu R, Jin X. Dexamethasone inhibits S. aureus-induced neutrophils extracellular pathogen-killing mechanism, possibly through toll-like receptor regulation. Front Immunol. 2017;8:60. doi: 10.3389/fimmu.2017.00060.
    1. Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, Madison JA, et al. Neutrophils extracellular traps (NETs) as markers of disease severity in COVID-19. medRxiv. 2020;2020(04):09.20059626.
    1. Middleton EA, He XY, Denorme F, Campbell RA, Ng D, Salvatore SP, et al. Neutrophils extracellular traps (NETs) contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Bloods. 2020;136(10):1169–1179. doi: 10.1182/blood.2020007008.
    1. Zhang K, Zhang X, Ding W, Xuan N, Tian B, Huang T, Zhang Z, Cui W, Huang H, Zhang G. The prognostic accuracy of National Early Warning Score 2 on predicting clinical deterioration in patients with COVID-19: a systematic review and meta-analysis. Front Med (Lausanne) 2021;8:699880. doi: 10.3389/fmed.2021.699880.
    1. Baker KF, Hanrath AT, van der Loeff IS, Kay LJ, Back J, Duncan CJ. National Early Warning Score 2 (NEWS2) to identify inpatient COVID-19 deterioration: a retrospective analysis. Clin Med (Lond). 2021;21(2):84–89. doi: 10.7861/clinmed.2020-0688.
    1. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap) – a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–381. doi: 10.1016/j.jbi.2008.08.010.
    1. Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O’Neal L, et al. REDCap Consortium, The REDCap consortium: building an international community of software partners. J Biomed Inform. 2019. 10.1016/j.jbi.2019.103208.
    1. Thompson W. The problem of negative estimates of variance components. Ann Math Stat. 1963;33(1):273–289. doi: 10.1214/aoms/1177704731.
    1. Kenward MG, Roger J. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics. 1997;53(3):983–997. doi: 10.2307/2533558.

Source: PubMed

3
Abonneren