Prescription of CRRT: a pathway to optimize therapy

Ayman Karkar, Claudio Ronco, Ayman Karkar, Claudio Ronco

Abstract

Severe acute kidney injury (AKI), especially when caused or accompanied by sepsis, is associated with prolonged hospitalization, progression to chronic kidney disease (CKD), financial burden, and high mortality rate. Continuous renal replacement therapy (CRRT) is a predominant form of renal replacement therapy (RRT) in the intensive care unit (ICU) due to its accurate volume control, steady acid-base and electrolyte correction, and achievement of hemodynamic stability. This manuscript reviews the different aspects of CRRT prescription in critically ill patients with severe AKI, sepsis, and multiorgan failure in ICU. These include the choice of CRRT versus Intermittent and extended hemodialysis (HD), life of the filter/dialyzer including assessment of filtration fraction, anticoagulation including regional citrate anticoagulation (RCA), prescribed versus delivered CRRT dose, vascular access management, timing of initiation and termination of CRRT, and prescription in AKI/sepsis including adsorptive methods of removing endotoxins and cytokines.

Keywords: Acute kidney injury; Adsorption; Anticoagulation; Continuous renal replacement therapy; Sepsis; Vascular access; oXiris.

Conflict of interest statement

The authors declare tha they have no competing interests.

References

    1. Bellomo R, Ronco C, Mehta RL. Nomenclature for continuous renal replacement therapies. Am J Kidney Dis. 1996;28(5):S2–S7. doi: 10.1016/S0272-6386(96)90073-6.
    1. Ronco C, Ricci Z. Renal replacement therapies: physiological review. Intensive Care Med. 2008;34(12):2139–2146. doi: 10.1007/s00134-008-1258-6.
    1. Macedo E, Mehta RL. Continuous dialysis therapies: core curriculum 2016. Am J Kidney Dis. 2016;68(4):645–657. doi: 10.1053/j.ajkd.2016.03.427.
    1. Kramer P, Wigger W, Reiger J, et al. Arteriovenous haemofiltration: a new and simple method for treatment of overhydrated patients resistant to diuretics. Klin Wochenschr. 1977;55:1121–1122. doi: 10.1007/BF01477940.
    1. deVeber GA. Peter Robert Uldall 1935–1995. Nephrol Dial Transplant 1996;11: 902–3. .
    1. Karkar A. Aspects in continuous renal replacement therapy. In: Karkar A, editor. INTECH CRRT Book. London: IntechOpen; 2019.
    1. Kidney Disease Improving Global Outcome KDIGO Acute kidney injury work group: KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2:1–138. doi: 10.1038/kisup.2012.1.
    1. Bell M, Granath F, et al. Continuous renal replacement therapy is associated with less chronic renal failure than intermittent haemodialysis after acute renal failure. Intensive Care Med. 2007;33:773–780. doi: 10.1007/s00134-007-0590-6.
    1. Wald R, Shariff SZ, Adhikari NK, et al. The association between renal replacement therapy modality and long-term outcomes among critically ill adults with acute kidney injury a retrospective cohort study. Crit Care Med. 2014;42(4):868–877. doi: 10.1097/CCM.0000000000000042.
    1. Wang AY, Bellomo R. Renal replacement therapy in the ICU intermittent hemodialysis, sustained low-efficiency dialysis or continuous renal replacement therapy? Curr Opin Crit Care. 2018;24(6):437–442. doi: 10.1097/MCC.0000000000000541.
    1. Fayad AI, Buamscha DG, Ciapponi A. Timing of renal replacement therapy initiation for acute kidney injury. Cochrane Syst Rev. 2018;12:10612.
    1. Joannidis M, Straaten HM. Clinical review: patency of the circuit in continuous renal replacement therapy. Crit Care. 2007;11:218. doi: 10.1186/cc5937.
    1. van de Wetering J, Westendorp RG, van der Hoeven JG, Stolk B, Feuth JD, Chang PC. Heparin use in continuous renal replacement procedures: the struggle between filter coagulation and patient hemorrhage. J Am Soc Nephrol. 1996;7(1):145–150.
    1. Kindgen-Milles D, Brandenburger T, Dimski T. Regional citrate anticoagulation for continuous renal replacement therapy. Curr Opin Crit Care. 2018;24(6):450–454. doi: 10.1097/MCC.0000000000000547.
    1. Brophy PD, Somers MJ, Baum MA, Symons JM, McAfee N, Fortenberry JD, Rogers K, Barnett J, Blowey D, Baker C, Bunchman TE, Goldstein SL. Multi-centre evaluation of anticoagulation in patients receiving continuous renal replacement therapy (CRRT) Nephrol Dial Transpl. 2005;20:1416–1421. doi: 10.1093/ndt/gfh817.
    1. Schneider AG, Journois D, Rimmelé T. Complications of regional citrate anticoagulation: accumulation or overload? Crit Care. 2017;21:281. doi: 10.1186/s13054-017-1880-1.
    1. Bai M, Zhou M, He L, et al. Citrate versus heparin anticoagulation for continuous renal replacement therapy: an updated meta-analysis of RCTs. ICM. 2015;41(12):2098–2110.
    1. Borg R, Ugboma D, Walker DM, Partridge R. Evaluating the safety and efficacy of regional citrate compared to systemic heparin as anticoagulation for continuous renal replacement therapy in critically ill patients: a service evaluation following a change in practice. J Intensive Care Soc. 2017;18(3):184–192. doi: 10.1177/1751143717695835.
    1. Zhang Z, Hongying N. Efficacy and safety of regional citrate anticoagulation in critically ill patients undergoing continuous renal replacement therapy. ICM. 2012;38(1):20–28.
    1. Ronco C, Bellomo R, Homel P, et al. Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: a prospective randomised trial. Lancet. 2000;356(9223):26–30. doi: 10.1016/S0140-6736(00)02430-2.
    1. Bouman CS, Oudemans-Van Straaten HM, et al. Effects of early high-volume continuous venovenous hemofiltration on survival and recovery of renal function in intensive care patients with acute renal failure: a prospective, randomized trial. Crit Care Med. 2002;30(10):2205–2211. doi: 10.1097/00003246-200210000-00005.
    1. Tolwani AJ, Campbell RC, Stofan BS, et al. Standard versus high-dose CVVHDF for ICU-related acute renal failure. J Am Soc Nephrol. 2008;19(6):1233–1238. doi: 10.1681/ASN.2007111173.
    1. Palevsky PM, Zhang JH, Connor TZ, Chertow GM, Crowley ST, Choudhury D, Finkel K, Kellum JA, Paganini E, Schein RM, Smith MW, Swanson KM, Thompson BT, Vijayan A, Watnick S, Star RA, Peduzzi P. VA/NIH Acute Renal Failure Trial Network: intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med. 2008;359(1):7–20. doi: 10.1056/NEJMoa0802639.
    1. Bellomo R, Cass A, Cole L, et al. RENAL Replacement Therapy Study Investigators, Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med. 2009;361(17):1627–1638. doi: 10.1056/NEJMoa0902413.
    1. Joannes-Boyau O, Honore PM, Perez P, et al. High-volume versus standard-volume haemofiltration for septic shock patients with acute kidney injury (IVOIRE study): a multicentre randomized controlled trial. Intensive Care Med. 2013;39:1535–1546. doi: 10.1007/s00134-013-2967-z.
    1. Van Wert R, Friedrich JO, Scales DC, et al. High-dose renal replacement therapy for acute kidney injury: systematic review and meta-analysis. Crit Care Med. 2010;38(5):1360–1369. doi: 10.1097/CCM.0b013e3181d9d912.
    1. Heintz BH, Matzke GR, Dager WE. Antimicrobial dosing concepts and recommendations for critically Ill adult patients receiving continuous renal replacement therapy or intermittent hemodialysis. Pharmacotherapy. 2009;29(5):562–577. doi: 10.1592/phco.29.5.562.
    1. Cano NJM, Aparicio M, Brunori G, Carrero JJ, Cianciaruso B, Fiaccadori E, Lindholm B, Teplan V, Fouque D, Guarnieri G. ESPEN guidelines on parenteral nutrition: adult renal failure. Clin Nutr. 2009;28:401–414. doi: 10.1016/j.clnu.2009.05.016.
    1. Parienti JJ, Mégarbane B, Fischer MO, Cathedia Study Group et al. Catheter dysfunction and dialysis performance according to vascular access among 736 critically ill adults requiring renal replacement therapy: a randomized controlled study. Crit Care Med. 2010;38(4):1118–1125. doi: 10.1097/CCM.0b013e3181d454b3.
    1. Bridgesa BC, Askenazib DJ, Smithb J, Goldstein SL. Pediatric renal replacement therapy in the intensive care unit. Blood Purif. 2012;34(2):138–148. doi: 10.1159/000342129.
    1. Hackbarth R, Bunchman TE, Chua AN, Somers MJ, Baum M, Symons JM, Brophy PD, Blowey D, Fortenberry JD, Chand D, Flores FX, Alexander SR, Mahan JD, McBryde KD, Benfield MR, Goldstein SL. The effect of vascular access location and size on circuit survival in pediatric continuous renal replacement therapy: a report from the PPCRRT registry. Int J Artif Organs. 2007;30(12):1116–1121. doi: 10.1177/039139880703001212.
    1. Gaudry S, Hajage D, Schortgen F, et al. Initiation strategies for renal-replacement therapy in the intensive care unit. N Engl J Med. 2016;375:122–133. doi: 10.1056/NEJMoa1603017.
    1. Zarbock A, Kellum JA, Schmidt C, et al. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically Ill patients with acute kidney injury: the ELAIN randomized clinical trial. JAMA. 2016;315(20):2190–2199. doi: 10.1001/jama.2016.5828.
    1. Yang X, Tu W, Zheng JL, et al. A comparison of early versus late initiation of renal replacement therapy for acute kidney injury in critically ill patients: an updated systematic review and meta-analysis of randomized controlled trials. BMC Nephrol. 2017;18:264. doi: 10.1186/s12882-017-0667-6.
    1. Feng Y, Yang Y, Han X, et al. The effect of early versus late initiation of renal replacement therapy in patients with acute kidney injury: a meta-analysis with trial sequential analysis of randomized controlled trials. PLoS ONE. 2017;12(3):e0174158. doi: 10.1371/journal.pone.0174158.
    1. Lai T-S, Shiao C-C, Wang J-J, et al. Earlier versus later initiation of renal replacement therapy among critically ill patients with acute kidney injury: a systematic review and meta-analysis of randomized controlled trials. Ann Intensive Care. 2017;7:38. doi: 10.1186/s13613-017-0265-6.
    1. Zou H, Hong Q, Gaosi XU. Early versus late initiation of renal replacement therapy impacts mortality in patients with acute kidney injury post cardiac surgery: a meta-analysis. Crit Care. 2017;21:150. doi: 10.1186/s13054-017-1707-0.
    1. Barbar SD, Clere-Jehl R, Bourredjem A, et al. for the IDEAL-ICU trial investigators and the CRICS TRIGGERSEP network. Timing of renal-replacement therapy in patients with acute kidney injury and sepsis. N Engl J Med. 2018;379:1431–1442. doi: 10.1056/NEJMoa1803213.
    1. Ostermann M, Joannidis M, Pani A, et al. 17th acute disease quality initiative (ADQI) Consensus Group: patient selection and timing of continuous renal replacement therapy. Blood Purif. 2016;42:224–237. doi: 10.1159/000448506.
    1. Viallet N, Brunot V, Kuster N, et al. Daily urinary creatinine predicts the weaning of renal replacement therapy in ICU acute kidney injury patients. Ann Intensive Care. 2016;6:71. doi: 10.1186/s13613-016-0176-y.
    1. Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3) JAMA. 2016;315:801–810. doi: 10.1001/jama.2016.0287.
    1. Vincent JL, Sakr Y, Sprung CL, et al. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34:344–353. doi: 10.1097/01.CCM.0000194725.48928.3A.
    1. Kaukonen KM, Bailey M, Suzuki S, et al. Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000–2012. JAMA. 2014;311:1308–1316. doi: 10.1001/jama.2014.2637.
    1. van Vught LA, Klein Klouwenberg PM, Spitoni C, et al. Incidence, risk factors, and attributable mortality of secondary infections in the intensive care unit after admission for sepsis. JAMA. 2016;315:1469–1479. doi: 10.1001/jama.2016.2691.
    1. Padkin A, Goldfrad C, Brady AR, et al. Epidemiology of severe sepsis occurring in the first 24 h in intensive care units in England, Wales, and Northern Ireland. Crit Care Med. 2003;31:2332–2338. doi: 10.1097/01.CCM.0000085141.75513.2B.
    1. van Gestel A, Bakker J, Veraart CPWM, van Hout BA. Prevalence and incidence of severe sepsis in Dutch intensive care units. Crit Care. 2004;8:R153–R162. doi: 10.1186/cc2858.
    1. Harrison DA, Welch CA, Eddleston JM. The epidemiology of severe sepsis in England, Wales and Northern Ireland, 1996 to 2004: secondary analysis of a high-quality clinical database, the ICNARC Case Mix Programme Database. Crit Care. 2006;10:R42. doi: 10.1186/cc4854.
    1. SepNet Critical Care Trials Group Incidence of severe sepsis and septic shock in German intensive care units: the prospective, multicentre INSEP study. Intensive Care Med. 2016;42:1980–1989. doi: 10.1007/s00134-016-4504-3.
    1. Mayr FB, Yende S, Linde-Zwirble WT, et al. Infection rate and acute organ dysfunction risk as explanations for racial differences in severe sepsis. JAMA. 2010;303(24):2495–2503. doi: 10.1001/jama.2010.851.
    1. Yébenes JC, Ruiz-Rodriguez JC, Ferrer R, et al. Epidemiology of sepsis in catalonia: analysis of incidence and outcomes in a European setting. Ann Intensive Care. 2017;7:19. doi: 10.1186/s13613-017-0241-1.
    1. Uchino S, Kellum JA, Bellomo R, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294:813–818. doi: 10.1001/jama.294.7.813.
    1. Bagshaw SM, George C, Bellomo R, the ANZICS Database Management Committee Early acute kidney injury and sepsis: a multicentre evaluation. Crit Care. 2008;12:R47. doi: 10.1186/cc6863.
    1. Mehta RL, Bouchard J, Soroko SB, et al. Sepsis as a cause and consequence of acute kidney injury: program to improve care in acute renal disease. Intensive Care Med. 2011;37:241–248. doi: 10.1007/s00134-010-2089-9.
    1. Nagata I, Uchino S, Tokuhira N, et al. Sepsis may not be a risk factor for mortality in patients with acute kidney injury treated with continuous renal replacement therapy. J Crit Care. 2015;30:998–1002. doi: 10.1016/j.jcrc.2015.06.021.
    1. Monard C, Rimmele T, Ronco C. Extracorporeal therapies for sepsis. Blood Purif. 2019;47(suppl 3):2–15.
    1. Bellomoa R, Ramanb J, Ronco C. Intensive care unit management of the critically ill patient with fluid overload after open heart surgery. Cardiology. 2001;96:169–176. doi: 10.1159/000047400.
    1. Ronco C. Evolution of technology for continuous renal replacement therapy: forty years of continuous renal replacement therapy. In: Bellomo R, Kellum JA, La Manna G, Ronco C, editors. 40 years of continuous renal replacement therapy. Basel: Karger; 2018. pp. 1–14.
    1. Opal SM, Scannon PJ, Vincent JL, et al. Relationship between plasma levels of lipopolysaccharide (LPS) and LPS-binding protein in patients with severe sepsis and septic shock. J Infect Dis. 1999;180:1584–1589. doi: 10.1086/315093.
    1. Pinsky MR, Vincent JL, Deviere J, et al. Serum cytokine levels in human septic shock. Relation to multiple-system organ failure and mortality. Chest. 1993;103:565–575. doi: 10.1378/chest.103.2.565.
    1. Marshall JC. Endotoxin in the pathogenesis of sepsis. Contrib Nephrol. 2010;167:1–13. doi: 10.1159/000315914.
    1. Deitch EA. Gut-origin sepsis: evolution of a concept. Surgeon. 2012;10:350–356. doi: 10.1016/j.surge.2012.03.003.
    1. Gogos CA, Drosou E, Bassaris HP, Skoutelis A. Pro- versus anti-inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options. J Infect Dis. 2000;181:176–180. doi: 10.1086/315214.
    1. Mera S, Tatulescu D, Cismaru C, et al. Multiplex cytokine profiling in patients with sepsis. APMIS. 2011;119:155–163. doi: 10.1111/j.1600-0463.2010.02705.x.
    1. Kellum JA, Kong L, Fink MP, et al. Understanding the inflammatory cytokine response in pneumonia and sepsis: results of the genetic and inflammatory markers of sepsis (GenIMS) study. Arch Intern Med. 2007;167:1655–1663. doi: 10.1001/archinte.167.15.1655.
    1. Andaluz-Ojeda D, Bobillo F, Iglesias V, et al. A combined score of pro- and anti-inflammatory interleukins improves mortality prediction in severe sepsis. Cytokine. 2012;57:332–336. doi: 10.1016/j.cyto.2011.12.002.
    1. Mat-Nor MB, Md RA, Abdulah NZ, Pickering JW. The diagnostic ability of procalcitonin and interleukin-6 to differentiate infectious from noninfectious systemic inflammatory response syndrome and to predict mortality. J Crit Care. 2016;33:245–251. doi: 10.1016/j.jcrc.2016.01.002.
    1. Frencken JF, van Vught LA, Peelen LM, et al. An unbalanced inflammatory cytokine response is not associated with mortality following sepsis: a prospective cohort study. Crit Care Med. 2017;45:e493–e499. doi: 10.1097/CCM.0000000000002292.
    1. Oberholzer A, Souza SM, Tschoeke SK, et al. Plasma cytokine measurements augment prognostic scores as indicators of outcome in patients with severe sepsis. Shock. 2005;23:488–493.
    1. Ronco C, Tetta C, Mariano F, et al. Interpreting the mechanisms of continuous renal replacement therapy in sepsis: the peak concentration hypothesis. Artif Organs. 2003;27(9):792–801. doi: 10.1046/j.1525-1594.2003.07289.x.
    1. Zhou F, Peng Z, Murugan R, Kellum JA. Blood purification and mortality in sepsis: a meta-analysis of randomized trials. Crit Care Med. 2013;41:2209–2220. doi: 10.1097/CCM.0b013e31828cf412.
    1. Clark E, Molnar AO, Joannes-Boyau O, et al. High-volume hemofiltration for septic acute kidney injury: a systematic review and meta-analysis. Crit Care. 2007;11:218. doi: 10.1186/cc5937.
    1. Rimmer E, Houston BL, Kumar A, et al. The efficacy and safety of plasma exchange in patients with sepsis and septic shock: a systematic review and meta-analysis. Crit Care. 2014;18:699. doi: 10.1186/s13054-014-0699-2.
    1. Busund R, Koukline V, Utrobin U, Nedashkovsky E. Plasmapheresis in severe sepsis and septic shock: a prospective, randomised, controlled trial. Intensive Care Med. 2002;28:1434–1439. doi: 10.1007/s00134-002-1410-7.
    1. Lee CT, Tu YK, Yeh YC, et al. Effects of polymyxin B hemoperfusion on hemodynamics and prognosis in septic shock patients. J Crit Care. 2018;43:202–206. doi: 10.1016/j.jcrc.2017.04.035.
    1. Cruz DN, Antonelli M, Fumagalli R, et al. Early use of polymyxin B hemoperfusion in abdominal septic shock: the EUPHAS randomized controlled trial. JAMA. 2009;301:2445–2452. doi: 10.1001/jama.2009.856.
    1. Nakamura Y, Kitamura T, Kiyomi F, et al. Potential survival benefit of polymyxin B hemoperfusion in patients with septic shock: a propensity-matched cohort study. Crit Care. 2017;21:134. doi: 10.1186/s13054-017-1712-3.
    1. Iwagami M, Yasunaga H, Noiri E, et al. Potential survival benefit of polymyxin B hemoperfusion in septic shock patients on continuous renal replacement therapy: a propensity-matched analysis. Blood Purif. 2016;42:9–17. doi: 10.1159/000444474.
    1. Klein DJ, Foster D, Walker PM, et al. Polymyxin B hemoperfusion in endotoxemic septic shock patients without extreme endotoxemia: a post hoc analysis of the EUPHRATES trial. Intensive Care Med. 2018;44:2205–2212. doi: 10.1007/s00134-018-5463-7.
    1. Vincent JL, Laterre PF, Cohen J, et al. A pilot-controlled study of a polymyxin B-immobilized hemoperfusion cartridge in patients with severe sepsis secondary to intra-abdominal infection. Shock. 2005;23:400–405. doi: 10.1097/01.shk.0000159930.87737.8a.
    1. Dellinger RP, Bagshaw SM, et al. Effect of targeted polymyxin B hemoperfusion on 28-day mortality in patients with septic shock and elevated endotoxin level: the EUPHRATES Randomized Clinical Trial. JAMA. 2018;320:1455–1463. doi: 10.1001/jama.2018.14618.
    1. Fujii T, Ganeko R, Kataoka Y, et al. Polymyxin B-immobilized hemoperfusion and mortality in critically ill adult patients with sepsis/septic shock: a systematic review with meta-analysis and trial sequential analysis. Intensive Care Med. 2018;44:167–178. doi: 10.1007/s00134-017-5004-9.
    1. Payen DM, Guilhot J, Launey Y, et al. Early use of polymyxin B hemoperfusion in patients with septic shock due to peritonitis: a multicenter randomized control trial. Intensive Care Med. 2015;41:975–984. doi: 10.1007/s00134-015-3751-z.
    1. Iwagami M, Yasunaga H, Doi K, et al. Postoperative polymyxin B hemoperfusion and mortality in patients with abdominal septic shock: a propensity-matched analysis. Crit Care Med. 2014;42:1187–1193. doi: 10.1097/CCM.0000000000000150.
    1. Friesecke S, Stecher SS, Gross S, et al. Extracorporeal cytokine elimination as rescue therapy in refractory septic shock: a prospective single-center study. J Artif Organs. 2017;20:252–259. doi: 10.1007/s10047-017-0967-4.
    1. Schadler D, Pausch C, Heise D, et al. The effect of a novel extracorporeal cytokine hemoadsorption device on IL-6 elimination in septic patients: a randomized controlled trial. PLoS ONE. 2017;12:e0187015. doi: 10.1371/journal.pone.0187015.
    1. Hawlik K, Wild C. Extracorporeal cytokine haemadsorption therapy in patients with sepsis or SIRS. In: Decision support document No. 106. Vienna: Ludwig Boltzmann Institute for Health Technology Assessment; 2017.
    1. Zuccari S, Damiani E, Domizi R, et al. Changes in cytokines, haemodynamics and microcirculation in patients with sepsis/septic shock undergoing continuous renal replacement therapy and blood purification with CytoSorb. Blood Purif. 2019 doi: 10.1159/000502540.
    1. Haase M, Silvester W, Uchino S, et al. A pilot study of high-adsorption hemofiltration in human septic shock. Int J Artif Organs. 2007;30:108–117. doi: 10.1177/039139880703000205.
    1. Shiga H, Hirasawa H, Nishida O, et al. Continuous hemodiafiltration with a cytokine-adsorbing hemofilter in patients with septic shock: a preliminary report. Blood Purif. 2014;38:211–218. doi: 10.1159/000369377.
    1. Doi K, Iwagami M, Yoshida E, Marshall MR. Associations of polyethylenimine-coated AN69ST membrane in continuous renal replacement therapy with the intensive care outcomes: observations from a claims database from Japan. Blood Purif. 2017;44:184–192. doi: 10.1159/000476052.
    1. Shum HP, Chan KC, Kwan MC, Yan WW. Application of endotoxin and cytokine adsorption haemofilter in septic acute kidney injury due to Gram-negative bacterial infection. Hong Kong Med J. 2013;19:491–497.
    1. Broman ME, Bodelsson M. Analysis of endotoxin adsorption in two swedish patients with septic shock. Blood Purif. 2019;47(suppl 3):51–53.
    1. Malard B, Lambert C, Kellum JA. In vitro comparison of the adsorption of inflammatory mediators by blood purification devices. Intensive Care Med Exp. 2018;6(1):12. doi: 10.1186/s40635-018-0177-2.
    1. Tan HK, Kaushik M, Tan CW. Augmented adsorptive blood purification during continuous veno-venous hemodiafiltration in a severe septic, acute kidney injury patient: use of oXiris: a single center case report. Blood Purif. 2019;47(suppl 3):59–64.
    1. Schwindenhammer V, Girardot T, Chaulier K, Gregoire A, Monard C, Huriaux L, Illinger J, Leray V, Uberti T, Crozon-Clauzel J, Rimmele T. oXiris use in septic shock: experience of two french centers. Blood Purif. 2019;47(suppl 3):29–35.
    1. Turani F, Barchetta R, Falco M, et al. Continuous renal replacement therapy with the adsorbing filter oXiris in septic patients: a case series. Blood Purif. 2019;47(suppl 3):54–58.
    1. Broman ME, Hansson F, Vincent J-L, Bodelsson M. Endotoxin and cytokine reducing properties of the oXiris membrane in patients with septic shock: a randomized crossover double-blind study. PLoS ONE. 2019;14(8):e0220444. doi: 10.1371/journal.pone.0220444.
    1. Zhang L, Tang GKY, Liu S, et al. Hemofilter with adsorptive capabilities: case report series. Blood Purif. 2019;47(suppl 3):45–50.

Source: PubMed

3
Abonneren