Altered Plasma Mitochondrial Metabolites in Persistently Symptomatic Individuals after a GBCA-Assisted MRI

DeAunne Denmark, Ilene Ruhoy, Bryan Wittmann, Haleh Ashki, Lorrin M Koran, DeAunne Denmark, Ilene Ruhoy, Bryan Wittmann, Haleh Ashki, Lorrin M Koran

Abstract

Despite the impressive safety of gadolinium (Gd)-based contrast agents (GBCAs), a small number of patients report the onset of new, severe, ongoing symptoms after even a single exposure-a syndrome termed Gadolinium Deposition Disease (GDD). Mitochondrial dysfunction and oxidative stress have been repeatedly implicated by animal and in vitro studies as mechanisms of Gd/GBCA-related toxicity, and as pathogenic in other diseases with similarities in presentation. Here, we aimed to molecularly characterize and explore potential metabolic associations with GDD symptoms. Detailed clinical phenotypes were systematically obtained for a small cohort of individuals (n = 15) with persistent symptoms attributed to a GBCA-enhanced MRI and consistent with provisional diagnostic criteria for GDD. Global untargeted mass spectroscopy-based metabolomics analyses were performed on plasma samples and examined for relevance with both single marker and pathways approaches. In addition to GDD criteria, frequently reported symptoms resembled those of patients with known mitochondrial-related diseases. Plasma differences compared to a healthy, asymptomatic reference cohort were suggested for 45 of 813 biochemicals. A notable proportion of these are associated with mitochondrial function and related disorders, including nucleotide and energy superpathways, which were over-represented. Although early evidence, coincident clinical and biochemical indications of potential mitochondrial involvement in GDD are remarkable in light of preclinical models showing adverse Gd/GBCA effects on multiple aspects of mitochondrial function. Further research on the potential contributory role of these markers and pathways in persistent symptoms attributed to GBCA exposure is recommended.

Keywords: gadolinium; gadolinium-based contrast agents (GBCAs); metabolomics; mitochondrial disease; oxidative stress.

Conflict of interest statement

D.D. previously received limited consulting fees and served as an advisor to Metabolon on projects prior and entirely unrelated to all work presented here. The authors declare no competing financial interest or other conflicts of interest. There were no funders other than the authors.

Figures

Figure 1
Figure 1
Pie chart depicting the proportion of biochemicals belonging to each of eight major metabolic superpathways detected in (A) the total passing filtering criteria among participants and reference cohort individuals, and (B) the subset meeting altered criteria among participants compared to the reference cohort, as described in Methods.
Figure 2
Figure 2
Specific biochemicals and their respective pathways identified as potentially altered in GBCA-exposed patients. Circles indicate individual patient Z-scores with larger sizes denoting multiple patients; bars indicate median values; black—values 1 SD above or below the normalized reference cohort mean, gray—values less than 1 SD from the normalized reference cohort mean. Bolded biochemical names indicate those for which alterations were directionally consistent across patients.

References

    1. Rogosnitzky M., Branch S. Gadolinium-based contrast agent toxicity: A review of known and proposed mechanisms. Biometals. 2016;29:365–376. doi: 10.1007/s10534-016-9931-7.
    1. McDonald R.J., Levine D., Weinreb J., Kanal E., Davenport M.S., Ellis J.H., Jacobs P.M., Lenkinski R.E., Maravilla K.R., Prince M.R., et al. Gadolinium Retention: A Research Roadmap from the 2018 NIH/ACR/RSNA Workshop on Gadolinium Chelates. Radiology. 2018;289:517–534. doi: 10.1148/radiol.2018181151.
    1. Burke L.M.B., Ramalho M., Al Obaidy M., Chang E., Jay M., Semelka R.C. Self-reported gadolinium toxicity: A survey of patients with chronic symptoms. Magn. Reson. Imaging. 2016;34:1078–1080. doi: 10.1016/j.mri.2016.05.005.
    1. Semelka R.C., Ramalho J., Vakharia A., AIObaidy M., Burke L.M., Jay M., Ramalho M. Gadolinium deposition disease: Initial description of a disease that has been around for a while. Magn. Reson. Imaging. 2016;34:1383–1390. doi: 10.1016/j.mri.2016.07.016.
    1. Liu H., Yuan L., Yang X., Wang K. La3+, Gd3+ and Yb3+ induced changes in mitochondrial structure, membrane permeability, cytochrome c release and intracellular ROS level. Chem. Biol. Interact. 2003;146:27–37. doi: 10.1016/S0009-2797(03)00072-3.
    1. Zhao J., Zhou Z.-Q., Jin J.C., Yuan L., He H., Jiang F.L., Yang X.G., Dai J., Liu Y. Mitochondrial dysfunction induced by different concentrations of gadolinium ion. Chemosphere. 2014;100:194–199. doi: 10.1016/j.chemosphere.2013.11.031.
    1. Feng X., Xia Q., Yuan L., Yang X., Wang K. Impaired mitochondrial function and oxidative stress in rat cortical neurons: Implications for gadolinium-induced neurotoxicity. Neurotoxicology. 2010;31:391–398. doi: 10.1016/j.neuro.2010.04.003.
    1. Ye L., Shi Z., Liu H., Yang X., Wang K. Gadolinium induced apoptosis of human embryo liver L02 cell line by ROS-mediated AIF pathway. J. Rare Earths. 2011;29:178–184. doi: 10.1016/S1002-0721(10)60427-9.
    1. Weng T.-I., Chen H.J., Lu C.W., Ho Y.C., Wu J.L., Liu S.H., Hsiao J.K. Exposure of macrophages to low-dose gadolinium-based contrast medium: Impact on oxidative stress and cytokines production. Contrast Media Mol. Imaging. 2018;2018:3535769. doi: 10.1155/2018/3535769.
    1. Bower D.V., Richter J.K., von Tengg-Kobligk H., Heverhagen J.T., Runge V.M. Gadolinium-based MRI contrast agents induce mitochondrial toxicity and cell death in human neurons, and toxicity increases with reduced kinetic stability of the agent. Investig. Radiol. 2019;54:453–463. doi: 10.1097/RLI.0000000000000567.
    1. Stanescu A.L., Shaw D.W., Murata N., Murata K., Rutledge J.C., Maloney E., Maravilla K.R. Brain tissue gadolinium retention in pediatric patients after contrast-enhanced magnetic resonance exams: Pathological confirmation. Pediatr. Radiol. 2020;50:388–396. doi: 10.1007/s00247-019-04535-w.
    1. Goetzl E.J., Maecker H.T., Rosenberg-Hasson Y., Koran L.M. Altered functional mitochondrial protein levels in plasma neuron-derived extracellular vesicles of patients with gadolinium deposition. Front. Toxicol. 2021:accepted. doi: 10.3389/ftox.2021.797496.
    1. Pereira L.V.B., Shimizu M.H.M., Rodrigues L.P.M.R., Leite C.C., Andrade L., Seguro A.C. N-Acetylcysteine protects rats with chronic renal failure from gadolinium-chelate nephrotoxicity. PLoS ONE. 2012;7:e39528. doi: 10.1371/journal.pone.0039528.
    1. Chinnery P.F. Mitochondrial disease in adults: What’s old and what’s new? EMBO Mol. Med. 2015;7:1503–1512. doi: 10.15252/emmm.201505079.
    1. Davis R.L., Liang C., Sue C.M. Handbook of Clinical Neurology. Volume 147. Elsevier; Amsterdam, The Netherlands: 2018. Mitochondrial Diseases; pp. 125–141.
    1. Parikh S., Goldstein A., Koenig M.K., Scaglia F., Enns G.M., Saneto R., Anselm I., Cohen B.H., Falk M.J., Greene C., et al. Diagnosis and management of mitochondrial disease: A consensus statement from the Mitochondrial Medicine Society. Genet. Med. 2015;17:689–701. doi: 10.1038/gim.2014.177.
    1. Patti G.J., Yanes O., Siuzdak G. Metabolomics: The apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 2012;13:263–269. doi: 10.1038/nrm3314.
    1. Johnson C.H., Ivanisevic J., Siuzdak G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 2016;17:451–459. doi: 10.1038/nrm.2016.25.
    1. Hall A.M., Vilasi A., Garcia-Perez I., Lapsley M., Alston C.L., Pitceathly R.D., McFarland R., Schaefer A.M., Turnbull D.M., Beaumont N.J., et al. The urinary proteome and metabonome differ from normal in adults with mitochondrial disease. Kidney Int. 2015;87:610–622. doi: 10.1038/ki.2014.297.
    1. Esterhuizen K., van der Westhuizen F.H., Louw R. Metabolomics of mitochondrial disease. Mitochondrion. 2017;35:97–110. doi: 10.1016/j.mito.2017.05.012.
    1. Buzkova J., Nikkanen J., Ahola S., Hakonen A.H., Sevastianova K., Hovinen T., Yki-Järvinen H., Pietiläinen K.H., Lönnqvist T., Velagapudi V., et al. Metabolomes of mitochondrial diseases and inclusion body myositis patients: Treatment targets and biomarkers. EMBO Mol. Med. 2018;10:e9091. doi: 10.15252/emmm.201809091.
    1. Newgard C.B. Metabolomics and Metabolic Diseases: Where Do We Stand? Cell Metab. 2017;25:43–56. doi: 10.1016/j.cmet.2016.09.018.
    1. Maecker H.T., Wang W., Rosenberg-Hasson Y., Semelka R.C., Hickey J., Koran L.M. An initial investigation of serum cytokine levels in patients with gadolinium retention. Radiol. Bras. 2020;53:306–313. doi: 10.1590/0100-3984.2019.0075.
    1. Zolkipli-Cunningham Z., Xiao R., Stoddart A., McCormick E.M., Holberts A., Burrill N., McCormack S., Williams L., Wang X., Thompson J.L., et al. Mitochondrial disease patient motivations and barriers to participate in clinical trials. PLoS ONE. 2018;13:e0197513. doi: 10.1371/journal.pone.0197513.
    1. Long T., Hicks M., Yu H.-C., Biggs W.H., Kirkness E.F., Menni C., Zierer J., Small K.S., Mangino M., Messier H., et al. Whole-genome sequencing identifies common-to-rare variants associated with human blood metabolites. Nat. Genet. 2017;49:568–578. doi: 10.1038/ng.3809.
    1. Hou Y.C.C., Yu H.C., Martin R., Cirulli E.T., Schenker-Ahmed N.M., Hicks M., Cohen I.V., Jönsson T.J., Heister R., Napier L., et al. Precision medicine integrating whole-genome sequencing, comprehensive metabolomics, and advanced imaging. Proc. Natl. Acad. Sci. USA. 2020;117:3053–3062. doi: 10.1073/pnas.1909378117.
    1. Alwasiyah D., Murphy C., Jannetto P., Hogg M., Beuhler M.C. Urinary gadolinium levels after contrast-enhanced MRI in individuals with normal renal function: A pilot study. J. Med. Toxicol. 2019;15:121–127. doi: 10.1007/s13181-018-0693-1.
    1. Semelka R.C., Ramalho M., Jay M., Hickey L., Hickey J. Intravenous calcium-/zinc-diethylene triamine penta-acetic acid in patients with presumed Gadolinium Deposition Disease: A preliminary report on 25 patients. Investig. Radiol. 2018;53:373–379. doi: 10.1097/RLI.0000000000000453.
    1. Wishart D.S. Metabolomics for Investigating Physiological and Pathophysiological Processes. Physiol. Rev. 2019;99:1819–1875. doi: 10.1152/physrev.00035.2018.
    1. Sampson J.N., Boca S.M., Shu X.O., Stolzenberg-Solomon R.Z., Matthews C.E., Hsing A.W., Tan Y.T., Ji B.T., Chow W.H., Cai Q., et al. Metabolomics in epidemiology: Sources of variability in metabolite measurements and implications. Cancer Epidemiol. Biomark. Prev. 2013;22:631–640. doi: 10.1158/1055-9965.EPI-12-1109.
    1. Huang S., Chong N., Lewis N.E., Jia W., Xie G., Garmire L.X. Novel personalized pathway-based metabolomics models reveal key metabolic pathways for breast cancer diagnosis. Genome Med. 2016;8:34. doi: 10.1186/s13073-016-0289-9.
    1. Smeitink J.A., Zeviani M., Turnbull D.M., Jacobs H.T. Mitochondrial medicine: A metabolic perspective on the pathology of oxidative phosphorylation disorders. Cell Metab. 2006;3:9–13. doi: 10.1016/j.cmet.2005.12.001.
    1. Pareyson D., Piscosquito G., Moroni I., Salsano E., Zeviani M. Peripheral neuropathy in mitochondrial disorders. Lancet Neurol. 2013;12:1011–1024. doi: 10.1016/S1474-4422(13)70158-3.
    1. Gross E.C., Lisicki M., Fischer D., Sándor P.S., Schoenen J. The metabolic face of migraine—From pathophysiology to treatment. Nat. Rev. Neurol. 2019;15:627–643. doi: 10.1038/s41582-019-0255-4.
    1. Lattanzio S.M. The gadolinium hypothesis for fibromyalgia and unexplained widespread chronic pain. Med. Hypotheses. 2019;129:109240. doi: 10.1016/j.mehy.2019.109240.
    1. Naviaux R.K. Metabolic features and regulation of the healing cycle—A new model for chronic disease pathogenesis and treatment. Mitochondrion. 2019;46:278–297. doi: 10.1016/j.mito.2018.08.001.
    1. Mordaunt D., Cox D., Fuller M. Metabolomics to improve the diagnostic efficiency of inborn errors of metabolism. Int. J. Mol. Sci. 2020;21:1195. doi: 10.3390/ijms21041195.
    1. Elhassan Y.S., Philp A.A., Lavery G.G. Targeting NAD+ in metabolic disease: New insights into an old molecule. J. Endocr. Soc. 2017;1:816–835. doi: 10.1210/js.2017-00092.
    1. Kirchner S., Ignatova Z. Emerging roles of tRNA in adaptive translation, signaling dynamics and disease. Nat. Rev. Genet. 2015;16:98–112. doi: 10.1038/nrg3861.
    1. Esterhuizen K., Lindeque J.Z., Mason S., van der Westhuizen F.H., Suomalainen A., Hakonen A.H., Carroll C.J., Rodenburg R.J., de Laat P.B., Janssen M.C.H., et al. A urinary biosignature for mitochondrial myopathy, encephalopathy, lactic acidosis and stroke like episodes (MELAS) Mitochondrion. 2019;45:38–45. doi: 10.1016/j.mito.2018.02.003.
    1. Liao P., Wei L., Zhang X., Li X., Wu H., Wu Y., Ni J., Pei F. Metabolic profiling of serum from gadolinium chloride-treated rats by 1H NMR spectroscopy. Anal. Biochem. 2007;364:112–121. doi: 10.1016/j.ab.2007.02.020.
    1. Youdim M.B.H., Edmondson D., Tipton K.F. The therapeutic potential of monoamine oxidase inhibitors. Nat. Rev. Neurosci. 2006;7:295–309. doi: 10.1038/nrn1883.
    1. Garnero P., Delmas P.D. Biochemical markers of bone turnover: Applications for osteoporosis. Endocrinol. Metab. Clin. North. Am. 1998;27:303–323. doi: 10.1016/S0889-8529(05)70007-4.
    1. Darrah T.H., Prutsman-Pfeiffer J.J., Poreda R.J., Ellen Campbell M., Hauschka P.V., Hannigan R.E. Incorporation of excess gadolinium into human bone from medical contrast agents. Metallomics. 2009;1:479. doi: 10.1039/b905145g.
    1. Wortmann S.B., Kluijtmans L.A.J., Rodenburg R.J., Sass J.O., Nouws J., van Kaauwen E.P., Kleefstra T., Tranebjaerg L., de Vries M.C., Isohanni P., et al. 3-Methylglutaconic aciduria—Lessons from 50 genes and 977 patients. J. Inherit. Metab. Dis. 2013;36:913–921. doi: 10.1007/s10545-012-9579-6.
    1. Kelley R.I., Kratz L. 3-Methylglutaconic Acidemia in Smith-Lemli-Opitz Syndrome. Pediatr. Res. 1995;37:671–674. doi: 10.1203/00006450-199505000-00020.
    1. Hargreaves I. Biochemical assessment and monitoring of mitochondrial disease. J. Clin. Med. 2018;7:66. doi: 10.3390/jcm7040066.
    1. Browne D., McGuinness B., Woodside J.V., McKay G.J. Vitamin E and Alzheimer’s disease: What do we know so far? Clin. Interv. Aging. 2019;14:1303–1317. doi: 10.2147/CIA.S186760.
    1. Wang L., Ko E.R., Gilchrist J.J., Pittman K.J., Rautanen A., Pirinen M., Thompson J.W., Duboise L.G., Langley R.J., Jaslow S.L., et al. Human genetic and metabolite variation reveals that methylthioadenosine is a prognostic biomarker and an inflammatory regulator in sepsis. Sci. Adv. 2017;3:e1602096. doi: 10.1126/sciadv.1602096.
    1. Antonioli L., Blandizzi C., Pacher P., Haskó G. Immunity, inflammation and cancer: A leading role for adenosine. Nat. Rev. Cancer. 2013;13:842–857. doi: 10.1038/nrc3613.
    1. Jung J., Zeng H., Horng T. Metabolism as a guiding force for immunity. Nat. Cell Biol. 2019;21:85–93. doi: 10.1038/s41556-018-0217-x.

Source: PubMed

3
Abonneren