Altered functional brain connectivity in patients with visually induced dizziness

Angelique Van Ombergen, Lizette Heine, Steven Jillings, R Edward Roberts, Ben Jeurissen, Vincent Van Rompaey, Viviana Mucci, Stefanie Vanhecke, Jan Sijbers, Floris Vanhevel, Stefan Sunaert, Mohamed Ali Bahri, Paul M Parizel, Paul H Van de Heyning, Steven Laureys, Floris L Wuyts, Angelique Van Ombergen, Lizette Heine, Steven Jillings, R Edward Roberts, Ben Jeurissen, Vincent Van Rompaey, Viviana Mucci, Stefanie Vanhecke, Jan Sijbers, Floris Vanhevel, Stefan Sunaert, Mohamed Ali Bahri, Paul M Parizel, Paul H Van de Heyning, Steven Laureys, Floris L Wuyts

Abstract

Background: Vestibular patients occasionally report aggravation or triggering of their symptoms by visual stimuli, which is called visually induced dizziness (VID). These patients therefore experience dizziness, discomfort, disorientation and postural unsteadiness. The underlying pathophysiology of VID is still poorly understood.

Objective: The aim of the current explorative study was to gain a first insight in the underlying neural aspects of VID.

Methods: We included 10 VID patients and 10 healthy matched controls, all of which underwent a resting state fMRI scan session. Changes in functional connectivity were explored by means of the intrinsic connectivity contrast (ICC). Seed-based analysis was subsequently performed in visual and vestibular seeds.

Results: We found a decreased functional connectivity in the right central operculum (superior temporal gyrus), as well as increased functional connectivity in the occipital pole in VID patients as compared to controls in a hypothesis-free analysis. A weaker functional connectivity between the thalamus and most of the right putamen was measured in VID patients in comparison to controls in a seed-based analysis. Furthermore, also by means of a seed-based analysis, a decreased functional connectivity between the visual associative area and the left parahippocampal gyrus was found in VID patients. Additionally, we found increased functional connectivity between thalamus and occipital and cerebellar areas in the VID patients, as well as between the associative visual cortex and both middle frontal gyrus and precuneus.

Conclusions: We found alterations in the visual and vestibular cortical network in VID patients that could underlie the typical VID symptoms such as a worsening of their vestibular symptoms when being exposed to challenging visual stimuli. These preliminary findings provide the first insights into the underlying functional brain connectivity in VID patients. Future studies should extend these findings by employing larger sample sizes, by investigating specific task-based paradigms in these patients and by exploring the implications for treatment.

Keywords: Functional connectivity; VID; Vertigo; Vestibular; Visually induced dizziness; rsfMRI.

Figures

Fig. 1
Fig. 1
Differences in intrinsic functional connectivity between VID patients and healthy controls. Red regions indicate more intrinsic functional connectivity in VID patients, while the blue regions represent less intrinsic functional connectivity. Results were analyzed in a network-based manner and thresholded with an extended cluster level of p 

Fig. 2

Differences in seed-based functional connectivity…

Fig. 2

Differences in seed-based functional connectivity between healthy controls and VID patients. Two seeds…

Fig. 2
Differences in seed-based functional connectivity between healthy controls and VID patients. Two seeds showing significant differences between healthy controls and VID patients. Seed placement of the thalamus and associative visual areas are represented in the top right corner. Red regions indicate more intrinsic functional connectivity in VID patients, while the blue regions represent less intrinsic functional connectivity. Results were analyzed in a network-based manner and thresholded with a family-wise error corrected extended cluster level of p 
Similar articles
Cited by
References
    1. Ahmad H., Arshad Q., Siddiqui S., Nigmatullina Y., Patel M., Bronstein A.M., Roberts R.E. Applications of neuromodulation to explore vestibular cortical processing; new insights into the effects of direct current cortical modulation upon pursuit, VOR and VOR suppression. Journal of Vestibular Research: Equilibrium and Orientation. 2014:453–458. - PubMed
    1. Aminoff E., Gronau N., Bar M. The parahippocampal cortex mediates spatial and nonspatial associations. Cereb. Cortex. 2007;17:1493–1503. - PubMed
    1. Arshad Q., Nigmatullina Y., Roberts R., Bhrugubanda V., Asavarut P., Bronstein A. Left cathodal trans-cranial direct current stimulation of the parietal cortex leads to an asymmetrical modulation of the vestibular-ocular reflex. Brain Stim. 2014;7:85–91. - PMC - PubMed
    1. Behzadi Y., Restom K., Liau J., Liu T.T. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage. 2007;37:90–101. - PMC - PubMed
    1. Bense S., Stephan T., Yousry T.A., Brandt T., Dieterich M. Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI) [online] J. Neurophysiol. 2001;85:886–899. http://www.ncbi.nlm.nih.gov/pubmed/11160520. - PubMed
Show all 82 references
Publication types
MeSH terms
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Fig. 2
Fig. 2
Differences in seed-based functional connectivity between healthy controls and VID patients. Two seeds showing significant differences between healthy controls and VID patients. Seed placement of the thalamus and associative visual areas are represented in the top right corner. Red regions indicate more intrinsic functional connectivity in VID patients, while the blue regions represent less intrinsic functional connectivity. Results were analyzed in a network-based manner and thresholded with a family-wise error corrected extended cluster level of p 

References

    1. Ahmad H., Arshad Q., Siddiqui S., Nigmatullina Y., Patel M., Bronstein A.M., Roberts R.E. Applications of neuromodulation to explore vestibular cortical processing; new insights into the effects of direct current cortical modulation upon pursuit, VOR and VOR suppression. Journal of Vestibular Research: Equilibrium and Orientation. 2014:453–458.
    1. Aminoff E., Gronau N., Bar M. The parahippocampal cortex mediates spatial and nonspatial associations. Cereb. Cortex. 2007;17:1493–1503.
    1. Arshad Q., Nigmatullina Y., Roberts R., Bhrugubanda V., Asavarut P., Bronstein A. Left cathodal trans-cranial direct current stimulation of the parietal cortex leads to an asymmetrical modulation of the vestibular-ocular reflex. Brain Stim. 2014;7:85–91.
    1. Behzadi Y., Restom K., Liau J., Liu T.T. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage. 2007;37:90–101.
    1. Bense S., Stephan T., Yousry T.A., Brandt T., Dieterich M. Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI) [online] J. Neurophysiol. 2001;85:886–899. .
    1. Bergenius J., Perols O. Vestibular neuritis: a follow-up study. Acta Otolaryngol. 1999;119:895–899.
    1. Bisdorff A., von Brevern M., Lempert T., Newman-Toker D. Classification of vestibular symptoms: towards an international classification of vestibular disorders. J. Vestib. Res. 2009;19:1–13.
    1. Bottini G., Sterzi R., Paulesu E., Vallar G., Cappa S.F., Erminio F., Passingham R.E., Frith C.D., Frackowiak R.S.J. Identification of the central vestibular projections in man: a positron emission tomography activation study. Exp. Brain Res. 1994;99:164–169.
    1. Brandt T. Phobic postural vertigo. Neurology. 1996;46:1515–1519.
    1. Brandt T., Bartenstein P., Janek A., Dieterich M. Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain. 1998;121:1749–1758.
    1. Bronstein A.M. The visual vertigo syndrome. Acta Otolaryngol. Suppl. 1995;520(Pt 1):45–48.
    1. Bronstein A.M. Visual vertigo syndrome: clinical and posturography findings [online] J. Neurol. Neurosurg. Psychiatry. 1995;59:472–476.
    1. Cavanna A.E., Trimble M.R. The precuneus: a review of its functional anatomy and behavioural correlates. Brain. 2006;129:564–583.
    1. Cha Y.-H., Deblieck C., Wu A.D. Double-blind sham-controlled crossover trial of repetitive transcranial magnetic stimulation for Mal de Debarquement Syndrome. Otol Neurotol. 2016;37:805–812.
    1. Cousins S., Cutfield N.J., Kaski D., Palla A., Seemungal B.M., Golding J.F., Staab J.P., Bronstein A.M. Visual dependency and dizziness after vestibular neuritis. PLoS One. 2014;9
    1. Della-Justina H.M., Gamba H.R., Lukasova K., Nucci-da-Silva M.P., Winkler A.M., Amaro E. Interaction of brain areas of visual and vestibular simultaneous activity with fMRI. Exp. Brain Res. 2014;233:237–252.
    1. Deutschländer A., Bense S., Stephan T., Schwaiger M., Brandt T., Dieterich M. Sensory system interactions during simultaneous vestibular and visual stimulation in PET. Hum. Brain Mapp. 2002;16:92–103.
    1. Dieterich M., Brandt T. Thalamic infarctions: differential effects on vestibular function in the roll plane (35 patients) Neurology. 1993;43:1732–1740.
    1. Dieterich M., Brandt T. Vestibular system: anatomy and functional magnetic resonance imaging. Neuroimaging ClinNAm. 2001;11(ix):263–273.
    1. Dieterich M., Brandt T. The bilateral central vestibular system: its pathways, functions, and disorders. Ann. N. Y. Acad. Sci. 2015;1343:10–26.
    1. Dieterich M., Bense S., Lutz S., Drzezga A., Stephan T., Bartenstein P., Brandt T. Dominance for vestibular cortical function in the non-dominant hemisphere. Cereb. Cortex. 2003;13:994–1007.
    1. Dieterich M., Bartenstein P., Spiegel S., Bense S., Schwaiger M., Brandt T. Thalamic infarctions cause side-specific suppression of vestibular cortex activations. Brain. 2005;128:2052–2067.
    1. Dieterich M., Bauermann T., Best C., Stoeter P., Schlindwein P. Evidence for cortical visual substitution of chronic bilateral vestibular failure (an fMRI study) Brain. 2007;130:2108–2116.
    1. Fasold O., von Brevern M., Kuhberg M. Human vestibular cortex as identified with caloric stimulation in functional magnetic resonance imaging. NeuroImage. 2002;17:1384–1393.
    1. Fink G.R., Marshall J.C., Weiss P.H., Stephan T., Grefkes C., Shah N.J., Zilles K., Dieterich M. Performing allocentric visuospatial judgments with induced distortion of the egocentric reference frame: an fMRI study with clinical implications. NeuroImage. 2003;20:1505–1517.
    1. Goldberg J.M., Wilson V.J., Cullen K.E., Angelaki D.E., Broussard D.M., Buttner-Ennever J., Fukushima K., Minor L.B. 2012. The Vestibular System: A Sixth Sense.
    1. Göttlich M., Jandl N.M., Wojak J.F., Sprenger A., Von Der Gablentz J., Münte T.F., Krämer U.M., Helmchen C. Altered resting-state functional connectivity in patients with chronic bilateral vestibular failure. NeuroImage Clin. 2014;4:488–499.
    1. Guerraz M., Yardley L., Bertholon P., Pollak L., Rudge P., Gresty M.A., Bronstein A.M. Visual vertigo: symptom assessment, spatial orientation and postural control. Brain. 2001;124:1646–1656.
    1. Habas C., Kamdar N., Nguyen D., Prater K., Beckmann C.F., Menon V., Greicius M.D. Distinct cerebellar contributions to intrinsic connectivity networks. J. Neurosci. 2009;29:8586–8594.
    1. Hallquist M., Hwang K., Luna B. The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. NeuroImage. 2013;82:208–225.
    1. Hitier M., Besnard S., Smith P.F. Vestibular pathways involved in cognition. Front. Integr. Neurosci. 2014;8:59.
    1. Hong S.K., Kim H.J., Lee H.J. Changes in the gray matter volume during compensation after vestibular neuritis: a longitudinal VBM study. Restor. Neurol. Neurosci. 2014;32:663–673.
    1. Hwang S., Agada P., Kiemel T., Jeka J.J. Dynamic reweighting of three modalities for sensor fusion. PLoS One. 2014;9
    1. Iglói K., Doeller C.F., Paradis A.L., Benchenane K., Berthoz A., Burgess N., Rondi-Reig L. Interaction between hippocampus and cerebellum crus i in sequence-based but not place-based navigation. Cereb. Cortex. 2015;25:4146–4154.
    1. Indovina I., Maffe V., Bosco G., Zago M., Macaluso E., Lacquaniti F. Representation of visual gravitational motion in the human vestibular cortex. Science (80- ) 2005;208:416–419.
    1. Indovina I., Riccelli R., Chiarella G., Petrolo C., Augimeri A., Giofre L., Lacquaniti F., Staab J., Passamonti L. Role of the insula and vestibular system in patients with chronic subjective dizziness: an fMRI study using sound-evoked vestibular stimulation. Front. Behav. Neurosci. 2015;9:334.
    1. Jacob R.G., Lilienfeld S.O., Furman J.M.R., Durrant J.D., Turner S.M. Panic disorder with vestibular dysfunction: further clinical observations and description of space and motion phobic stimuli. J Anxiety Disord. 1989;3:117–130.
    1. Kapfhammer H., Mayer C., Hock U., Huppert D., Dieterich M., Brandt T. Course of illness in phobic postural vertigo. Acta Neurol. Scand. 1997;95:23–28.
    1. Kellermann T., Regenbogen C., De Vos M., Mossnang C., Finkelmeyer A., Habel U. Effective connectivity of the human cerebellum during visual attention. J. Neurosci. 2012;32:11453–11460.
    1. Kelly C., Toro R., Di Martino A., Cox C., Bellec P., Castellanos F., Milham M. A convergent functional architecture of the insula emerges across imaging modalities. NeuroImage. 2012;61:1129–1142.
    1. Kikuchi M., Naito Y., Senda M., Okada T., Shinohara S., Fujiwara K., Hori S.-Y., Tona Y., Yamazaki H. Cortical activation during optokinetic stimulation - an fMRI study. Acta Otolaryngol. 2009;129:440–443.
    1. Kirsch V., Keeser D., Hergenroeder T., Erat O., Ertl-Wagner B., Brandt T., Dieterich M. Structural and functional connectivity mapping of the vestibular circuitry from human brainstem to cortex. Brain Struct. Funct. 2016;221:1291–1308.
    1. Lai H., Tsumori T., Shiroyama T., Yokota S., Nakano K., Yasui Y. Morphological evidence for a vestibulo-thalamo-striatal pathway via the parafascicular nucleus in the rat. Brain Res. 2000;872:208–214.
    1. Lee P.H., Lee J.H., Joo U.S. Thalamic infarct presenting with thalamic astasia. Eur. J. Neurol. 2005;12:317–319.
    1. Leichnetz G. Connections of the medial posterior parietal cortex (area 7m) in the monkey. Anat. Rec. 2001;263:215–236.
    1. Lobel E., Kleine J.F., Bihan D.L., Leroy-Willig A., Berthoz A. Functional MRI of galvanic vestibular stimulation. J. Neurophysiol. 1998;80:2699–2709.
    1. Longridge N.S., Mallinson A.I., Denton A. Visual vestibular mismatch in patients treated with intratympanic gentamicin for Meniere's disease. J. Otolaryngol. 2002;31:5–8.
    1. Lopez C., Blanke O. The thalamocortical vestibular system in animals and humans. Brain Res. Rev. 2011;67:119–146.
    1. Lopez C., Blanke O., Mast F. The vestibular cortex in the human brain revealed by coordinate-based activation likelihood estimation meta-analysis. Neuroscience. 2012;60:162–169.
    1. Mallinson A.I. 2011. Visual Vestibular Mismatch: A Poorly Understood Presentation of Balance System Disease.
    1. Martuzzi R., Ramani R., Qiu M., Shen X., Papademetris X., Constable R.T. A whole-brain voxel based measure of intrinsic connectivity contrast reveals local changes in tissue connectivity with anesthetic without a priori assumptions on thresholds or regions of interest. NeuroImage. 2011;58:1044–1050.
    1. Mikl M., Mareček R., Hluštík P., Pavlicová M., Drastich A., Chlebus P., Brázdil M., Krupa P. Effects of spatial smoothing on fMRI group inferences. Magn. Reson. Imaging. 2008;26:490–503.
    1. Miller W.L., Maffei V., Bosco G., Iosa M., Zago M., Macaluso E., Lacquaniti F. Vestibular nuclei and cerebellum put visual gravitational motion in context. J. Neurophysiol. 2008;99:1969–1982.
    1. Murphy K., Birn R.M., Handwerker D.A., Jones T.B., Bandettini P.A. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? NeuroImage. 2009;44:893–905.
    1. Okinaka Y., Sekitani T., Okazaki H., Miura M., Tahara T. Progress of caloric response of vestibular neuronitis. Acta Otolaryngol. Suppl. 1993;503:18–22.
    1. Page N.G., Gresty M.A. Motorist's vestibular disorientation syndrome. J. Neurol. Neurosurg. Psychiatry. 1985;48:729–735.
    1. Pavlou M., Davies R., Bronstein A. The assessment of increased sensitivity to visual stimuli in patients with chronic dizziness. J. Vestib. Res. 2006;16:223–231.
    1. Pavlou M., Quinn C., Murray K., Spyridakou C., Faldon M., Bronstein A.M. The effect of repeated visual motion stimuli on visual dependence and postural control in normal subjects. Gait Posture. 2011;33:113–118.
    1. Pavlou M., Bronstein A.M., Davies R.A. Randomized trial of supervised versus unsupervised optokinetic exercise in persons with peripheral vestibular disorders. Neurorehabil. Neural Repair. 2013;27:208–218.
    1. Peterka R.J. Sensorimotor integration in human postural control. J. Neurophysiol. 2002;88:1097–1118.
    1. Pollak L., Osherov M., Berkovitz N., Beckerman I., Stryjer R., Tal S. Magnetic resonance brain imaging in patients with visual vertigo. Brain Behav. 2015;5
    1. Powell H., Guye M., Parker G., Symms M., Boulby P., Koepp M., Barker G., Duncan J. Noninvasive in vivo demonstration of the connections of the human parahippocampal gyrus. NeuroImage. 2004;22:740–747.
    1. Roberts D., Marcelli V., Gillen J., Carey J., Della Santina C., Zee D. MRI magnetic field stimulates rotational sensors of the brain. Curr. Biol. 2011;21:1635–1640.
    1. Roberts R., Ahmad H., Arshad Q., Patel M., Dima D., Leech R., Seemungal B., Sharp D., Bronstein A. Functional neuroimaging of visuo-vestibular interaction. Brain Struct. Funct. 2016
    1. Saad Z.S., Gotts S.J., Murphy K., Chen G., Jo H.J., Martin A., Cox R.W. Trouble at rest: how correlation patterns and group differences become distorted after global signal regression. Brain Connect. 2012;2:25–32.
    1. Sang L., Qin W., Lui Y., Han W., Zhang Y., Jiang T., Yu C. Resting-state functional connectivity of the vermal and hemispheric subregions of the cerebellum with both the cerebral cortical networks and subcortical structures. NeuroImage. 2012;61:1213–1225.
    1. Sato N., Nakamura K. Visual response properties of neurons in the parahippocampal cortex of monkeys [online] J. Neurophysiol. 2003;90:876–886. (papers://fd89a684-cdfc-42fd-9184-d7b50afefca5/Paper/p14)
    1. Staab J.P., Ruckenstein M.J. Chronic dizziness and anxiety: effect of course of illness on treatment outcome. Arch. Otolaryngol. Head Neck Surg. 2005;131:675–679.
    1. Staab J.P., Ruckenstein M.J., Amsterdam J.D. A prospective trial of sertraline for chronic subjective dizziness. Laryngoscope. 2004;114:1637–1641.
    1. Staab J.P., Rohe D.E., Eggers S.D.Z., Shepard N.T. Anxious, introverted personality traits in patients with chronic subjective dizziness. J. Psychosom. Res. 2014;76:80–83.
    1. Stephan T., Deutschländer A., Nolte A., Schneider E., Wiesmann M., Brandt T., Dieterich M. Functional MRI of galvanic vestibular stimulation with alternating currents at different frequencies. NeuroImage. 2005;26:721–732.
    1. Stiles L., Smith P.F. The vestibular-basal ganglia connection: balancing motor control. Brain Res. 2015;1597:180–188.
    1. Suzuki M., Kitano H., Ito R., Kitanishi T., Yazawa Y., Ogawa T., Shiino A., Kitajima K. Cortical and subcortical vestibular response to caloric stimulation detected by functional magnetic resonance imaging. Cogn. Brain Res. 2001;12:441–449.
    1. Van Ombergen A., Lubeck A.J., Van Rompaey V., Maes L.K., Stins J.F., Van De Heyning P.H., Wuyts F.L., Bos J.E. The effect of optokinetic stimulation on perceptual and postural symptoms in visual vestibular mismatch patients. PLoS One. 2016;11
    1. Whitfield-Gabrieli S., Nieto-Castanon A. A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012;2:125–141.
    1. Witkin H. The perception of the upright. Sci. Am. 1959;200:51–56.
    1. Witkin H., Asch S. Studies in space orientation; further experiments on perception of the upright with displaced visual fields. J. Exp. Psychol. 1948;38:762–782.
    1. Wong C.W., Olafsson V., Tal O., Liu T.T. Anti-correlated networks, global signal regression, and the effects of caffeine in resting-state functional MRI. NeuroImage. 2012;63:356–364.
    1. Wuyts F.L., Van Rompaey V., Maes L.K. “SO STONED”: common sense approach of the dizzy patient. Front Surg. 2016;3
    1. Zeki S., Watson J.D., Lueck C.J., Friston K.J., Kennard C., Frackowiak R.S. A direct demonstration of functional specialization in human visual cortex. J. Neurosci. 1991;11:641–649.
    1. Zu Eulenburg P., Stoeter P., Dieterich M. Voxel-based morphometry depicts central compensation after vestibular neuritis. Ann. Neurol. 2010;68:241–249.
    1. Zu Eulenburg P., Caspers S., Roski C., Eickhoff S.B. Meta-analytical definition and functional connectivity of the human vestibular cortex. NeuroImage. 2012;60:162–169.

Source: PubMed

3
Abonneren