Autologous fat grafting: Latest insights

Maarten Doornaert, Julien Colle, Elisabeth De Maere, Heidi Declercq, Phillip Blondeel, Maarten Doornaert, Julien Colle, Elisabeth De Maere, Heidi Declercq, Phillip Blondeel

Abstract

A recent rise in the use of autologous fat transfer for soft tissue augmentation has paralleled the increasing popularity of liposuction body contouring. This creates a readily available and inexpensive product for lipografting, which is the application of lipoaspirated material. Consistent scientific proof about the long-term viability of the transferred fat is not available. Clinically, there is a reabsorption rate which has been reported to range from 20 to 90%. Results can be unpredictable with overcorrection and regular need for additional interventions. In this review, adipogenesis physiology and the adipogenic cascade from adipose-derived stem cells to adult adipocytes is extensively described to determine various procedures involved in the fat grafting technique. Variables in structure and physiology, adipose tissue harvesting- and processing techniques, and the preservation of fat grafts are taken into account to collect reproducible scientific data to establish standard in vitro and in vivo models for experimental fat grafting. Adequate histological staining for fat tissue, immunohistochemistry and viability assays should be universally used in experiments to be able to produce comparative results. By analysis of the applied methods and comparison to similar experiments, a conclusion concerning the ideal technique to improve clinical outcome is proposed.

Keywords: ASC; CAL; Cell; Fat grafting; Lipofilling; Lipotransfer; White adipose tissue engineering.

Figures

Fig. 1
Fig. 1
a: typical ASC culture. Cells are spindle shaped, and rapidly expanding. b: culture in adipogenic medium results in a more rounded shape and accumulation of lipid droplets in the cytoplasma, characteristics of adipocytes. c: Lentiviral transduction of green fluorescent protein allows for easy tracking of ASC's in 3D gel constructs. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
Fig. 2
Fig. 2
a: contour deformation and contracted scar after sacrococcygeal cyst removal at young age. b: restored contours after 2 sessions of lipofilling. c: mammary hypotrophy in a healthy young female patient. d: result after 1 session of lipofilling to the breast.
Fig. 3
Fig. 3
A: Status of a breast after tumorectomy and radiotherapy resulting in ischemic changes in the skin and retraction of the scar. B: Results after 2 sessions of lipofilling.

References

    1. Tchoukalova Y.D., Votruba S.B., Tchkonia T., Giorgadze N., Kirkland J.L., Jensen M.D. Regional differences in cellular mechanisms of adipose tissue gain with overfeeding. Proc. Natl. Acad. Sci. Unit. States Am. 2010;107:18226–18231.
    1. Hausman D.B., DiGirolamo M., Bartness T.J., Hausman G.J., Martin R.J. The biology of white adipocyte proliferation. Obes. Rev. 2001;2:239–254.
    1. Klyde B.J., Hirsch J. Increased cellular proliferation in adipose tissue of adult rats fed a high-fat diet. J. Lipid Res. 1979;20:705–715.
    1. Lemonnier D. Effect of age, sex, and sites on the cellularity of the adipose tissue in mice and rats rendered obese by a high-fat diet. J. Clin. Invest. 1972;51:2907–2915.
    1. Rosen E.D., MacDougald O.A. Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol. 2006;7:885–896.
    1. Feve B. Adipogenesis: cellular and molecular aspects. Best Pract. Res. Clin. Endocrinol. Metabol. 2005;19:483–499.
    1. Cao R., Brakenhielm E., Wahlestedt C., Thyberg J., Cao Y. Leptin induces vascular permeability and synergistically stimulates angiogenesis with FGF-2 and VEGF. Proc. Natl. Acad. Sci. U. S. A. 2001;98:6390–6395.
    1. Novakofski J. Adipogenesis: usefulness of in vitro and in vivo experimental models. J. Anim. Sci. 2004;82:905–915.
    1. Bourin P., Bunnell B.A., Casteilla L., Dominici M., Katz A.J., March K.L. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International So. Cytotherapy. 2013;15:641–648.
    1. Owen M. Marrow stromal stem cells. J. Cell Sci. 1988
    1. Caplan A.I. Mesenchymal stem cells. J. Orthop. Res. 1991;9:641–650.
    1. Crisan M., Yap S., Casteilla L., Chen C.W., Corselli M., Park T.S. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3:301–313.
    1. Christiaens V., Lijnen H.R. Angiogenesis and development of adipose tissue. Mol. Cell. Endocrinol. 2010;318:2–9.
    1. Montesano R., Mouron P., Orci L. Vascular outgrowths from tissue explants embedded in fibrin or collagen gels: a simple in vitro model of angiogenesis. Cell Biol. Int. Rep. 1985;9:869–875.
    1. Frye C a, Wu X., Patrick C.W. Microvascular endothelial cells sustain preadipocyte viability under hypoxic conditions. In Vitro Cell. Dev. Biol. Anim. 2005;41:160–164.
    1. De Ugarte D.A., Morizono K., Elbarbary A., Alfonso Z., Zuk P.A., Zhu M. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 2003;174:101–109.
    1. Pittenger M.F. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–147. (80- )
    1. Zuk P.A., Zhu M., Ashjian P., De Ugarte D.A., Huang J.I., Mizuno H. Human adipose tissue is a source of multipotent stem Cells. Mol. Biol. Cell. 2002;13:4279–4295.
    1. Aust L., Devlin B., Foster S.J., Halvorsen Y.D.C., Hicok K., du Laney T. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy. 2004;6:7–14.
    1. Oedayrajsingh-Varma M.J., van Ham S.M., Knippenberg M., Helder M.N., Klein-Nulend J., Schouten T.E. Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy. 2006;8:166–177.
    1. Zhu Y., Liu T., Song K., Fan X., Ma X., Cui Z. Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem. Funct. 2008;26:664–675.
    1. Mitchell J.B., McIntosh K., Zvonic S., Garrett S., Floyd Z.E., Kloster A. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cell. 2006;24:376–385.
    1. Guilak F., Lott K.E., Awad H.A., Cao Q., Hicok K.C., Fermor B. Clonal analysis of the differentiation potential of human adipose-derived adult stem cells. J. Cell. Physiol. 2006;206:229–237.
    1. Jung S., Kleineidam B., Kleinheinz J. Regenerative potential of human adipose-derived stromal cells of various origins. J. Cranio-Maxillofacial Surg. 2015;43:2144–2151.
    1. Mizuno H. Adipose-derived stem cells for tissue repair and regeneration: ten years of research and a literature review. J. Nippon Med. Sch. 2009;76:56–66.
    1. Omatsu Y., Sugiyama T., Kohara H., Kondoh G., Fujii N., Kohno K. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity. 2010;33:387–399.
    1. Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F.C., Krause D.S. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–317.
    1. Safford K.M., Hicok K.C., Safford S.D., Halvorsen Y.-D.C., Wilkison W.O., Gimble J.M. Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem. Biophys. Res. Commun. 2002;294:371–379.
    1. Ashjian P.H., Elbarbary A.S., Edmonds B., DeUgarte D., Zhu M., Zuk P.A. In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plast. Reconstr. Surg. 2003;111:1922–1931.
    1. Safford K.M., Safford S.D., Gimble J.M., Shetty A.K., Rice H.E. Characterization of neuronal/glial differentiation of murine adipose-derived adult stromal cells. Exp. Neurol. 2004;187:319–328.
    1. Brzoska M., Geiger H., Gauer S., Baer P. Epithelial differentiation of human adipose tissue-derived adult stem cells. Biochem. Biophys. Res. Commun. 2005;330:142–150.
    1. Seo M.J., Suh S.Y., Bae Y.C., Jung J.S. Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem. Biophys. Res. Commun. 2005;328:258–264.
    1. Banas A., Teratani T., Yamamoto Y., Tokuhara M., Takeshita F., Quinn G. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology. 2007;46:219–228.
    1. Timper K., Seboek D., Eberhardt M., Linscheid P., Christ-Crain M., Keller U. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem. Biophys. Res. Commun. 2006;341:1135–1140.
    1. Crosby J.R., Kaminski W.E., Schatteman G., Martin P.J., Raines E.W., Seifert R.A. Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ. Res. 2000;87:728–730.
    1. Kilroy G.E., Foster S.J., Wu X., Ruiz J., Sherwood S., Heifetz A. Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors. J. Cell. Physiol. 2007;212:702–709.
    1. Nygren J.M., Jovinge S., Breitbach M., Säwén P., Röll W., Hescheler J. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat. Med. 2004;10:494–501.
    1. Rose R.A., Jiang H., Wang X., Helke S., Tsoporis J.N., Gong N. Bone marrow-derived mesenchymal stromal cells express cardiac-specific markers, retain the stromal phenotype, and do not become functional cardiomyocytes in vitro. Stem Cell. 2008;26:2884–2892.
    1. Aurich H., Sgodda M., Kaltwasser P., Vetter M., Weise A., Liehr T. Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo. Gut. 2009;58:570–581.
    1. Najar M., Raicevic G., Boufker H.I., Kazan H.F., Bruyn C De, Meuleman N. Mesenchymal stromal cells use PGE2 to modulate activation and proliferation of lymphocyte subsets: combined comparison of adipose tissue, Wharton's Jelly and bone marrow sources. Cell. Immunol. 2010;264:171–179.
    1. Sowa Y., Imura T., Numajiri T., Nishino K., Fushiki S. Adipose-derived stem cells produce factors enhancing peripheral nerve regeneration: influence of age and anatomic site of origin. Stem Cell. Dev. 2012;21:1852–1862.
    1. Lee J.-H., Kemp D.M. Human adipose-derived stem cells display myogenic potential and perturbed function in hypoxic conditions. Biochem. Biophys. Res. Commun. 2006;341:882–888.
    1. Wang X.Y., Liu C.L., Li S.D., Xu Y., Chen P., Liu Y. Hypoxia precondition promotes adipose-derived mesenchymal stem cells based repair of diabetic erectile dysfunction via augmenting angiogenesis and neuroprotection. PloS One. 2015;10
    1. Chung H.-M., Won C.-H., Sung J.-H. Responses of adipose-derived stem cells during hypoxia: enhanced skin-regenerative potential. Expet Opin. Biol. Ther. 2009;9:1499–1508.
    1. Byrne M., O'Donnell M., Fitzgerald L., Shelley O.P. Early experience with fat grafting as an adjunct for secondary burn reconstruction in the hand: technique, hand function assessment and aesthetic outcomes. Burns. 2016;42:356–365.
    1. Condé-Green A., Marano A.A., Lee E.S., Reisler T., Price L.A., Milner S.M. Fat grafting and adipose-derived regenerative cells in burn wound healing and scarring. Plast. Reconstr. Surg. 2016;137:302–312.
    1. Jaspers M.E.H., Brouwer K.M., van Trier A.J.M., Groot M.L., Middelkoop E., van Zuijlen P.P.M. Effectiveness of autologous fat grafting in adherent scars: results obtained by a comprehensive scar evaluation protocol. Plast. Reconstr. Surg. 2017;139:212–219.
    1. Bruno A., Delli Santi G., Fasciani L., Cempanari M., Palombo M., Palombo P. Burn scar lipofilling: immunohistochemical and clinical outcomes. J. Craniofac. Surg. 2013;24:1806–1814.
    1. Freiman A., Shandalov Y., Rozenfeld D., Shor E., Segal S., Ben-David D. Adipose-derived endothelial and mesenchymal stem cells enhance vascular network formation on three-dimensional constructs in vitro. Stem Cell Res. Ther. 2016;7
    1. Efimenko A., Starostina E., Kalinina N., Stolzing A. Angiogenic properties of aged adipose derived mesenchymal stem cells after hypoxic conditioning. J. Transl. Med. 2011;9
    1. Foubert P., Barillas S., Gonzalez A.D., Alfonso Z., Zhao S., Hakim I. Uncultured adipose-derived regenerative cells (ADRCs) seeded in collagen scaffold improves dermal regeneration, enhancing early vascularization and structural organization following thermal burns. Burns. 2015;41:1504–1516.
    1. Zhang Y., Luo H., Zhang Z., Lu Y., Huang X., Yang L. A nerve graft constructed with xenogeneic acellular nerve matrix and autologous adipose-derived mesenchymal stem cells. Biomaterials. 2010;31:5312–5324.
    1. Hu F., Zhang X., Liu H., Xu P., Doulathunnisa, Teng G. Neuronally differentiated adipose-derived stem cells and aligned PHBV nanofiber nerve scaffolds promote sciatic nerve regeneration. Biochem. Biophys. Res. Commun. 2017;489:171–178.
    1. Nie C. Targeted delivery of adipose-derived stem cells via acellular dermal matrix enhances wound repair in diabetic rats. J Tissue Eng Regen Med. 2012;4:524–531.
    1. Kim W.-S., Park B.-S., Sung J.-H., Yang J.-M., Park S.-B., Kwak S.-J. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J. Dermatol. Sci. 2007;48:15–24.
    1. Hong L., Peptan I., Clark P., Mao J.J. Ex vivo adipose tissue engineering by human marrow stromal cell seeded gelatin sponge. Ann. Biomed. Eng. 2005;33:511–517.
    1. Correia C., Bhumiratana S., Yan L.-P., Oliveira A.L., Gimble J.M., Rockwood D. Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells. Acta Biomater. 2012;8:2483–2492.
    1. Andor G.K., Numminen J., Wolff J., Thesleff T., Miettinen A., Tuovinen V.J. Adipose stem cells used to reconstruct 13 cases with cranio-maxillofacial hard-tissue defects. Stem Cells Transl Med. 2014;3:530–540.
    1. Xia L., Lin K., Jiang X., Fang B., Xu Y., Liu J. Effect of nano-structured bioceramic surface on osteogenic differentiation of adipose derived stem cells. Biomaterials. 2014;35:8514–8527.
    1. Murata D., Tokunaga S., Tamura T., Kawaguchi H., Miyoshi N., Fujiki M. A preliminary study of osteochondral regeneration using a scaffold-free three-dimensional construct of porcine adipose tissue-derived mesenchymal stem cells. J. Orthop. Surg. Res. 2015;10
    1. Yao R., Zhang R., Yan Y., Wang X. In vitro angiogenesis of 3D tissue engineered adipose tissue. J. Bioact. Compat Polym. 2009;24:5–24.
    1. Kang J.H., Gimble J.M., Kaplan D.L. In vitro 3D model for human vascularized adipose tissue. Tissue Eng. 2009;15:2227–2236.
    1. Chan R.K., Zamora D.O., Wrice N.L., Baer D.G., Renz E.M., Christy R.J. Development of a vascularized skin construct using adipose-derived stem cells from debrided burned skin. Stem Cell. Int. 2012
    1. Shen C.C., Yang Y.C., Liu B.S. Peripheral nerve repair of transplanted undifferentiated adipose tissue-derived stem cells in a biodegradable reinforced nerve conduit. J. Biomed. Mater. Res. 2012;100 A:48–63.
    1. Fang B., Song Y., Liao L., Zhang Y., Zhao R.C. Favorable response to human adipose tissue-derived mesenchymal stem cells in steroid-refractory acute graft-versus-host disease. Transplant. Proc. 2007;39:3358–3362.
    1. Yanez R., Lamana M.L., Garcia-Castro J., Colmenero I., Ramirez M., Bueren J.A. Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cell. 2006;24:2582–2591. 2006-0228 [pii]
    1. Manferdini C., Maumus M., Gabusi E., Piacentini A., Filardo G., Peyrafitte J.A. Adipose-derived mesenchymal stem cells exert antiinflammatory effects on chondrocytes and synoviocytes from osteoarthritis patients through prostaglandin E2. Arthritis Rheum. 2013;65:1271–1281.
    1. U.S. National Institutes of Health ClinicalTrialsgov, US Natl Institutes Heal identifier: NCT02765126. 2016.
    1. Keck M., Janke J., Ueberreiter K. Viability of preadipocytes in vitro: the influence of local anesthetics and pH. Dermatol. Surg. 2009;35:1251–1257.
    1. Moore J.H., Kolaczynski J.W., Morales L.M., Considine R.V., Pietrzkowski Z., Noto P.F. Viability of fat obtained by syringe suction lipectomy: effects of local anesthesia with lidocaine. Aesthet. Plast. Surg. 1995;19:335–339.
    1. Shoshani O., Berger J., Fodor L., Ramon Y., Shupak A., Kehat I. The effect of lidocaine and adrenaline on the viability of injected adipose tissue--an experimental study in nude mice. J. Drugs Dermatol. JDD. 2005;4:311–316.
    1. Kim I.H., Yang J.D., Lee D.G., Chung H.Y., Cho B.C. Evaluation of centrifugation technique and effect of epinephrine on fat cell viability in autologous fat injection. Aesthet. Surg. J. 2009;29:35–39.
    1. Özsoy Z., Kul Z., Bilir A. The role of cannula diameter in improved adipocyte viability: a quantitative analysis. Aesthet. Surg. J. 2006;26:287–289.
    1. Erdim M., Tezel E., Numanoglu A., Sav A. The effects of the size of liposuction cannula on adipocyte survival and the optimum temperature for fat graft storage: an experimental study. J. Plast. Reconstr. Aesthetic Surg. 2009;62:1210–1214.
    1. Eto H., Suga H., Matsumoto D., Inoue K., Aoi N., Kato H. Characterization of structure and cellular components of aspirated and excised adipose tissue. Plast. Reconstr. Surg. 2009;124:1087–1097.
    1. Suga H., Matsumoto D., Inoue K., Shigeura T., Eto H., Aoi N. Numerical measurement of viable and nonviable adipocytes and other cellular components in aspirated fat tissue. Plast. Reconstr. Surg. 2008;122:103–113.
    1. Von Heimburg D., Hemmrich K., Haydarlioglu S., Staiger H., Pallua N. Comparison of viable cell yield from excised versus aspirated adipose tissue. Cells Tissues Organs. 2004;178:87–92.
    1. Lalikos J.F., Li Y.Q., Roth T.P., Doyle J.W., Matory W.E., Lawrence W.T. Biochemical assessment of cellular damage after adipocyte harvest. J. Surg. Res. 1997;70:95–100.
    1. Jurgens W.J.F.M., Oedayrajsingh-Varma M.J., Helder M.N., ZandiehDoulabi B., Schouten T.E., Kuik D.J. Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: implications for cell-based therapies. Cell Tissue Res. 2008;332:415–426.
    1. Rohrich R.J., Sorokin E.S., Brown S.A. In search of improved fat transfer viability: a quantitative analysis of the role of centrifugation and harvest site. Plast. Reconstr. Surg. 2004;113:391–395.
    1. Condé-Green A., Baptista L.S., de Amorin N.F.G., de Oliveira E.D., da Silva K.R., Pedrosa C.D.S.G. Effects of centrifugation on cell composition and viability of aspirated adipose tissue processed for transplantation. Aesthet. Surg. J. 2010;30:249–255.
    1. Xie Y., Zheng D., Li Q., Chen Y., Lei H., Pu L.L.Q. The effect of centrifugation on viability of fat grafts: an evaluation with the glucose transport test. J. Plast. Reconstr. Aesthetic Surg. 2010;63:482–487.
    1. Kurita M., Matsumoto D., Shigeura T., Sato K., Gonda K., Harii K. Influences of centrifugation on cells and tissues in liposuction aspirates: optimized centrifugation for lipotransfer and cell isolation. Plast. Reconstr. Surg. 2008;121:1033–1041.
    1. Yoshimura K., Sato K., Matsumoto D. Cell-assisted lipotransfer for breast augmentation: grafting of progenitor-enriched fat tissue. Autologous Fat Transf. Art, Sci. Clin. Pract. 2010:261–271.
    1. Matsumoto D., Sato K., Gonda K., Takaki Y., Shigeura T., Sato T. Cell-assisted lipotransfer: supportive use of human adipose-derived cells for soft tissue augmentation with lipoinjection. Tissue Eng. 2006;12:3375–3382.
    1. Sándor G., Tuovinen V., Wolff J., Mannerström B., Miettinen A., Miettinen S. GMP-level adipose stem cells combined with computer-aided manufacturing to reconstruct mandibular ameloblastoma resection defects: experience with three cases. Ann Maxillofac Surg. 2013;3:114.
    1. Grabin S., Antes G., Stark G.B., Motschall E., Buroh S., Lampert F.M. Cell-assisted lipotransfer. Dtsch Arztebl Int. 2015;112:255–261.
    1. Arshad Z., Karmen L., Choudhary R., Smith J.A., Branford O.A., Brindley D.A. Cell assisted lipotransfer in breast augmentation and reconstruction: a systematic review of safety, efficacy, use of patient reported outcomes and study quality. Z Arshad. 2016
    1. Niechajev I., Sevćuk O. Long-term results of fat transplantation: clinical and histologic studies. Plast. Reconstr. Surg. 1994;94:496–506.
    1. Heimburg D Von, Hemmrich K., Zachariah S., Staiger H., Pallua N. Oxygen consumption in undifferentiated versus differentiated adipogenic mesenchymal precursor cells. Respir. Physiol. Neurobiol. 2005;146:107–116.
    1. Pu L.L.Q. Mechanisms of fat graft survival. Ann. Plast. Surg. 2016;77:S84–S86.
    1. Khouri R.K.J., Khouri R.K. Current clinical applications of fat grafting. Plast. Reconstr. Surg. 2017;140:466e–486e.
    1. Eto H., Kato H., Suga H., Aoi N., Doi K., Kuno S. The fate of adipocytes after nonvascularized fat grafting: evidence of early death and replacement of adipocytes. Plast. Reconstr. Surg. 2012;129:1081–1092.
    1. Fu S., Luan J., Xin M., Wang Q., Xiao R., Gao Y. Fate of adipose-derived stromal vascular fraction cells after co-implantation with fat grafts: evidence of cell survival and differentiation in ischemic adipose tissue. Plast. Reconstr. Surg. 2013;132:363–373.
    1. Dong Z., Peng Z., Chang Q., Zhan W., Zeng Z., Zhang S. The angiogenic and adipogenic modes of adipose tissue after free fat grafting. Plast. Reconstr. Surg. 2015;135:556e–567e.
    1. Bellini E., Grieco M., Raposio E. The science behind autologous fat grafting. Ann Med Surg. 2017;24:65–73.
    1. Hong K.Y., Yim S., Kim H.J. The fate of the adipose-derived stromal cells during angiogenesis and adipogenesis after cell-assisted lipotransfer. Plast. Reconstr. Surg. 2018 Feb;141(2):365–375.

Source: PubMed

3
Abonneren