0.9% saline versus Plasma-Lyte as initial fluid in children with diabetic ketoacidosis (SPinK trial): a double-blind randomized controlled trial

Vijai Williams, Muralidharan Jayashree, Karthi Nallasamy, Devi Dayal, Amit Rawat, Vijai Williams, Muralidharan Jayashree, Karthi Nallasamy, Devi Dayal, Amit Rawat

Abstract

Background: Acute kidney injury (AKI) is an important complication encountered during the course of diabetic ketoacidosis (DKA). Plasma-Lyte with lower chloride concentration than saline has been shown to be associated with reduced incidence of AKI in adults with septic shock. No study has compared this in DKA.

Methods: This double-blind, parallel-arm, investigator-initiated, randomized controlled trial compared 0.9% saline with Plasma-Lyte-A as initial fluid in pediatric DKA. The study was done in a tertiary care, teaching, and referral hospital in India in children (> 1 month-12 years) with DKA as defined by ISPAD. Children with cerebral edema or known chronic kidney/liver disease or who had received pre-referral fluids and/or insulin were excluded. Sixty-six children were randomized to receive either Plasma-Lyte (n = 34) or 0.9% saline (n = 32).

Main outcomes: Primary outcome was incidence of new or progressive AKI, defined as a composite outcome of change in creatinine (defined by KDIGO), estimated creatinine clearance (defined by p-RIFLE), and NGAL levels. The secondary outcomes were resolution of AKI, time to resolution of DKA (pH > 7.3, bicarbonate> 15 mEq/L & normal sensorium), change in chloride, pH and bicarbonate levels, proportion of in-hospital all-cause mortality, need for renal replacement therapy (RRT), and length of ICU and hospital stay.

Results: Baseline characteristics were similar in both groups. The incidence of new or progressive AKI was similar in both [Plasma-Lyte 13 (38.2%) versus 0.9% saline 15 (46.9%); adjusted OR 1.22; 95% CI 0.43-3.43, p = 0.70]. The median (IQR) time to resolution of DKA in Plasma-Lyte-A and 0.9% saline were 14.5 (12 to 20) and 16 (8 to 20) h respectively. Time to resolution of AKI was similar in both [Plasma-Lyte 22.1 versus 0.9% saline 18.8 h (adjusted HR 1.72; 95% CI 0.83-3.57; p = 0.14)]. Length of hospital stay was also similar in both [Plasma-Lyte 9 (8 to 12) versus 0.9% saline 10 (8.25 to 11) days; p = 0.39].

Conclusions: The incidence of new or progressive AKI and resolution of AKI were similar in both groups. Plasma-Lyte-A was similar to 0.9% Saline in time to resolution of DKA, need for RRT, mortality, and lengths of PICU and hospital stay.

Trial registration: Clinical trial registry of India, CTRI/2018/05/014042 (ctri.nic.in) (Retrospectively registered).

Keywords: Diabetes; Fluids; Intensive care; Ketoacidosis; Kidney injury; Pediatric; Saline.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Study flow diagram
Fig. 2
Fig. 2
Survival curve–time to resolution of DKA between study groups

References

    1. Umpierrez GE, Kitabchi AE. Diabetic ketoacidosis. Treat Endocrinol. 2003;2:95–108. doi: 10.2165/00024677-200302020-00003.
    1. Umpierrez G, Freire AX. Abdominal pain in patients with hyperglycemic crises. J Crit Care. 2002;17:63–67. doi: 10.1053/jcrc.2002.33030.
    1. Wolfsdorf J, Craig ME, Daneman D, Dunger D, Edge J, Lee W, et al. Diabetic ketoacidosis in children and adolescents with diabetes. Pediatr Diabetes. 2009;10:118–133. doi: 10.1111/j.1399-5448.2009.00569.x.
    1. Lira A, Pinsky MR. Choices in fluid type and volume during resuscitation: impact on patient outcomes. Ann Intensive Care. 2014;4:38. doi: 10.1186/s13613-014-0038-4.
    1. Yunos NM, Bellomo R, Story D, Kellum J. Bench-to-bedside review: chloride in critical illness. Crit Care. 2010;14:226. doi: 10.1186/cc9052.
    1. Lobo DN, Stanga Z, Simpson JA, Anderson JA, Rowlands BJ, Allison SP. Dilution and redistribution effects of rapid 2-litre infusions of 0.9% (w/v) saline and 5% (w/v) dextrose on haematological parameters and serum biochemistry in normal subjects: a double-blind crossover study. Clin Sci Lond Engl. 2001;101:173–179. doi: 10.1042/cs1010173.
    1. Krajewski ML, Raghunathan K, Paluszkiewicz SM, Schermer CR, Shaw AD. Meta-analysis of high-versus low-chloride content in perioperative and critical care fluid resuscitation. Br J Surg. 2015;102:24–36. doi: 10.1002/bjs.9651.
    1. Raghunathan K, Bonavia A, Nathanson BH, Beadles CA, Shaw AD, Brookhart MA, et al. Association between initial fluid choice and subsequent in-hospital mortality during the resuscitation of adults with septic shock. Anesthesiology. 2015;123:1385–1393. doi: 10.1097/ALN.0000000000000861.
    1. Guirgis FW, Williams DJ, Hale M, Bajwa AA, Shujaat A, Patel N, et al. The relationship of intravenous fluid chloride content to kidney function in patients with severe sepsis or septic shock. Am J Emerg Med. 2015;33:439–443. doi: 10.1016/j.ajem.2014.12.013.
    1. Roquilly A, Loutrel O, Cinotti R, Rosenczweig E, Flet L, Mahe PJ, et al. Balanced versus chloride-rich solutions for fluid resuscitation in brain-injured patients: a randomised double-blind pilot study. Crit Care. 2013;17:R77. doi: 10.1186/cc12686.
    1. Young P, Bailey M, Beasley R, Henderson S, Mackle D, McArthur C, et al. Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit: the SPLIT Randomized Clinical Trial. JAMA. 2015;314:1701–1710. doi: 10.1001/jama.2015.12334.
    1. Semler MW, Wanderer JP, Ehrenfeld JM, Stollings JL, Self WH, Siew ED, et al. Balanced crystalloids versus saline in the intensive care unit. The SALT Randomized Trial. Am J Respir Crit Care Med. 2017;195:1362–1372. doi: 10.1164/rccm.201607-1345OC.
    1. Semler MW, Self WH, Wanderer JP, Ehrenfeld JM, Wang L, Byrne DW, et al. Balanced crystalloids versus saline in critically ill adults. N Engl J Med. 2018;378:829–839. doi: 10.1056/NEJMoa1711584.
    1. Self WH, Semler MW, Wanderer JP, Wang L, Byrne DW, Collins SP, et al. Balanced crystalloids versus saline in noncritically ill adults. N Engl J Med. 2018;378:819–828. doi: 10.1056/NEJMoa1711586.
    1. Yung M, Letton G, Keeley S. Controlled trial of Hartmann’s solution versus 0.9% saline for diabetic ketoacidosis: controlled trial of Hartmann’s solution in DKA. J Paediatr Child Health. 2017;53:12–17. doi: 10.1111/jpc.13436.
    1. Jayashree M, Sasidharan R, Singhi S, Nallasamy K, Baalaaji M. Root cause analysis of diabetic ketoacidosis admissions at a tertiary referral pediatric emergency department in North India. Indian J Endocrinol Metab. 2017;21:710. doi: 10.4103/ijem.IJEM_178_17.
    1. Moulik NR, Jayashree M, Singhi S, Bhalla AK, Attri S. Nutritional status and complications in children with diabetic ketoacidosis. Pediatr Crit Care Med. 2012;13:e227–e233. doi: 10.1097/PCC.0b013e31823c9a11.
    1. Jayashree M, Williams V, Iyer R. Fluid therapy for pediatric patients with diabetic ketoacidosis: current perspectives. Diab Metab Syndr Obes Targets Ther. 2019;12:2355–2361. doi: 10.2147/DMSO.S194944.
    1. Baalaaji M, Jayashree M, Nallasamy K, Singhi S, Bansal A. Predictors and outcome of acute kidney injury in children with diabetic ketoacidosis. Indian Pediatr. 2018;55:311–314. doi: 10.1007/s13312-018-1274-8.
    1. Wolfsdorf JI. The International Society of Pediatric and Adolescent Diabetes guidelines for management of diabetic ketoacidosis: do the guidelines need to be modified? Pediatr Diabetes. 2014;15:277–286. doi: 10.1111/pedi.12154.
    1. Orban J-C, Maizière E-M, Ghaddab A, Van Obberghen E, Ichai C. Incidence and characteristics of acute kidney injury in severe diabetic ketoacidosis. PLoS One. 2014;9:e110925. doi: 10.1371/journal.pone.0110925.
    1. Hursh BE, Ronsley R, Islam N, Mammen C, Panagiotopoulos C. Acute kidney injury in children with type 1 diabetes hospitalized for diabetic ketoacidosis. JAMA Pediatr. 2017;171:e170020. doi: 10.1001/jamapediatrics.2017.0020.
    1. Jayashree M, Singhi S. Diabetic ketoacidosis: predictors of outcome in a pediatric intensive care unit of a developing country. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2004;5:427–433.
    1. Edge JA, Hawkins MM, Winter DL, Dunger DB. The risk and outcome of cerebral oedema developing during diabetic ketoacidosis. Arch Dis Child. 2001;85:16–22. doi: 10.1136/adc.85.1.16.
    1. Mahler SA, Conrad SA, Wang H, Arnold TC. Resuscitation with balanced electrolyte solution prevents hyperchloremic metabolic acidosis in patients with diabetic ketoacidosis. Am J Emerg Med. 2011;29:670–674. doi: 10.1016/j.ajem.2010.02.004.
    1. Van Zyl DG, Rheeder P, Delport E. Fluid management in diabetic-acidosis--Ringer’s lactate versus normal saline: a randomized controlled trial. QJM. 2012;105:337–343. doi: 10.1093/qjmed/hcr226.
    1. Chua H-R, Venkatesh B, Stachowski E, Schneider AG, Perkins K, Ladanyi S, et al. Plasma-Lyte 148 vs 0.9% saline for fluid resuscitation in diabetic ketoacidosis. J Crit Care. 2012;27:138–145. doi: 10.1016/j.jcrc.2012.01.007.
    1. Yunos NM, Bellomo R, Glassford N, Sutcliffe H, Lam Q, Bailey M. Chloride-liberal vs. chloride-restrictive intravenous fluid administration and acute kidney injury: an extended analysis. Intensive Care Med. 2015;41:257–264. doi: 10.1007/s00134-014-3593-0.
    1. Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308:1566. doi: 10.1001/jama.2012.13356.
    1. Verma B, Luethi N, Cioccari L, Lloyd-Donald P, Crisman M, Eastwood G, et al. A multicentre randomised controlled pilot study of fluid resuscitation with saline or Plasma-Lyte 148 in critically ill patients. Crit Care Resusc J Australas Acad Crit Care Med. 2016;18:205–212.
    1. Nallasamy K, Jayashree M, Singhi S, Bansal A. Low-dose vs standard-dose insulin in pediatric diabetic ketoacidosis: a randomized clinical trial. JAMA Pediatr. 2014;168:999–1005. doi: 10.1001/jamapediatrics.2014.1211.

Source: PubMed

3
Abonneren