Quadriceps activation following knee injuries: a systematic review

Joseph M Hart, Brian Pietrosimone, Jay Hertel, Christopher D Ingersoll, Joseph M Hart, Brian Pietrosimone, Jay Hertel, Christopher D Ingersoll

Abstract

Context: Arthrogenic muscle inhibition is an important underlying factor in persistent quadriceps muscle weakness after knee injury or surgery.

Objective: To determine the magnitude and prevalence of volitional quadriceps activation deficits after knee injury.

Data sources: Web of Science database.

Study selection: Eligible studies involved human participants and measured quadriceps activation using either twitch interpolation or burst superimposition on patients with knee injuries or surgeries such as anterior cruciate ligament deficiency (ACLd), anterior cruciate ligament reconstruction (ACLr), and anterior knee pain (AKP).

Data extraction: Means, measures of variability, and prevalence of quadriceps activation (QA) failure (<95%) were recorded for experiments involving ACLd (10), ACLr (5), and AKP (3).

Data synthesis: A total of 21 data sets from 18 studies were initially identified. Data from 3 studies (1 paper reporting data for both ACLd and ACLr, 1 on AKP, and the postarthroscopy paper) were excluded from the primary analyses because only graphical data were reported. Of the remaining 17 data sets (from 15 studies), weighted mean QA in 352 ACLd patients was 87.3% on the involved side, 89.1% on the uninvolved side, and 91% in control participants. The QA failure prevalence ranged from 0% to 100%. Weighted mean QA in 99 total ACLr patients was 89.2% on the involved side, 84% on the uninvolved side, and 98.5% for the control group, with prevalence ranging from 0% to 71%. Thirty-eight patients with AKP averaged 78.6% on the involved side and 77.7% on the contralateral side. Bilateral QA failure was commonly reported in patients.

Conclusions: Quadriceps activation failure is common in patients with ACLd, ACLr, and AKP and is often observed bilaterally.

Figures

Figure 1
Figure 1
Sample force tracing showing components for calculating central activation ratio. Abbreviations: MVIC, maximal voluntary isometric contraction; ST, superimposed burst torque; RT, resting twitch.
Figure 2
Figure 2
Selection process for studies included in this review. a Three articles described both anterior cruciate ligament deficiency and anterior cruciate ligament reconstruction patients (Table 1).
Figure 3
Figure 3
Average quadriceps activation data for the involved, uninvolved, and control limbs in all studies included in this review. Data points represent weighted averages, and error bars represent 95% confidence intervals. Abbreviations: ACLd, anterior cruciate ligament deficiency; ACLr, anterior cruciate ligament reconstruction; AKP, anterior knee pain.

References

    1. Ingersoll C. D., Grindstaff T. L., Pietrosimone B. G., Hart J. M. Neuromuscular consequences of anterior cruciate ligament injury. Clin Sports Med. 2008;27(3):383–404, vii.
    1. Palmieri-Smith R. M., Thomas A. C., Wojtys E. M. Maximizing quadriceps strength after ACL reconstruction. Clin Sports Med. 2008;27(3):405–424, vii–ix.
    1. Hopkins J. T., Ingersoll C. D. Arthrogenic muscle inhibition: a limiting factor in joint rehabilitation. J Sport Rehabil. 2000;9(2):135–159.
    1. Snyder-Mackler L., De Luca P. F., Williams P. R., Eastlack M. E., Bartolozzi A. R., III Reflex inhibition of the quadriceps femoris muscle after injury or reconstruction of the anterior cruciate ligament. J Bone Joint Surg Am. 1994;76(4):555–560.
    1. Behm D. G., St-Pierre D. M., Perez D. Muscle inactivation: assessment of interpolated twitch technique. J Appl Physiol. 1996;81(5):2267–2273.
    1. Kent-Braun J. A., Le Blanc R. Quantitation of central activation failure during maximal voluntary contractions in humans. Muscle Nerve. 1996;19(7):861–869.
    1. Hurley M. V., Jones D. W., Wilson D., Newham D. J. Rehabilitation of quadriceps inhibited due to isolated rupture of the anterior cruciate ligament. J Orthop Rheumatol. 1992;5(3):145–154.
    1. Newham D. J., Hurley B. F., Jones D. W. Ligamentous knee injuries and muscle inhibition. J Orthop Rheumatol. 1989;2:163–173.
    1. Suter E., Herzog W., Bray R. C. Quadriceps inhibition following arthroscopy in patients with anterior knee pain. Clin Biomech (Bristol, Avon) 1998;13(4–5):314–319.
    1. Suter E., Herzog W., De Souza K., Bray R. Inhibition of the quadriceps muscles in patients with anterior knee pain. J Appl Biomech. 1998;14(4):360–373.
    1. Suter E., Herzog W., Bray R. Quadriceps activation during knee extension exercises in patients with ACL pathologies. J Appl Biomech. 2001;17(2):87–102.
    1. Drover J. M., Forand D. R., Herzog W. Influence of active release technique on quadriceps inhibition and strength: a pilot study. J Manipulative Physiol Ther. 2004;27(6):408–413.
    1. Thomee R., Grimby G., Svantesson U., Osterberg U. Quadriceps muscle performance in sitting and standing in young women with patellofemoral pain syndrome and young healthy women. Scand J Med Sci Sports. 1996;6(4):233–241.
    1. Suter E., McMorland G., Herzog W., Bray R. Decrease in quadriceps inhibition after sacroiliac joint manipulation in patients with anterior knee pain. J Manipulative Physiol Ther. 1999;22(3):149–153.
    1. Drechsler W. I., Cramp M. C., Scott O. M. Changes in muscle strength and EMG median frequency after anterior cruciate ligament reconstruction. Eur J Appl Physiol. 2006;98(6):613–623.
    1. Pfeifer K., Banzer W. Motor performance in different dynamic tests in knee rehabilitation. Scand J Med Sci Sports. 1999;9(1):19–27.
    1. Urbach D., Nebelung W., Becker R., Awiszus F. Effects of reconstruction of the anterior cruciate ligament on voluntary activation of quadriceps femoris: a prospective twitch interpolation study. J Bone Joint Surg Br. 2001;83(8):1104–1110.
    1. Hurley M. V., Jones D. W., Newham D. J. Arthrogenic quadriceps inhibition and rehabilitation of patients with extensive traumatic knee injuries. Clin Sci (Lond) 1994;86(3):305–310.
    1. Farquhar S. J., Chmielewski T. L., Snyder-Mackler L. Accuracy of predicting maximal quadriceps force from submaximal effort contractions after anterior cruciate ligament injury. Muscle Nerve. 2005;32(4):500–505.
    1. Chmielewski T. L., Stackhouse S., Axe M. J., Snyder-Mackler L. A prospective analysis of incidence and severity of quadriceps inhibition in a consecutive sample of 100 patients with complete acute anterior cruciate ligament rupture. J Orthop Res. 2004;22(5):925–930.
    1. Williams G. N., Buchanan T. S., Barrance P. J., Axe M. J., Snyder-Mackler L. Quadriceps weakness, atrophy, and activation failure in predicted noncopers after anterior cruciate ligament injury. Am J Sports Med. 2005;33(3):402–407.
    1. Urbach D., Awiszus F. Impaired ability of voluntary quadriceps activation bilaterally interferes with function testing after knee injuries: a twitch interpolation study. Int J Sports Med. 2002;23(4):231–236.
    1. Urbach D., Nebelung W., Weiler H. T., Awiszus F. Bilateral deficit of voluntary quadriceps muscle activation after unilateral ACL tear. Med Sci Sports Exerc. 1999;31(12):1691–1696.
    1. Sherrington C., Herbert R. D., Maher C. G., Moseley A. M. PEDro: a database of randomized trials and systematic reviews in physiotherapy. Man Ther. 2000;5(4):223–226.
    1. Stackhouse S. K., Stevens J. E., Johnson C. D., Snyder-Mackler L., Binder-Macleod S. A. Predictability of maximum voluntary isometric knee extension force from submaximal contractions in older adults. Muscle Nerve. 2003;27(1):40–45.
    1. Stackhouse S. K., Dean J. C., Lee S. C., Binder-Macleod S. A. Measurement of central activation failure of the quadriceps femoris in healthy adults. Muscle Nerve. 2000;23(11):1706–1712.
    1. Stackhouse S. K., Stevens J. E., Lee S. C., Pearce K. M., Snyder-Mackler L., Binder-Macleod S. A. Maximum voluntary activation in nonfatigued and fatigued muscle of young and elderly individuals. Phys Ther. 2001;81(5):1102–1109.
    1. Pietrosimone B. G., Hammill R. R., Saliba E. N., Hertel J., Ingersoll C. D. Joint angle and contraction mode influence quadriceps motor neuron pool excitability. Am J Phys Med Rehabil. 2008;87(2):100–108.
    1. Kubo K., Tsunoda N., Kanehisa H., Fukunaga T. Activation of agonist and antagonist muscles at different joint angles during maximal isometric efforts. Eur J Appl Physiol. 2004;91(2–3):349–352.
    1. Babault N., Pousson M., Ballay Y., Van Hoecke J. Activation of human quadriceps femoris during isometric, concentric, and eccentric contractions. J Appl Physiol. 2001;91(6):2628–2634.
    1. Babault N., Pousson M., Michaut A., Van Hoecke J. Effect of quadriceps femoris muscle length on neural activation during isometric and concentric contractions. J Appl Physiol. 2003;94(3):983–990.
    1. Torry M. R., Decker M. J., Viola R. W., O'Connor D. D., Steadman J. R. Intra-articular knee joint effusion induces quadriceps avoidance gait patterns. Clin Biomech (Bristol, Avon) 2000;15(3):147–159.
    1. Lewek M., Rudolph K., Axe M., Snyder-Mackler L. The effect of insufficient quadriceps strength on gait after anterior cruciate ligament reconstruction. Clin Biomech (Bristol, Avon) 2002;17(1):56–63.
    1. Ernst G. P., Saliba E., Diduch D. R., Hurwitz S. R., Ball D. W. Lower extremity compensations following anterior cruciate ligament reconstruction. Phys Ther. 2000;80(3):251–260.
    1. Webster K. E., Wittwer J. E., O'Brien J., Feller J. A. Gait patterns after anterior cruciate ligament reconstruction are related to graft type. Am J Sports Med. 2005;33(2):247–254.
    1. Hurley M. V. The role of muscle weakness in the pathogenesis of osteoarthritis. Rheum Dis Clin North Am. 1999;25(2):283–298, vi.
    1. Herzog W., Longino D., Clark A. The role of muscles in joint adaptation and degeneration. Langenbecks Arch Surg. 2003;388(5):305–315.
    1. Torry M. R., Decker M. J., Ellis H. B., Shelburne K. B., Sterett W. I., Steadman J. R. Mechanisms of compensating for anterior cruciate ligament deficiency during gait. Med Sci Sports Exerc. 2004;36(8):1403–1412.
    1. Knoll Z., Kiss R. M., Kocsis L. Gait adaptation in ACL deficient patients before and after anterior cruciate ligament reconstruction surgery. J Electromyogr Kinesiol. 2004;14(3):287–294.
    1. Knoll Z., Kocsis L., Kiss R. M. Gait patterns before and after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2004;12(1):7–14.
    1. Magyar O. M., Illyes A., Knoll Z., Kiss R. M. Effect of medial meniscectomy on gait parameters. Knee Surg Sports Traumatol Arthrosc. 2008;16(4):427–433.
    1. Timoney J. M., Inman W. S., Quesada P. M., et al. Return of normal gait patterns after anterior cruciate ligament reconstruction. Am J Sports Med. 1993;21(6):887–889.
    1. Hart J. M., Blanchard B. F., Hart J. A., Montgomery S. C., Schoderbek R., Miller M. D. Multiple ligament knee reconstruction clinical follow-up and gait analysis. Knee Surg Sports Traumatol Arthrosc. 2009;17(3):277–285.
    1. Hopkins J. T., Ingersoll C. D., Krause B. A., Edwards J. E., Cordova M. L. Effect of knee joint effusion on quadriceps and soleus motoneuron pool excitability. Med Sci Sports Exerc. 2001;33(1):123–126.
    1. Palmieri-Smith R. M., Kreinbrink J., Ashton-Miller J. A., Wojtys E. M. Quadriceps inhibition induced by an experimental knee joint effusion affects knee joint mechanics during a single-legged drop landing. Am J Sports Med. 2007;35(8):1269–1275.
    1. Stergiou N., Ristanis S., Moraiti C., Georgoulis A. D. Tibial rotation in anterior cruciate ligament (ACL)–deficient and ACL-reconstructed knees: a theoretical proposition for the development of osteoarthritis. Sports Med. 2007;37(7):601–613.
    1. Amin S., Baker K., Niu J., et al. Quadriceps strength and the risk of cartilage loss and symptom progression in knee osteoarthritis. Arthritis Rheum. 2009;60(1):189–198.
    1. Baker K. R., Xu L., Zhang Y., et al. Quadriceps weakness and its relationship to tibiofemoral and patellofemoral knee osteoarthritis in Chinese: the Beijing osteoarthritis study. Arthritis Rheum. 2004;50(6):1815–1821.
    1. Roos E. M. Joint injury causes knee osteoarthritis in young adults. Curr Opin Rheumatol. 2005;17(2):195–200.
    1. Roos H., Adalberth T., Dahlberg L., Lohmander L. S. Osteoarthritis of the knee after injury to the anterior cruciate ligament or meniscus: the influence of time and age. Osteoarthritis Cartilage. 1995;3(4):261–267.
    1. Grindstaff T. L., Hertel J., Beazell J. R., Magrum E. M., Ingersoll C. D. Effects of lumbopelvic joint manipulation on quadriceps activation and strength in healthy individuals. Man Ther. 2009;14(4):415–420.
    1. Suter E., McMorland G., Herzog W., Bray R. Conservative lower back treatment reduces inhibition in knee-extensor muscles: a randomized controlled trial. J Manipulative Physiol Ther. 2000;23(2):76–80.
    1. Palmieri-Smith R. M., Leonard-Frye J. L., Garrison C. J., Weltman A., Ingersoll C. D. Peripheral joint cooling increases spinal reflex excitability and serum norepinephrine. Int J Neurosci. 2007;117(2):229–242.
    1. Hopkins J. T. Knee joint effusion and cryotherapy alter lower chain kinetics and muscle activity. J Athl Train. 2006;41(2):177–184.
    1. Pietrosimone B. G., Hart J. M., Saliba S. A., Hertel J., Ingersoll C. D. Immediate effects of transcutaneous electric nerve stimulation and focal knee joint cooling on quadriceps activation. Med Sci Sports Exerc. 2009;41(6):1175–1181.
    1. Hopkins J., Ingersoll C. D., Edwards J., Klootwyk T. E. Cryotherapy and transcutaneous electric neuromuscular stimulation decrease arthrogenic muscle inhibition of the vastus medialis after knee joint effusion. J Athl Train. 2002;37(1):25–31.
    1. Cheing G. L., Hui-Chan C. W. Would the addition of TENS to exercise training produce better physical performance outcomes in people with knee osteoarthritis than either intervention alone? Clin Rehabil. 2004;18(5):487–497.
    1. Iles J. F. Evidence for cutaneous and corticospinal modulation of presynaptic inhibition of Ia afferents from the human lower limb. J Physiol. 1996;491(pt 1):197–207.
    1. Petterson S., Snyder-Mackler L. The use of neuromuscular electric stimulation to improve activation deficits in a patient with chronic quadriceps strength impairments following total knee arthroplasty. J Orthop Sports Phys Ther. 2006;36(9):678–685.
    1. Stevens J. E., Mizner R. L., Snyder-Mackler L. Neuromuscular electric stimulation for quadriceps muscle strengthening after bilateral total knee arthroplasty: a case series. J Orthop Sports Phys Ther. 2004;34(1):21–29.
    1. Shield A., Zhou S. Assessing voluntary muscle activation with the twitch interpolation technique. Sports Med. 2004;34(4):253–267.
    1. Suter E., Herzog W. Effect of number of stimuli and timing of twitch application on variability in interpolated twitch torque. J Appl Physiol. 2001;90(3):1036–1040.
    1. Huber A., Suter E., Herzog W. Inhibition of the quadriceps muscles in elite male volleyball players. J Sports Sci. 1998;16(3):281–289.
    1. Dousset E., Jammes Y. Reliability of burst superimposed technique to assess central activation failure during fatiguing contraction. J Electromyogr Kinesiol. 2003;13(2):103–111.
    1. Sheffler L. R., Chae J. Neuromuscular electric stimulation in neurorehabilitation. Muscle Nerve. 2007;35(5):562–590.
    1. Krishnan C., Williams G. N. Hamstrings activity during knee extensor strength testing: effects of burst superimposition. Iowa Orthop J. 2008;28:36–41.
    1. Gobbi A., Tuy B., Mahajan S., Panuncialman I. Quadrupled bone-semitendinosus anterior cruciate ligament reconstruction: a clinical investigation in a group of athletes. Arthroscopy. 2003;19(7):691–699.
    1. Keays S. L., Bullock-Saxton J. E., Keays A. C., Newcombe P. A., Bullock M. I. A 6-year follow-up of the effect of graft site on strength, stability, range of motion, function, and joint degeneration after anterior cruciate ligament reconstruction: patellar tendon versus semitendinosus and gracilis tendon graft. Am J Sports Med. 2007;35(5):729–739.
    1. Kobayashi A., Higuchi H., Terauchi M., Kobayashi F., Kimura M., Takagishi K. Muscle performance after anterior cruciate ligament reconstruction. Int Orthop. 2004;28(1):48–51.
    1. Pinczewski L. A., Lyman J., Salmon L. J., Russell V. J., Roe J., Linklater J. A 10-year comparison of anterior cruciate ligament reconstructions with hamstring tendon and patellar tendon autograft: a controlled, prospective trial. Am J Sports Med. 2007;35(4):564–574.
    1. Becker R., Berth A., Nehring M., Awiszus F. Neuromuscular quadriceps dysfunction prior to osteoarthritis of the knee. J Orthop Res. 2004;22(4):768–773.
    1. Slemenda C., Brandt K. D., Heilman D. K., et al. Quadriceps weakness and osteoarthritis of the knee. Ann Intern Med. 1997;127(2):97–104.
    1. Slemenda C., Heilman D. K., Brandt K. D., et al. Reduced quadriceps strength relative to body weight: a risk factor for knee osteoarthritis in women? Arthritis Rheum. 1998;41(11):1951–1959.
    1. Kendall T. L., Black C. D., Elder C. P., Gorgey A., Dudley G. A. Determining the extent of neural activation during maximal effort. Med Sci Sports Exerc. 2006;38(8):1470–1475.

Source: PubMed

3
Abonneren