Multifarious Beneficial Effect of Nonessential Amino Acid, Glycine: A Review

Meerza Abdul Razak, Pathan Shajahan Begum, Buddolla Viswanath, Senthilkumar Rajagopal, Meerza Abdul Razak, Pathan Shajahan Begum, Buddolla Viswanath, Senthilkumar Rajagopal

Abstract

Glycine is most important and simple, nonessential amino acid in humans, animals, and many mammals. Generally, glycine is synthesized from choline, serine, hydroxyproline, and threonine through interorgan metabolism in which kidneys and liver are the primarily involved. Generally in common feeding conditions, glycine is not sufficiently synthesized in humans, animals, and birds. Glycine acts as precursor for several key metabolites of low molecular weight such as creatine, glutathione, haem, purines, and porphyrins. Glycine is very effective in improving the health and supports the growth and well-being of humans and animals. There are overwhelming reports supporting the role of supplementary glycine in prevention of many diseases and disorders including cancer. Dietary supplementation of proper dose of glycine is effectual in treating metabolic disorders in patients with cardiovascular diseases, several inflammatory diseases, obesity, cancers, and diabetes. Glycine also has the property to enhance the quality of sleep and neurological functions. In this review we will focus on the metabolism of glycine in humans and animals and the recent findings and advances about the beneficial effects and protection of glycine in different disease states.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Figure 1
Figure 1
Functions and metabolic fate. Glycine has multiple roles in many reactions such as gluconeogenesis, purine, haem, and chlorophyll synthesis and bile acid conjugation. Glycine is also used in the formation of many biologically important molecules. The sarcosine component of creatine is derived from glycine and S-adenosylmethionine. The nitrogen and α-carbon of the pyrrole rings and the methylene bridge carbons of haem are derived from glycine. The entire glycine molecule becomes atoms 4, 5, and 7 or purines.
Figure 2
Figure 2
Sequential reactions of enzymes in the glycine cleavage system (GCS) in animal cells. The glycine cleavage system (GCS) is also known as the glycine decarboxylase complex or GDC. The system is a series of enzymes that are triggered in response to high concentrations of the amino acid glycine. The same set of enzymes is sometimes referred to as glycine synthase when it runs in the reverse direction to form glycine. The glycine cleavage system is composed of four proteins: the T-protein, P-protein, L-protein, and H-protein. They do not form a stable complex, so it is more appropriate to call it a “system” instead of a “complex.” The H-protein is responsible for interacting with the three other proteins and acts as a shuttle for some of the intermediate products in glycine decarboxylation. In both animals and plants the GCS is loosely attached to the inner membrane of the mitochondria [1].

References

    1. Wang W., Wu Z., Dai Z., Yang Y., Wang J., Wu G. Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids. 2013;45(3):463–477. doi: 10.1007/s00726-013-1493-1.
    1. Wu G., Wu Z., Dai Z., et al. Dietary requirements of 'nutritionally non-essential amino acids' by animals and humans. Amino Acids. 2013;44(4):1107–1113. doi: 10.1007/s00726-012-1444-2.
    1. Wu G. Functional amino acids in growth, reproduction, and health. Advances in Nutrition. 2010;1(1):31–37. doi: 10.3945/an.110.1008.
    1. Lewis R. M., Godfrey K. M., Jackson A. A., Cameron I. T., Hanson M. A. Low serine hydroxymethyltransferase activity in the human placenta has important implications for fetal glycine supply. The Journal of Clinical Endocrinology and Metabolism. 2005;90(3):1594–1598. doi: 10.1210/jc.2004-0317.
    1. Yan B. X., Sun Qing Y. Glycine residues provide flexibility for enzyme active sites. Journal of Biological Chemistry. 1997;272(6):3190–3194. doi: 10.1074/jbc.272.6.3190.
    1. Rajendra S., Lynch J. W., Schofield P. R. The glycine receptor. Pharmacology and Therapeutics. 1997;73(2):121–146. doi: 10.1016/S0163-7258(96)00163-5.
    1. Zhong Z., Wheeler M. D., Li X., et al. L-glycine: a novel antiinflammatory, immunomodulatory, and cytoprotective agent. Current Opinion in Clinical Nutrition and Metabolic Care. 2003;6(2):229–240. doi: 10.1097/00075197-200303000-00013.
    1. Ballevre O., Cadenhead A., Calder A. G., et al. Quantitative partition of threonine oxidation in pigs, effect of dietary threonine. Americian Journal of Physiology—Endocrinology and Metabolism. 1990;25(4):E483–E491.
    1. Wu G., Bazer F. W., Burghardt R. C., et al. Proline and hydroxyproline metabolism: implications for animal and human nutrition. Amino Acids. 2011;40(4):1053–1063. doi: 10.1007/s00726-010-0715-z.
    1. Meléndez-Hevia E., De Paz-Lugo P., Cornish-Bowden A., Cárdenas M. L. A weak link in metabolism: the metabolic capacity for glycine biosynthesis does not satisfy the need for collagen synthesis. Journal of Biosciences. 2009;34(6):853–872. doi: 10.1007/s12038-009-0100-9.
    1. Zhang J., Blustzjn J. K., Zeisel S. H. Measurement of the formation of betaine aldehyde and betaine in rat liver mitochondria by a high pressure liquid chromatography-radioenzymatic assay. BBA—General Subjects. 1992;1117(3):333–339. doi: 10.1016/0304-4165(92)90033-q.
    1. Yeo E.-J., Wagner C. Tissue distribution of glycine N-methyltransferase, a major folate-binding protein of liver. Proceedings of the National Academy of Sciences of the United States of America. 1994;91(1):210–214. doi: 10.1073/pnas.91.1.210.
    1. Ogawa H., Gomi T., Fujioka M. Serine hydroxymethyltransferase and threonine aldolase: are they identical? International Journal of Biochemistry and Cell Biology. 2000;32(3):289–301. doi: 10.1016/s1357-2725(99)00113-2.
    1. House J. D., Hall B. N., Brosnan J. T. Threonine metabolism in isolated rat hepatocytes. American Journal of Physiology - Endocrinology and Metabolism. 2001;281(6):E1300–E1307.
    1. Hammer V. A., Rogers Q. R., Freedland R. A. Threonine is catabolized by L-threonine 3-dehydrogenase and threonine dehydratase in hepatocytes from domestic cats (Felis domestica) Journal of Nutrition. 1996;126(9):2218–2226.
    1. Darling P. B., Grunow J., Rafii M., Brookes S., Ball R. O., Pencharz P. B. Threonine dehydrogenase is a minor degradative pathway of threonine catabolism in adult humans. American Journal of Physiology - Endocrinology and Metabolism. 2000;278(5):E877–E884.
    1. Parimi P. S., Gruca L. L., Kalhan S. C. Metabolism of threonine in newborn infants. American Journal of Physiology—Endocrinology and Metabolism. 2005;289(6):E981–E985. doi: 10.1152/ajpendo.00132.2005.
    1. Le Floc'h N., Obled C., Seve B. In vivo threonine oxidation rate is dependent on threonine dietary supply in growing pigs fed low to adequate levels. Journal of Nutrition. 1995;125(10):2550–2562.
    1. Girgis S., Nasrallah I. M., Suh J. R., et al. Molecular cloning, characterization and alternative splicing of the human cytoplasmic serine hydroxymethyltransferase gene. Gene. 1998;210(2):315–324. doi: 10.1016/S0378-1119(98)00085-7.
    1. Stover P. J., Chen L. H., Suh J. R., Stover D. M., Keyomarsi K., Shane B. Molecular cloning, characterization, and regulation of the human mitochondrial serine hydroxymethyltransferase gene. Journal of Biological Chemistry. 1997;272(3):1842–1848. doi: 10.1074/jbc.272.3.1842.
    1. Narkewicz M. R., Thureen P. J., Sauls S. D., Tjoa S., Nikolayevsky N., Fennessey P. V. Serine and glycine metabolism in hepatocytes from mid gestation fetal lambs. Pediatric Research. 1996;39(6):1085–1090. doi: 10.1203/00006450-199606000-00025.
    1. MacFarlane A. J., Liu X., Perry C. A., et al. Cytoplasmic serine hydroxymethyltransferase regulates the metabolic partitioning of methylenetetrahydrofolate but is not essential in mice. Journal of Biological Chemistry. 2008;283(38):25846–25853. doi: 10.1074/jbc.M802671200.
    1. Wang J., Wu Z., Li D., et al. Nutrition, epigenetics, and metabolic syndrome. Antioxidants and Redox Signaling. 2012;17(2):282–301. doi: 10.1089/ars.2011.4381.
    1. Dai Z.-L., Zhang J., Wu G., Zhu W.-Y. Utilization of amino acids by bacteria from the pig small intestine. Amino Acids. 2010;39(5):1201–1215. doi: 10.1007/s00726-010-0556-9.
    1. Dai Z.-L., Wu G., Zhu W.-Y. Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Frontiers in Bioscience. 2011;16:1768–1786. doi: 10.2741/3820.
    1. Dai Z.-L., Li X.-L., Xi P.-B., Zhang J., Wu G., Zhu W.-Y. Metabolism of select amino acids in bacteria from the pig small intestine. Amino Acids. 2012;42(5):1597–1608. doi: 10.1007/s00726-011-0846-x.
    1. Thureen P. J., Narkewicz M. R., Battaglia F. C., Tjoa S., Fennessey P. V. Pathways of serine and glycine metabolism in primary culture of ovine fetal hepatocytes. Pediatric Research. 1995;38(5):775–782. doi: 10.1203/00006450-199511000-00023.
    1. Lamers Y., Williamson J., Gilbert L. R., Stacpoole P. W., Gregory J. F., III Glycine turnover and decarboxylation rate quantified in healthy men and women using primed, constant infusions of [1,2-(13)C2]glycine and [(2)H3]leucine. Journal of Nutrition. 2007;137(12):2647–2652.
    1. Shoham S., Javitt D. C., Heresco-Levy U. Chronic high-dose glycine nutrition: effects on rat brain cell morphology. Biological Psychiatry. 2001;49(10):876–885. doi: 10.1016/s0006-3223(00)01046-5.
    1. Kikuchi G., Motokawa Y., Yoshida T., et al. Glycine cleavage system, reaction mechanism, physiological significance, and hyperglycinemia. Proceedings of the Japan Academy, Series B. 2008;84(7):246–263. doi: 10.2183/pjab.84.246.
    1. Dos Santos Fagundes I., Rotta L. N., Schweigert I. D., et al. Glycine, serine, and leucine metabolism in different regions of rat central nervous system. Neurochemical Research. 2001;26(3):245–249. doi: 10.1023/A:1010968601278.
    1. Kawai N., Sakai N., Okuro M., et al. The sleep-promoting and hypothermic effects of glycine are mediated by NMDA receptors in the suprachiasmatic nucleus. Neuropsychopharmacology. 2015;40(6):1405–1416. doi: 10.1038/npp.2014.326.
    1. Conter C., Rolland M. O., Cheillan D., Bonnet V., Maire I., Froissart R. Genetic heterogeneity of the GLDC gene in 28 unrelated patients with glycine encephalopathy. Journal of Inherited Metabolic Disease. 2006;29(1):135–142. doi: 10.1007/s10545-006-0202-6.
    1. Dasarathy S., Kasumov T., Edmison J. M., et al. Glycine and urea kinetics in nonalcoholic steatohepatitis in human: effect of intralipid infusion. American Journal of Physiology—Gastrointestinal and Liver Physiology. 2009;297(3):G567–G575. doi: 10.1152/ajpgi.00042.2009.
    1. Senthilkumar R., Nalini N. Glycine modulates lipids and lipoproteins levels in rats with alcohol induced liver injury. Internet Journal of Pharmacology. 2004;2(2)
    1. Senthilkumar R., Viswanathan P., Nalini N. Glycine modulates hepatic lipid accumulation in alcohol-induced liver injury. Polish Journal of Pharmacology. 2003;55(4):603–611. doi: 10.1211/002235703765344504.
    1. Senthilkumar R., Nalini N. Effect of glycine on tissue fatty acid composition in an experimental model of alcohol-induced hepatotoxicity. Clinical and Experimental Pharmacology and Physiology. 2004;31(7):456–461. doi: 10.1111/j.1440-1681.2004.04021.x.
    1. Zeb A., Rahman S. U. Protective effects of dietary glycine and glutamic acid toward the toxic effects of oxidized mustard oil in rabbits. Food Funct. 2017;8(1):429–436. doi: 10.1039/C6FO01329E.
    1. Senthilkumar R., Sengottuvelan M., Nalini N. Protective effect of glycine supplementation on the levels of lipid peroxidation and antioxidant enzymes in the erythrocyte of rats with alcohol-induced liver injury. Cell Biochemistry and Function. 2004;22(2):123–128. doi: 10.1002/cbf.1062.
    1. Deters M., Strubelt O., Younes M. Protection by glycine against hypoxia-reoxygenation induced hepatic injury. Research Communications in Molecular Pathology and Pharmacology. 1997;97(2):199–213.
    1. Stachlewitz R. F., Seabra V., Bradford B., et al. Glycine and uridine prevent d-galactosamine hepatotoxicity in the rat: role of Kupffer cells. Hepatology. 1999;29(3):737–745. doi: 10.1002/hep.510290335.
    1. Thurman R. G., Zhong Z., Von Frankenberg M., Stachlewitz R. F., Bunzendahl H. Prevention of cyclosporine-induced nephrotoxicity with dietary glycine. Transplantation. 1997;63(11):1661–1667. doi: 10.1097/00007890-199706150-00021.
    1. Ikejima K., Iimuro Y., Forman D. T., Thurman R. G. A diet containing glycine improves survival in endotoxin shock in the rat. American Journal of Physiology - Gastrointestinal and Liver Physiology. 1996;271(1):G97–G103.
    1. Ruknuddin G., Basavaiah R., Biswajyoti P., Krishnaiah A., Kumar P. Anti-inflammatory and analgesic activities of Dashanga Ghana: an ayurvedic compound formulation. International Journal of Nutrition, Pharmacology, Neurological Diseases. 2013;3(3):303–308. doi: 10.4103/2231-0738.114877.
    1. Zhong Z., Jones S., Thurman R. G. Glycine minimizes reperfusion injury in a low-flow, reflow liver perfusion model in the rat. American Journal of Physiology—Gastrointestinal and Liver Physiology. 1996;270(2):G332–G338.
    1. Jacob T., Ascher E., Hingorani A., Kallakuri S. Glycine prevents the induction of apoptosis attributed to mesenteric ischemia/reperfusion injury in a rat model. Surgery. 2003;134(3):457–466. doi: 10.1067/S0039-6060(03)00164-8.
    1. Lee M. A., McCauley R. D., Kong S.-E., Hall J. C. Influence of glycine on intestinal ischemia-reperfusion injury. Journal of Parenteral and Enteral Nutrition. 2002;26(2):130–135. doi: 10.1177/0148607102026002130.
    1. Christie G. R., Ford D., Howard A., Clark M. A., Hirst B. H. Glycine supply to human enterocytes mediated by high-affinity basolateral GLYT1. Gastroenterology. 2001;120(2):439–448. doi: 10.1053/gast.2001.21207.
    1. Howard A., Tahir I., Javed S., Waring S. M., Ford D., Hirst B. H. Glycine transporter GLYT1 is essential for glycine-mediated protection of human intestinal epithelial cells against oxidative damage. Journal of Physiology. 2010;588(6):995–1009. doi: 10.1113/jphysiol.2009.186262.
    1. Tsune I., Ikejima K., Hirose M., et al. Dietary glycine prevents chemical-induced experimental colitis in the rat. Gastroenterology. 2003;125(3):775–785. doi: 10.1016/S0016-5085(03)01067-9.
    1. Schilling M. K., Den Butter G., Saunder A., Lindell S., Belzer F. O., Southard J. H. Membrane stabilizing effects of glycine during kidney cold storage and reperfusion. Transplantation Proceedings. 1991;23(5):2387–2389.
    1. Yin M., Currin R. T., Peng X.-X., Mekeel H. E., Schoonhoven R., Lemasters J. J. Carolina rinse solution minimizes kidney injury and improves graft function and survival after prolonged cold ischemia. Transplantation. 2002;73(9):1410–1420. doi: 10.1097/00007890-200205150-00009.
    1. Bachmann S., Peng X.-X., Currin R. T., Thurman R. G., Lemasters J. J. Glycine in Carolina rinse solution reduces reperfusion injury, improves graft function, and increases graft survival after rat liver transplantation. Transplantation Proceedings. 1995;27(1):741–742.
    1. Den Butter G., Lindell S. L., Sumimoto R., Schilling M. K., Southard J. H., Belzer F. O. Effect of glycine in dog and rat liver transplantation. Transplantation. 1993;56(4):817–822. doi: 10.1097/00007890-199310000-00007.
    1. Montanari G., Lakshtanov L. Z., Tobler D. J., et al. Effect of aspartic acid and glycine on calcite growth. Crystal Growth & Design. 2016;16(9):4813–4821. doi: 10.1021/acs.cgd.5b01635.
    1. Schemmer P., Enomoto N., Bradford B. U., et al. Activated Kupffer cells cause a hypermetabolic state after gentle in situ manipulation of liver in rats. American Journal Physiology Gastrointestinal Liver Physiology. 2001;280(2):G1076–G1082.
    1. Mangino J. E., Kotadia B., Mangino M. J. Characterization of hypothermic intestinal ischemia-reperfusion injury in dogs: effects of glycine. Transplantation. 1996;62(2):173–178. doi: 10.1097/00007890-199607270-00005.
    1. Jain P., Khanna N. K., Godhwani J. L. Modification of immune response by glycine in animals. Indian Journal of Experimental Biology. 1989;27(3):292–293.
    1. Bunzendahl H., Yin M., Stachlewitz R. F., et al. Dietary glycine prolongs graft survival in transplant models. Shock. 2000;13(2):163–164.
    1. Nyberg S. L., Hardin J. A., Matos L. E., Rivera D. J., Misra S. P., Gores G. J. Cytoprotective influence of ZVAD-fmk and glycine on gel-entrapped rat hepatocytes in a bioartificial liver. Surgery. 2000;127(4):447–455. doi: 10.1067/msy.2000.103162.
    1. Abello P. A., Buchman T. G., Bulkley G. B. Shock and multiple organ failure. Advances of Experimental Medicine and Biology. 1994;366(2):253–268. doi: 10.1007/978-1-4615-1833-4_18.
    1. Mauriz J. L., Matilla B., Culebras J. M., González P., González-Gallego J. Dietary glycine inhibits activation of nuclear factor kappa B and prevents liver injury in hemorrhagic shock in the rat. Free Radical Biology and Medicine. 2001;31(10):1236–1244. doi: 10.1016/S0891-5849(01)00716-X.
    1. Grotz M. R. W., Pape H.-C., van Griensven M., et al. Glycine reduces the inflammatory response and organ damage in a two-hit sepsis model in rats. Shock. 2001;16(2):116–121. doi: 10.1097/00024382-200116020-00006.
    1. Yang S., Koo D. J., Chaudry I. H., Wang P. Glycine attenuates hepatocellular depression during early sepsis and reduces sepsis-induced mortality. Critical Care Medicine. 2001;29(6):1201–1206. doi: 10.1097/00003246-200106000-00024.
    1. Tariq M., Al Moutaery A. R. Studies on the antisecretory, gastric anti-ulcer and cytoprotective properties of glycine. Research Communications in Molecular Pathology and Pharmacology. 1997;97(2):185–198.
    1. Li X., Bradford B. U., Wheeler M. D., et al. Dietary glycine prevents peptidoglycan polysaccharide-induced reactive arthritis in the rat: role for glycine-gated chloride channel. Infection and Immunity. 2001;69(9):5883–5891. doi: 10.1128/iai.69.9.5883-5891.2001.
    1. Rusyn I., Rose M. L., Bojes H. K., Thurman R. G. Novel role of oxidants in the molecular mechanism of action of peroxisome proliferators. Antioxidants and Redox Signaling. 2000;2(3):607–621. doi: 10.1089/15230860050192350.
    1. Rose M. L., Rusyn I., Bojes H. K., Germolec D. R., Luster M., Thurman R. G. Role of kupffer cells in peroxisome proliferator-induced hepatocyte proliferation. Drug Metabolism Reviews. 1999;31(1):87–116. doi: 10.1081/DMR-100101909.
    1. Rose M. L., Madren J., Bunzendahl H., Thurman R. G. Dietary glycine inhibits the growth of B16 melanoma tumors in mice. Carcinogenesis. 1999;20(5):793–798. doi: 10.1093/carcin/20.5.793.
    1. Schemmer P., Zhong Z., Galli U., et al. Glycine reduces platelet aggregation. Amino Acids. 2013;44(3):925–931. doi: 10.1007/s00726-012-1422-8.
    1. Zhong X., Li X., Qian L., et al. Glycine attenuates myocardial ischemia-reperfusion injury by inhibiting myocardial apoptosis in rats. Journal of Biomedical Research. 2012;26(5):346–354. doi: 10.7555/jbr.26.20110124.
    1. Ruiz-Meana M., Pina P., Garcia-Dorado D., et al. Glycine protects cardiomyocytes against lethal reoxygenation injury by inhibiting mitochondrial permeability transition. Journal of Physiology. 2004;558(3):873–882. doi: 10.1113/jphysiol.2004.068320.
    1. Sekhar R. V., Patel S. G., Guthikonda A. P., et al. Deficient synthesis of glutathione underlies oxidative stress in aging and can be corrected by dietary cysteine and glycine supplementation. American Journal of Clinical Nutrition. 2011;94(3):847–853. doi: 10.3945/ajcn.110.003483.
    1. Amin F. U., Shah S. A., Kim M. O. Glycine inhibits ethanol-induced oxidative stress, neuroinflammation and apoptotic neurodegeneration in postnatal rat brain. Neurochemistry International. 2016;96:1–12. doi: 10.1016/j.neuint.2016.04.001.

Source: PubMed

3
Abonneren