Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment

Purusotam Basnet, Natasa Skalko-Basnet, Purusotam Basnet, Natasa Skalko-Basnet

Abstract

Oxidative damage and inflammation have been pointed out in preclinical studies as the root cause of cancer and other chronic diseases such as diabetes, hypertension, Alzheimer's disease, etc. Epidemiological and clinical studies have suggested that cancer could be prevented or significantly reduced by treatment with anti-oxidant and anti-inflammatory drugs, therefore, curcumin, a principal component of turmeric (a curry spice) showing strong anti-oxidant and anti-inflammatory activities, might be a potential candidate for the prevention and/or treatment of cancer and other chronic diseases. However, curcumin, a highly pleiotropic molecule with an excellent safety profile targeting multiple diseases with strong evidence on the molecular level, could not achieve its optimum therapeutic outcome in past clinical trials, largely due to its low solubility and poor bioavailability. Curcumin can be developed as a therapeutic drug through improvement in formulation properties or delivery systems, enabling its enhanced absorption and cellular uptake. This review mainly focuses on the anti-inflammatory potential of curcumin and recent developments in dosage form and nanoparticulate delivery systems with the possibilities of therapeutic application of curcumin for the prevention and/or treatment of cancer.

Figures

Figure 1
Figure 1
Pictures of the botanical sources of turmeric.
Figure 2
Figure 2
Structure of three major curcuminoids in turmeric.
Scheme 1
Scheme 1
pH dependent keto- and enol- tautomeric form of curcumin.
Figure 3
Figure 3
Structures of some important curcumin metabolites.
Figure 4
Figure 4
Chart showing external and internal pro-inflammatory factors and some of their biological responses.
Figure 5
Figure 5
Flow diagram showing inhibitory effect of curcumin on arachidonic pathways.

References

    1. Conney A.H. Enzyme induction and dietary chemicals as approaches to cancer chemoprevention: The seventh DeWitt S. Goodman lecture. Cancer Res. 2003;63:7005–7031.
    1. Aggarwal B.B., Surh Y.J., Shishodia S., editors. The Molecular Target and Therapeutic Uses of Curcumin in Health and Disease. Springer; New York, NY, USA: 2007. Advances in experimental medicine and biology.
    1. National Cancer Institute. Clinical development plan: Curcumin. J. Cell. Biochem. Suppl. 1996;26:72–85.
    1. Oppenheimer A. Turmeric (curcumin) in biliary diseases. Lancet. 1937;229:619–621. doi: 10.1016/S0140-6736(00)98193-5.
    1. US National Institute of Health. [accessed on 23 March 2011]. Available online:
    1. Zhou H., Beevers C.S., Huang S. The targets of curcumin. Curr. Drug Targets. 2011;12:332–347. doi: 10.2174/138945011794815356.
    1. Strimpakos A.S., Sharma R.A. Curcumin: Preventative and therapeutic properties in laboratory studies and clinical trials. Antioxid. Redox Sign. 2008;10:511–545. doi: 10.1089/ars.2007.1769.
    1. World Health Organization. WHO Monographs on Selected Medicinal Plants. Vol. 1. WHO; Geneva, Switzerland: 1999. Rhizoma curcumae longae; pp. 115–124.
    1. Ploto A. Turmeric: Post-Production Management for Improved Market Access for Herbs and Spices-Turmeric. Food andAgriculture Organization of the United Nations (FAO); Rome, Italy: 2003.
    1. Spices Board of India. Ministry of Commerce. [accessed on 23 March 2011]. Available online:
    1. Chattopadhyay I., Biswas K., Bandyopadhyay U., Banerjee R.K. Turmeric and curcumin: Biological actions and medicinal applications. Curr. Sci. 2004;87:44–53.
    1. Jayaprakasha G.K., Rao L.J.M., Sakariah K.K. Chemistry and biological activities of C. longa. Trends Food Sci. Technol. 2005;16:533–548. doi: 10.1016/j.tifs.2005.08.006.
    1. Vogel H.A., Pelletier J. Curcumin-biological and medicinal properties. J. Pharma. 1815;2:50.
    1. Milobedzka J., Kostanecki V., Lampe V. Structure of curcumin. Ber. Dtsch. Chem. Ges. 1910;43:2163–2170. doi: 10.1002/cber.191004302168.
    1. Roughley P.J., Whiting D.A. Experiments in the biosynthesis of curcumin. J. Chem. Soc. Perkin Trans. 1. 1973;20:2379–2388. doi: 10.1039/p19730002379.
    1. Payton F., Sandusky P., Alworth W.L. NMR study of the solution structure of curcumin. J. Nat. Prod. 2007;70:143–146.
    1. Basnet P., Tho I., Skalko-Basnet N. Curcumin, A Wonder Drug of 21st Century: Liposomal Delivery System Targeting Vaginal Inflammation; 5th International Congress on Complementary Medicine Research; Tromsø, Norway. May 19–21, 2010; Abstract Number A9M2K9C.
    1. Jovanovic S.V., Steenken S., Boone C.W., Simic M.G. H-atom transfer is a preferred antioxidant mechanism of curcumin. J. Am. Chem. Soc. 1999;121:9677–9681.
    1. Lin J.K., Pan M.H., Lin-Shiau S.Y. Recent studies on the biofunctions and biotransformations of curcumin. Biofactors. 2000;13:153–158. doi: 10.1002/biof.5520130125.
    1. Wang Y.J., Pan M.H., Cheng A.L., Lin L.I., Ho Y.S., Hsieh C.Y., Lin J.K. Stability of curcumin in buffer solutions and characterization of its degradation products. J. Pharm. Biomed. Anal. 1997;15:1867–1876. doi: 10.1016/S0731-7085(96)02024-9.
    1. Tonnesen H.H., Karlsen J., van Henegouwen G.B. Studies on curcumin and curcuminoids, VIII: Photochemical stability of curcumin. Z. Lebensm. Unters Forsch. 1986;183:116–122.
    1. Eigner D., Scholz D. Ferula asa-foetida and Curcuma longa in traditional medical treatment and diet in Nepal. J. Ethnopharmacol. 1999;67:1–6. doi: 10.1016/S0378-8741(98)00234-7.
    1. Chainani-Wu N. Safety and anti-inflammatory activity of curcumin: A component of turmeric (Curcuma longa) J. Altern. Complement. Med. 2003;9:161–168. doi: 10.1089/107555303321223035.
    1. Sharma R.A., Ireson C.R., Verschoyle R.D., Hill K.A., Williams M.L., Leuratti C., Manson M.M., Marnett L.J., Steward W.P., Gescher A. Effects of dietary curcumin on glutathione S-transferase and malondialdehyde-DNA adducts in rat liver and colon mucosa: Relationship with drug levels. Clin. Cancer Res. 2001;7:1452–1458.
    1. Perkins S., Verschoyle R.D., Hill K., Parveen I., Threadgill M.D., Sharma R.A., Williams M.L., Steward W.P., Gescher A.J. Chemopreventive efficacy and pharmacokinetics of curcumin in the min/+ mouse, a model of familial adenomatous polyposis. Cancer Epidemiol. Biomarker. Prev. 2002;11:535–540.
    1. Ganiger S., Malleshappa H.N., Krishnappa H., Rajashekhar G., Rao R.V., Sullivan F. A two generation reproductive toxicity study with curcumin, turmeric yellow, in Wistar rats. Food Chem. Toxicol. 2007;45:64–69.
    1. Deodhar S.D., Sethi R., Srimal R.C. Preliminary study on anti-rheumatic activity of curcumin (diferuloyl methane) Indian J. Med. Res. 1980;71:632–634.
    1. Cheng A.L., Hsu C.H., Lin J.K., Hsu M.M., Ho Y.F., Shen T.S., Ko J.Y., Lin J.T., Lin B.R., Ming-Shiang W., et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001;21:2895–2900.
    1. Lao C.D., Ruffin M.T., Normolle D., Heath D.D., Murray S.I., Bailey J.M., Boggs M.E., Crowell J., Rock C.L., Brenner D.E. Dose escalation of a curcuminoid formulation. BMC Complement. Altern. Med. 2006;6:10. doi: 10.1186/1472-6882-6-10.
    1. Sharma R.A., Euden S.A., Platton S.L., Cooke D.N., Shafayat A., Hewitt H.R., Marczylo T.H., Morgan B., Hemingway D., Plummer S.M., et al. Phase I clinical trial of oral curcumin: Biomarkers of systemic activity and compliance. Clin. Cancer Res. 2004;10:6847–6854. doi: 10.1158/1078-0432.CCR-04-0744.
    1. Goh C.L., Ng S.K. Allergic contact dermatitis to Curcuma longa (turmeric) Contact Dermatitis. 1987;17:186. doi: 10.1111/j.1600-0536.1987.tb02706.x.
    1. Liddle M., Hull C., Liu C., Powell D. Contact urticaria from curcumin. Dermatitis. 2006;17:196–197. doi: 10.2310/6620.2006.06004.
    1. Thompson D.A., Tan B.B. Tetrahydrocurcumin-related allergic contact dermatitis. Contact Dermatitis. 2006;55:254–255. doi: 10.1111/j.1600-0536.2006.00857.x.
    1. Joshi J., Ghaisas S., Vaidya A., Vaidya R., Kamat D.V., Bhagwat A.N., Bhide S. Early human safety study of turmeric oil (Curcuma longa oil) administered orally in healthy volunteers. J. Assoc.Phys. India. 2003;51:1055–1060.
    1. Kim D.C., Kim S.H., Choi B.H., Baek N.I., Kim D., Kim M.J., Kim K.T. Curcuma longa extract protects against gastric ulcers by blocking H2 histamine receptors. Biol. Pharm. Bull. 2005;28:2220–2224. doi: 10.1248/bpb.28.2220.
    1. Babu P.S., Srinivasan K. Hypolipidemic action of curcumin: the active principle of turmeric (Curcuma longa) in streptozotocin-induced diabetic rats. Mol. Cell. Biochem. 1997;166:169–175. doi: 10.1023/A:1006819605211.
    1. Fan C., Wo X., Qian Y., Yin J., Gao L. Effect of curcumin on the expression of LDL receptor in mouse macrophages. J. Ethnopharmacol. 2006;105:251–254. doi: 10.1016/j.jep.2005.11.009.
    1. Wahlstrom B., Blennow G. A study on the fate of curcumin in the rat. Acta Pharmacol. Toxicol. (Copenh) 1980;16:259–265.
    1. Ravindranath V., Chandrasekhara N. Absorption and tissue distribution of curcumin in rats. Toxicology. 1980;16:259–265. doi: 10.1016/0300-483X(80)90122-5.
    1. Ravindranath V., Chandrasekhara N. In vitro studies on the intestinal absorption of curcumin in rats. Toxicology. 1981;20:251–257. doi: 10.1016/0300-483X(81)90056-1.
    1. Ravindranath V., Chandrasekhara N. Metabolism of curcumin: Studies with [3H]curcumin. Toxicology. 1981;22:337–344. doi: 10.1016/0300-483X(81)90027-5.
    1. Holder G.M., Plummer J.L., Ryan A.J. The metabolism and excretion of curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6- heptadiene-3,5-dione) in the rat. Xenobiotica. 1978;8:761–768. doi: 10.3109/00498257809069589.
    1. Pan M.H., Huang T.M., Lin J.K. Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab. Dispos. 1999;27:486–494.
    1. Ireson C.R., Orr S., Jones D.J., Verschoyle R., Lim C.K., Luo J.L., Howells L., Plummer S., Jukes R., Williams M.L., et al. Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res. 2001;61:1058–1064.
    1. Ireson C.R., Jones D.J., Orr S., Coughtrie M.W., Boocock D.J., Williams M.L., Farmer P.B., Steward W.P., Gescher A.J. Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine. Cancer Epidemiol. Biomarker. Prev. 2002;11:105–111.
    1. Shoba G., Joy D., Joseph T., Majeed M., Rajendran R., Srinivas P.S. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 1998;64:353–356. doi: 10.1055/s-2006-957450.
    1. Vareed S.K., Kakarala M., Ruffin M.T., Crowell J.A., Normolle D.P., Djuric Z., Brenner D.E. Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiol. Biomarker. Prev. 2008;17:1411–1417. doi: 10.1158/1055-9965.EPI-07-2693.
    1. Sharma R.A., McLelland H.R., Hill K.A., Ireson C.R., Euden S.A., Manson M.M., Pirmohamed M., Marnett L.J., Gescher A.J., Steward W.P. Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clin. Cancer Res. 2001;7:1894–1900.
    1. Garcea G., Berry D.P., Jones D.J., Singh R., Dennison A.R., Farmer P.B., Sharma R.A., Steward W.P., Gescher A.J. Consumption of the putative chemopreventive agent curcumin by cancer patients: assessment of curcumin levels in the colorectum and their pharmacodynamic consequences. Cancer Epidemiol. Biomarker. Prev. 2005;14:120–125.
    1. Garcea G., Jones D.J., Singh R., Dennison A.R., Farmer P.B., Sharma R.A., Steward W.P., Gescher A.J., Berry D.P. Detection of curcumin and its metabolites in hepatic tissue and portal blood of patients following oral administration. Br. J. Cancer. 2004;90:1011–1015. doi: 10.1038/sj.bjc.6601623.
    1. Balkwill F., Mantovani A. Inflammation and cancer: Back to Virchow? Lancet. 2001;357:539–545. doi: 10.1016/S0140-6736(00)04046-0.
    1. Coussens L.M., Werb Z. Inflammation and cancer. Nature. 2002;420:860–867. doi: 10.1038/nature01322.
    1. Khan N., Afaq F., Mukhtar H. Cancer chemoprevention through dietary antioxidants: Progress and promise. Antioxid. Redox Sign. 2008;10:475–510. doi: 10.1089/ars.2007.1740.
    1. Aggarwal B.B., Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem. Pharmacol. 2006;71:1397–1421. doi: 10.1016/j.bcp.2006.02.009.
    1. Biesalski H.K. Polyphenols and inflammation: Basic interactions. Curr. Opin. Clin. Nutr. Metab. Care. 2007;10:724–728. doi: 10.1097/MCO.0b013e3282f0cef2.
    1. Finkel T., Holbrook N.J. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–247. doi: 10.1038/35041687.
    1. Halliwell B., Gutteridge J.M.C. Free Radicals in Biology and Medicine. 3rd. Clarendon Press; Oxford, UK: 1998.
    1. Weber W.M., Hunsaker L.A., Gonzales A.M., Heynekamp J.J., Orlando R.A., Deck L.M., Vander Jagt D.L. TPA-induced up-regulation of activator protein-1 can be inhibited or enhanced by analogs of the natural product curcumin. Biochem. Pharmacol. 2006;72:928–940. doi: 10.1016/j.bcp.2006.07.007.
    1. Lala P.K., Chakraborty C. Role of nitric oxide in carcinogenesis and tumour progression. Lancet Oncol. 2001;2:149–156. doi: 10.1016/S1470-2045(00)00256-4.
    1. deRojas-Walker T., Tamir S., Ji H., Wishnok J.S., Tannenbaum S.R. Nitric oxide induces oxidative damage in addition to deamination in macrophage DNA. Chem. Res. Toxicol. 1995;8:473–477. doi: 10.1021/tx00045a020.
    1. Graziewicz M., Wink D.A., Laval F. Nitric oxide inhibits DNA ligase activity: Potential mechanisms for NO-mediated DNA damage. Carcinogenesis. 1996;17:2501–2505. doi: 10.1093/carcin/17.11.2501.
    1. Chan M.M., Huang H.I., Fenton M.R., Fong D. In vivo inhibition of nitric oxide synthase gene expression by curcumin: A cancer preventive natural product with anti-inflammatory properties. Biochem. Pharmacol. 1998;55:1955–1962.
    1. Von Knethen A., Brüne B. Cyclooxygenase-2: An essential regulator of NO-mediated apoptosis. FASEB J. 1997;11:887–895.
    1. von Knethen A., Callsen D., Brune B. NF-κB and AP-1 activation by nitric oxide attenuated apoptotic cell death in RAW 264.7 macrophages. Mol. Biol. Cell. 1999;10:361–372.
    1. Chung S.W., Hall S.R., Perella M.A. Role of hame oxygenase-1 in microbial host defense. Cell. Microbiol. 2009;11:199–207. doi: 10.1111/j.1462-5822.2008.01261.x.
    1. Baron J.A., Sandler R.S. Non-steroidal anti-inflammatory drugs and cancer prevention. Annu. Rev. Med. 2000;51:511–523. doi: 10.1146/annurev.med.51.1.511.
    1. Garcia-Rodriguez L.A., Huerta-Alvarez C. Reduced risk of colorectal cancer among long-term users of aspirin and non-aspirin non-steroidal anti-inflammatory drugs. Epidemiology. 2001;12:88–93. doi: 10.1097/00001648-200101000-00015.
    1. Williams C.S., Mann M., DuBois R.N. The role of cyclooxygenases in inflammation, cancer and development. Oncogene. 1999;18:7908–7916.
    1. Zidi I., Mestri S., Bartegi A., Ben Amor N. TNF-α and its inhibitors in cancer. Med. Oncol. 2010;27:185–198.
    1. Joe B., Lokesh B.R. Role of capsaicin, curcumin and dietary n-3 fatty acids in lowering the generation of reactive oxygen species in rat peritoneal macrophages. Biochim. Biophys. Acta. 1994;1224:255–263.
    1. Kunchandy E., Rao M.N.A. Oxygen radical scavenging activity of curcumin. Int. J. Pharm. 1990;58:237–240. doi: 10.1016/0378-5173(90)90201-E.
    1. Sreejayan N., Rao M.N. Free radical scavenging activity of curcuminoids. Arzneimittelforschung. 1996;46:169–171.
    1. Ahsan H., Parveen N., Khan N.U., Hadi S.M. Pro-oxidant, anti-oxidant and cleavage activities on DNA of curcumin and its derivatives, demethoxycurcumin and bisdemethoxycurcumi. Chem. Biol. Interact. 1999;121:161–175. doi: 10.1016/S0009-2797(99)00096-4.
    1. Tonnesen H.H., Greenhill J.V. Studies on curcumin and curcuminoids: 22. curcumin as a reducing agent and as a radical scavenger. Int. J. Pharm. 1992;87:79–87.
    1. Barik A., Mishra B., Shen L., Mohan H., Kadam R.M., Dutta S., Zhang H.Y., Priyadarsini K.I. Evaluation of a new copper(II)-curcumin complex as superoxide dismutase mimic and its free radical reactions. Free Radical Biol. Med. 2005;39:811–822.
    1. Brouet I., Ohshima H. Curcumin, an anti-tumour promoter and anti-inflammatory agent, inhibits induction of nitric oxide synthase in activated macrophages. Biochem. Biophys. Res. Commun. 1995;206:533–540. doi: 10.1006/bbrc.1995.1076.
    1. Hill-Kapturczak N., Thamilselvan V., Liu F., Nick H.S., Agarwal A. Mechanism of heme oxygenase-1 gene induction by curcumin in human renal proximal tubule cells. Am. J. Physiol. Renal Physiol. 2001;281:F851–F859.
    1. Motterlini R., Foresti R., Bassi R., Green C.J. Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radical Biol. Med. 2000;28:1303–1312. doi: 10.1016/S0891-5849(00)00294-X.
    1. Kelkel M., Jacob C., Dicato M., Diederich M. Potential of the dietary antioxidants resveratrol and curcumin in prevention and treatment of hematologic malignancies. Molecules. 2010;15:7035–7074. doi: 10.3390/molecules15107035.
    1. Bhaumik S., Anjum R., Rangaraj N., Pardhasaradhi B.V., Khar A. Curcumin mediated apoptosis in AK-5 tumor cells involves the production of reactive oxygen intermediates. FEBS Lett. 1999;456:311–314. doi: 10.1016/S0014-5793(99)00969-2.
    1. Chen J., Wanming D., Zhang D., Liu Q., Kang J. Water-soluble antioxidants improve the antioxidant and anticancer activity of low concentrations of curcumin in human leukemia cells. Pharmazie. 2005;60:57–61.
    1. Galati G., Sabzevari O., Wilson J.X., O’Brien P.J. Prooxidant activity and cellular effects of the phenoxyl radicals of dietary flavonoids and other polyphenolics. Toxicology. 2002;177:91–104.
    1. Nair J., Strand S., Frank N., Knauft J., Wesch H., Galle P.R., Bartsch H. Apoptosis and age-dependant induction of nuclear and mitochondrial etheno-DNA adducts in Long-Evans Cinnamon (LEC) rats: Enhanced DNA damage by dietary curcumin upon copper accumulation. Carcinogenesis. 2005;26:1307–1315.
    1. Taketo M.M. Cyclooxygenase-2 inhibitors in tumorigenesis (Part II) J. Natl. Cancer Inst. 1998;90:1609–1620. doi: 10.1093/jnci/90.21.1609.
    1. Sharma R.A. Translational medicine: targeting cyclo-oxygenase isozymes to prevent cancer. QJM. 2002;95:267–273. doi: 10.1093/qjmed/95.5.267.
    1. Zhang F., Altorki N.K., Mestre J.R., Subbaramaiah K., Dannenberg A.J. Curcumin inhibits cyclooxygenase-2 transcription in bile acid- and phorbol ester-treated human gastrointestinal epithelial cells. Carcinogenesis. 1999;20:445–451.
    1. Lev-Ari S., Maimon Y., Strier L., Kazanov D., Arber N. Down-regulation of prostaglandin E2 by curcumin is correlated with inhibition of cell growth and induction of apoptosis in human colon carcinoma cell lines. J. Soc. Integr. Oncol. 2006;4:21–26.
    1. Plummer S.M., Holloway K.A., Manson M.M., Munks R.J., Kaptein A., Farrow S., Howells L. Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-κB activation via the NIK/IKK signalling complex. Oncogene. 1999;18:6013–6020. doi: 10.1038/sj.onc.1202980.
    1. Yin M.J., Yamamoto Y., Gaynor R.B. The anti-inflammatory agents aspirin and salicylate inhibit the activity of IκB kinase-β. Nature. 1998;396:77–80. doi: 10.1038/23948.
    1. Handler N., Jaeger W., Puschacher H., Leisser K., Erker T. Synthesis of novel curcumin analogues and their evaluation as selective cyclooxygenase-1 (COX-1) inhibitors. Chem. Pharm. Bull. 2007;55:64–71. doi: 10.1248/cpb.55.64.
    1. Su C.C., Chen G.W., Lin J.G., Wu L.T., Chung J.G. Curcumin inhibits cell migration of human colon cancer colo 205 cells through the inhibition of nuclear factor kappa B/p65 and down-regulates cyclooxygenase-2 and matrix metalloproteinase-2 expressions. Anticancer Res. 2006;26:1281–1288.
    1. Tsujii M., Kawano S., Tsuji S., Sawaoka H., Hori M., DuBois R.N. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell. 1998;93:705–716.
    1. Wang W., Abbruzzese J.L., Evans D.B., Larry L., Cleary K.R., Chiao P.J. The nuclear factor-κB RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clin. Cancer Res. 1999;5:119–127.
    1. Aggarwal B.B. Nuclear factor-κB: The enemy within. Cancer Cell. 2004;6:203–208. doi: 10.1016/j.ccr.2004.09.003.
    1. Molina M.A., Sitja-Arnau M., Lemoine M.G., Frazier M.L., Sinicrope F.A. Increased cyclooxygenase-2 expression in human pancreatic carcinomas and cell lines: Growth inhibition by nonsteroidal anti-inflammatory drugs. Cancer Res. 1999;59:4356–4362.
    1. Tucker O.N., Dannenberg A.J., Yang E.K., Zhang F., Teng L., Daly J.M., Soslow R.A., Masferrer J.L., Woerner B.M., Koki A.T., et al. Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer. Cancer Res. 1999;59:987–990.
    1. Yip-Schneider M.T., Barnard D.S., Billings S.D., Cheng L., Heilman D.K., Lin A., Marshall S.J., Crowell P.L., Marshall M.S., Sweeney C.J. Cyclooxygenase-2 expression in human pancreatic adenocarcinomas. Carcinogenesis. 2000;21:139–146. doi: 10.1093/carcin/21.2.139.
    1. Aggarwal B.B., Kumar A., Bharti A.C. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res. 2003;23:36398.
    1. Chen Y.R., Tan T.H. Inhibition of the c-Jun N-terminal kinase (JNK) signaling pathway by curcumin. Oncogene. 1998;17:173–178.
    1. Huang T.S., Lee S.C., Lin J.K. Suppression of c-Jun/AP-1 activation by an inhibitor of tumor promotion in mouse fibroblast cells. Proc. Natl. Acad. Sci. USA. 1991;88:5292–5296.
    1. Shoskes D., Lapierre C., Cruz-Correa M., Muruve N., Rosario R., Fromkin B., Braun M., Copley J. Beneficial effects of the bioflavonoids curcumin and quercetin on early function in cadaveric renal transplantation: A randomized placebo controlled trial. Transplantation. 2005;80:1556–1559. doi: 10.1097/01.tp.0000183290.64309.21.
    1. Joosten S.A., Sijpkens Y.W., van Kooten C., Paul L.C. Chronic renal allograft rejection: Pathophysiologic considerations. Kidney Int. 2005;68:1–13.
    1. Shaikewitz S.T., Chan L. Chronic renal transplant rejection. Am. J. Kidney Dis. 1994;23:884–893.
    1. Avihingsanon Y., Ma N., Csizmadia E., Wang C., Pavlakis M., Giraldo M., Strom T.B., Soares M.P., Ferran C. Expression of protective genes in human renal allografts: A regulatory response to injury associated with graft rejection. Transplantation. 2002;73:1079–1085.
    1. Durgaprasad S., Ganesh Pai C., Vasanthkumar, Alvres J.F., Sanjeeva, Namitha A pilot study of the anti-oxidant effect of curcumin in tropical pancreatitis. Indian J. Med. Res. 2005;80:1556–1559.
    1. Bharti A.C., Donato N., Singh S., Aggarwal B.B. Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-κB and IκBα kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood. 2003;101:1053–1062. doi: 10.1182/blood-2002-05-1320.
    1. Kim H.Y., Park E.J., Joe E.H., Jou I. Curcumin suppresses Janus kinase-STAT inflammatory signaling through activation of Src homology 2 domain-containing tyrosine phosphatase 2 in brain microglia. J. Immunol. 2003;171:6072–6079.
    1. Holt P.R., Katz S., Kirshoff R. Curcumin therapy in inflammatory bowel disease: A pilot study. Dig. Dis. Sci. 2005;50:2191–2193.
    1. Hanai H., Iida T., Takeuchi K., Watanabe F., Maruyama Y., Andoh A., Tsujikawa T., Fujiyama Y., Mitsuyama K., Sata M., et al. Curcumin maintenance therapy for ulcerative colitis: Randomized, multicenter, double-blind, placebo-controlled trial. Clin. Gastroenterol. Hepatol. 2006;4:1502–1506. doi: 10.1016/j.cgh.2006.08.008.
    1. Satoskar R.R., Shah S.J., Shenoy S.G. Evaluation of anti-inflammatory property of curcumin (diferuloyl methane) in patients with postoperative inflammation. Int. J. Clin. Pharmacol. Ther. Toxicol. 1986;24:651–654.
    1. Lal B., Kapoor, Asthana O.P., Agrawal P.K., Prasad R., Kumar P., Srimal R.C. Efficacy of curcumin in the management of chronic anterior uveitis. Phytother. Res. 1999;13:318–322.
    1. Lal B., Kapoor A.K., Agrawal P.K., Asthana O.P., Srimal R.C. Role of curcumin in idiopathic inflammatory orbital pseudotumours. Phytother. Res. 2000;14:443–447. doi: 10.1002/1099-1573(200009)14:6<443::AID-PTR619>;2-V.
    1. Reddy S., Aggarwal B.B. Curcumin is a non-competitive and selective inhibitor of phosphorylase kinase. FEBS Lett. 1994;341:19–22.
    1. Heng M.C., Song M.K., Harker J., Heng M.K. Drug-induced suppression of phosphorylase kinase activity correlates with resolution of psoriasis as assessed by clinical, histological and immunohistochemical parameters. Br. J. Dermatol. 2000;143:937–949.
    1. Schallreuter K.U., Rokos H. Turmeric (curcumin): A widely used curry ingredient, can contribute to oxidative stress in Asian patients with acute vitiligo. Indian J. Dermatol. Venereol. Leprol. 2006;72:57–59. doi: 10.4103/0378-6323.19722.
    1. Prucksunand C., Indrasukhsri B., Leethochawalit M., Hungspreugs K. Phase II clinical trial on effect of the long turmeric (Curcuma longa Linn) on healing of peptic ulcer. Southeast Asian J. Trop. Med. Pub. Health. 2001;32:208–215.
    1. Kuttan R., Sudheeran P.C., Josph C.D. Turmeric and curcumin as topical agents in cancer therapy. Tumori. 1987;73:29–31.
    1. Cruz-Correa M., Shoskes D.A., Sanchez P., Zhao R., Hylind L.M., Wexner S.D., Giardiello F.M. Combination treatment with curcumin and quercetin of adenomas in familial adenomatous polyposis. Clin. Gastroenterol. Hepatol. 2006;4:1035–1038. doi: 10.1016/j.cgh.2006.03.020.
    1. Dhillon N., Aggarwal B.B., Newman R.A., Wolf R.A., Kunnumakkara A.B., Abbruzzese J.L., Ng C.S., Badmaev V., Kurzrock R. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin. Cancer Res. 2008;14:4491–4499. doi: 10.1158/1078-0432.CCR-08-0024.
    1. Shehzad A., Wahid F., Lee Y.S. Curcumin in cancer chemoprevention: Molecular targets, pharmacokinetics, bioavailability, and clinical trials. Archiv Pharm. Chem. Life Sci. 2010;343:489–499. doi: 10.1002/ardp.200900319.
    1. Goel A., Aggarwal B.B. Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs. Nutr. Cancer. 2010;62:919–930. doi: 10.1080/01635581.2010.509835.
    1. Wilken R., Veena M.S., Wang M.B., Srivatsan E.S. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamouscell carcinoma. Mol. Cancer. 2011;10:1–19.
    1. Bansal S.S., Vadhanam M.V., Gupta R.C. Development and in vitro-in vivo evaluation of polymeric implants for continuous systemic delivery of curcumin. Pharm. Res. 2011;28:1121–1130. doi: 10.1007/s11095-011-0375-z.
    1. Kurien B.T., Scofield R.H. Oral administration of heat-solubilized curcumin for potentially increasing curcumin bioavailability in experimental animals. Int. J. Cancer. 2009;125:1992–1993.
    1. Zebib B., Mouloungui Z., Noirot V. Stabilization of curcumin by complexation with divalent cations in glycerol/water system. Bioinorg. Chem. Appl. 2010 doi: 10.1155/2010/292760.
    1. Kudva A.K., Manoj M.N., Swamy B.N., Ramadoss C.S. Complexation of amphoterecin B and curcumin with serum albumin: Solubility and effect on erythrocyte membrane damage. J. Expt. Pharmacol. 2011;3:1–6.
    1. Qiu X., Du Y., Lou B., Zuo Y., Shao W., Huo Y., Huang J., Yu Y., Zhou B., Du J., Fu H., Bu X. Synthesis and identification of new 4-arylidene curcumin analogues as potential anticancer agents targeting nuclear factor-κB signaling pathway. J. Med. Chem. 2010;53:8260–8273.
    1. Ohtsu H., Xiao Z., Ishida J., Nagai M., Wang H., Itokawa H., Su C., Shih C., Chiang T., Chang E. Antitumor agents. 217. Curcumin analogues as novel androgen receptor antagonists with potential as anti-prostate cancer agents. J. Med. Chem. 2002;45:5037–5042.
    1. Lin L., Shi Q., Nyarko A., Bastow K., Wu C., Su C., Shih C., Lee K. Antitumor agents. 250. Design and synthesis of new curcumin analogs as potential anti-prostate cancer agents. J. Med. Chem. 2006;49:3963–3972. doi: 10.1021/jm051043z.
    1. Zambre A.P., Kulkarni V.M., Padhye S., Sandur S.K., Aggarwal B.B. Novel curcumin analogs and proliferation targeting TNF-induced NF-κB activation in human leukemic KBM-5 cells. Bioorg. Med. Chem. 2006;14:7196–7204. doi: 10.1016/j.bmc.2006.06.056.
    1. Weber W.M., Hunsaker L.A., Roybal C.N., Bobrovnikova-Marjon E.V., Abcouwer S.F., Royer R.E., Deck L.M., Vander Jagt D.L. Activation of NF-κB is inhibited by curcumin and related enones. Bioorg. Med. Chem. 2006;14:2450–2461.
    1. Adams B., Ferstl E., Davis M., Herold M., Kurtkaya S., Camalier R., Hollingshead M., Kaur G., Sausville E., Rickles F. Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents. Bioorg. Med. Chem. 2004;12:3871–3883. doi: 10.1016/j.bmc.2004.05.006.
    1. Padhye S., Chavan D., Pandey S., Deshpande J., Swamy K.V., Sarkar F.H. Perspectives on chemopreventive and therapeutic potential of curcumin analogs in medicinal chemistry. Med. Chem. 2010;10:372–387.
    1. Safavy A., Raisch K.P., Mantena S., Sanford L.L., Sham S.W., Rama Krishna N., Bonner J.A. Design and development of water-soluble curcumin conjugates as potential anti-cancer agents. J. Med. Chem. 2007;50:6284–6288. doi: 10.1021/jm700988f.
    1. Ma Z., Haddadi A., Molavi O., Lavasanifar A., Lai R., Samuel J. Micelles of poly(ethylene oxide)-b-poly(ε-caprolactone) as vehicles for the solubilization, stabilization, and controlled delivery of curcumin. J. Biomed. Materials Res. Part A. 2008;86A:300–310. doi: 10.1002/jbm.a.31584.
    1. Song Z., Feng R., Sun M., Guo C., Gao Y., Li L., Zhai G. Curcumin-loaded PLGA-PEG-PLGA triblock copolymeric micelles: Preparation, pharmacokinetics and distribution in vivo. J. Colloid Interface Sci. 2011;354:116–123. doi: 10.1016/j.jcis.2010.10.024.
    1. Shaikh J., Ankola D.D., Beniwal V., Singh D., Ravi Kumar M.N.V. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur. J. Pharm. Sci. 2009;37:223–230. doi: 10.1016/j.ejps.2009.02.019.
    1. Tsai Y.M., Jan W.C., Chien C.F., Lee W.C., Lin L.C., Tsai T.H. Optimized nano-formulation on the bioavailability of hydrophobic polyphenol, curcumin, in freely-moving rats. Food Chem. 2011;127:918–925. doi: 10.1016/j.foodchem.2011.01.059.
    1. Anitha A., Deepagan V.G., Divya Rani V.V., Menon D., Nair S.V., Jayakumar R. Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate-chitosan nanoparticles. Carbohyd. Polym. 2011;84:1158–1164. doi: 10.1016/j.carbpol.2011.01.005.
    1. Bisht S., Feldmann G., Soni S., Ravi R., Karikar C., Maitra A. Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): A novel strategy for human cancer therapy. J. Nanobiotechnol. 2007;5:1–18. doi: 10.1186/1477-3155-5-1.
    1. Bhawana, Basniwal R.K., Buttar H.S., Jain V.K., Jain N. Curcumin nanoparticles: preparation, characterization, and antimicrobial study. J. Agric. Food Chem. 2011;59:2056–2061.
    1. Gao Y., Li Z., Sun M., Guo C., Yu A., Xi Y., Cui J., Lou H., Zhai G. Preparation and characterization of intravenously injectable curcumin nanosuspension. Drug Deliv. 2011;18:131–142. doi: 10.3109/10717544.2010.520353.
    1. Wu W., Shen J., Banerjee P., Zhou S. Water-dispersible multifunctional hybrid nanogels for combined curcumin and photothermal therapy. Biomaterials. 2011;32:598–609. doi: 10.1016/j.biomaterials.2010.08.112.
    1. Wang X., Jiang Y., Wang Y.W., Huang M.T., Ho C.T., Huang Q. Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chem. 2008;108:419–424.
    1. Gupta N.K., Dixit V.K. Bioavailability enhancement of curcumin by complexation with phosphatidylcholine. J. Pharm. Sci. 2011;100:1987–1995. doi: 10.1002/jps.22393.
    1. Marczylo T.H., Verschoyle R.D., Cooke D.N., Morazzoni P., Steward W.P., Gescher A.J. Comparison of systemic availability of curcumin with that of curcumin formulated with phosphatidylcholine. Cancer Chemother. Pharmacol. 2007;60:171–177. doi: 10.1007/s00280-006-0355-x.
    1. Maiti K., Mukherjee K., Gantait A., Saha B.P., Mukherjee P.K. Curcumin-phospholipid complex: Preparation, therapeutic evaluation and pharmacokinetic study in rats. Int. J. Pharm. 2007;330:155–163. doi: 10.1016/j.ijpharm.2006.09.025.
    1. Sou K., Inenaga S., Takeoka S., Tsuchida E. Loading of curcumin into macrophages using lipid-based nanoparticles. Int. J. Pharm. 2008;352:287–293. doi: 10.1016/j.ijpharm.2007.10.033.
    1. Kakkar V., Singh S., Singla D., Kaur I.P. Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin. Mol. Nutr. Food Res. 2011;55:495–503.
    1. Mulik R.S., Moenkkoenen J., Juvonen R.O., Mahadik K.R., Paradkar A.R. Transferrin mediated solid lipid nanoparticles containing curcumin: enhanced in vitro anti-cancer activity by induction of apoptosis. Int. J. Pharm. 2010;398:190–203. doi: 10.1016/j.ijpharm.2010.07.021.
    1. Tiyaboonchai W., Tungpradit W., Plianbangchang P. Formulation and characterization of curcuminoids loaded solid lipid nanoparticles. Int. J. Pharm. 2007;337:299–306. doi: 10.1016/j.ijpharm.2006.12.043.
    1. Yadav V.R., Suresh S., Devi K., Yadav S. Novel formulation of solid lipid microparticles of curcumin for anti-angiogenic and anti-inflammatory activity for optimization of therapy of inflammatory bowel disease. J. Pharm. Pharmacol. 2009;61:311–321.
    1. di Cagno M., Styskala J., Hlaváč J., Brandl M., Bauer-Brandl A., Skalko-Basnet N. Liposomal solubilization of new 3-hydroxy-quinolinone derivatives with promising anti-cancer activity: A screening method to identify maximum incorporation capacity. J. Liposome Res. 2011 doi: 10.3109/08982104.2010.550265.
    1. Kunwar A., Barik A., Pandey R., Priyadarsini I.K. Transport of liposomal and albumin loaded curcumin to living cells: An absorption and fluorescence spectroscopic study. BBA-Gen. Subjects. 2006;1760:1513–1520. doi: 10.1016/j.bbagen.2006.06.012.
    1. Chen C., Johnston T.D., Jeon H., Gedaly R., McHugh P.P., Burke T.G., Ranjan D. An in vitro study of liposomal curcumin: Stability, toxicity and biological activity in human lymphocytes and Epstein-Barr virus-transformed human B-cells. Int. J. Pharma. 2009;366:133–139. doi: 10.1016/j.ijpharm.2008.09.009.
    1. Li L., Braiteh F.S., Kurzrock R. Liposome-encapsulated curcumin: In vitro and in vivo effects on proliferation, apoptosis, signalling, and angiogenesis. Cancer. 2005;104:1322–1331. doi: 10.1002/cncr.21300.
    1. Li L., Ahmed B., Mehta K., Kurzrock R. Liposomal curcumin with and without oxaliplatin: Effects on cell growth, apoptosis, and angiogenesis in colorectal cancer. Mol. Cancer Ther. 2007;6:1276–1282.
    1. Thangapazham R.L., Puri A., Tele S., Blumenthal R., Maheshwari R.K. Evaluation of a nanotechnology-based carrier for delivery of curcumin in prostate cancer cells. Int. J. Oncol. 2008;32:1119–1123.
    1. Wang D., Veena M.S., Stevenson K., Tang C., Ho B., Suh J.D., Duarte V.M., Faull K.F., Mehta K., Srivatsan E.S., Wang M.B. Liposome-encapsulated curcumin suppresses growth of head and neck squamous cell carcinoma in vitro and in xenografts through the inhibition of nuclear factor-κB by an AKT-independent pathway. Clin. Cancer Res. 2008;14:6228–6236. doi: 10.1158/1078-0432.CCR-07-5177.
    1. Takahashi M., Inafuku K., Miyagi T., Oku H., Wada K., Imura T., Kitamoto D. Efficient preparation of liposomes encapsulating food materials using lecithins by a mechanochemical method. J. Oleo Sci. 2007;56:35–42. doi: 10.5650/jos.56.35.
    1. Aukunuru J., Joginapally S., Gaddam N., Burra M., Bonepally C.R., Prabhakar K. Preparation, characterization and evaluation of hepatoprotective activity of an intravenous liposomal formulation of bis-demethoxy curcumin analogue (BDMCA) Int. J. Drug Dev. Res. 2009;1:37–46.
    1. Narayanan N.K., Nargi D., Randolph C., Narayanan B.A. Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. Int. J. Cancer. 2009;125:1–8.
    1. Mourtas S., Canovi M., Zona C., Aurilia D., Niarakis A, La Ferla B., Salmona M., Nicotra F., Gobbi M., Antimisiaris S.G. Curcumin-decorated nanoliposomes with very high affinity for amyloid-β1-42 peptide. Biomaterials. 2011;32:1635–1645.
    1. Hanahan D., Weinberg R.A. Hallmark of cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013.
    1. Azam F., Mehta S., Harris A.L. Mechanisms of resistance to anti-angiogenesis therapy. Eur. J. Cancer. 2010;46:1323–1332. doi: 10.1016/j.ejca.2010.02.020.
    1. Ebos J.M., Lee C.R., Kerbel R.S. Tumor and host-mediated pathways of resistance and disease progression in response to anti-angiogenic therapy. Clin. Cancer Res. 2009;15:5020–5025. doi: 10.1158/1078-0432.CCR-09-0095.
    1. Bergers G., Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer. 2008;8:592–603. doi: 10.1038/nrc2442.
    1. Villegas I., Sanchez-Fidalgo S., de la Lastra C.A. New mechanism and therapeutic potential of curcumin for colorectal cancer. Mol. Nutr. Food Res. 2008;52:1040–1061. doi: 10.1002/mnfr.200700280.
    1. Schmidt B.M., Ribnicky D.M., Lipsky P.E., Raskin I. Revisiting the ancient concept of botanical therpeutics. Nat. Chem. Biol. 2007;3:360–366.
    1. Khafif A., Schantz S.P., Chou T.C., Edelstein D., Sacks P.G. Quantitation of chemopreventive synergism between (−)-epigallocatechin-3-gallate and curcumin in normal, premalignant and malignant human oral epithelial cells. Carcinogenesis. 1998;19:419–424. doi: 10.1093/carcin/19.3.419.
    1. Verma S.P., Salamone E., Goldin B. Curcumin and genistein, plant natural products, show synergistic inhibitory effects on the growth of human breast cancer MCF-7 cells induced by estrogenic pesticides. Biochem. Biophys. Res. Commun. 1997;233:692–696. doi: 10.1006/bbrc.1997.6527.
    1. Du B., Jiang L., Xia Q., Zhong L. Synergistic inhibitory effects of curcumin and 5-fluorouracil on the growth of the human colon cancer cell line HT-29. Chemotherapy. 2006;52:23–28. doi: 10.1159/000090238.
    1. Sen S., Sharma H., Singh N. Curcumin enhances vinorelbine mediated apoptosis in NSCLC cells by the mitochondrial pathway. Biochem. Biophys. Res. Commun. 2005;331:1245–1252. doi: 10.1016/j.bbrc.2005.04.044.

Source: PubMed

3
Abonneren