Prevalence of impaired glucose tolerance and other types of dysglycaemia among young twins and singletons in Guinea-Bissau

Ditte Egegaard Hennild, Morten Bjerregaard-Andersen, Luis Carlos Joaquím, Kaare Christensen, Morten Sodemann, Henning Beck-Nielsen, Dorte Møller Jensen, Ditte Egegaard Hennild, Morten Bjerregaard-Andersen, Luis Carlos Joaquím, Kaare Christensen, Morten Sodemann, Henning Beck-Nielsen, Dorte Møller Jensen

Abstract

Background: Twins may be at increased risk of dysglycaemic disorders due to adverse fetal conditions. Data from Africa regarding this association is limited. We studied impaired glucose tolerance (IGT) and other types of dysglycemia among twins and singletons in Guinea-Bissau.

Methods: The study was conducted from February 2011 until March 2012 at the Bandim Health Project, a health and demographic surveillance system site in the capital Bissau. Twins (n = 209) and singletons (n = 182) were recruited from a previously established cohort. Oral glucose tolerance tests (OGTT) were performed, along with anthropometrics and collection of clinical and dietary data.

Results: Median age was 16.6 and 14.2 years between twins and singletons, respectively (P = 0.08). Mean birth weight was 2410 vs. 3090 g, respectively (P < 0.001). Twins had higher median fasting- and two hour capillary plasma glucose, 5.4(3.2-8.2) vs. 5.0(3.2-11.5) mmol/L (P < 0.001) and 6.8(3.4-11.3) vs. 6.2(3.2-12.1) mmol/L (P < 0.001), respectively, compared to singletons. The prevalence of IGT was 2.5 % (5/209) vs. 3.5 % (6/182) (RR = 0.73, 95 % CI: 0.20-2.64). 12 % (25/209) of twins had impaired fasting glucose (IFG), compared to 3.5 % (6/182) of singletons (3.63, 1.53-8.62). Dysglycemia (IGT and/or IFG or overt diabetes) was found in 17 % (35/209) vs. 9 % (16/182) (1.90, 1.08-3.37), respectively.

Conclusions: Twins had higher glucose levels in both the fasting and postprandial state. This may indicate a detrimental effect of the twin fetal environment on glucose metabolism later in life, a result contrary to Scandinavian register studies. The IGT burden was low in this young age group and the risk was similar in twins and singletons.

Keywords: Diabetes; Fetal origins hypothesis; Impaired fasting glucose; Impaired glucose tolerance; Low birth weight; Sub-Saharan Africa; Twins.

Figures

Fig. 1
Fig. 1
Inclusion of twins in the OGTT study. *One twin had co-existing IGT and IFG and has in this flowchart been classified as an IGT case
Fig. 2
Fig. 2
Inclusion of singletons in the OGTT study. *Two singletons had co-existing IGT and IFG and have in this flowchart been classified as IGT cases
Fig. 3
Fig. 3
Median glucose levels (mmol/L) in fasting and at one and two hours during OGTT for the subset of twins where zygosity status was known. MZ twins (22/133), DZ twins (111/133), Singletons = 182/182. Interquartile ranges (25 and 75 % percentiles) are displayed. Note: This figure represents a subset of the data, i.e., only those with available zygosity and is therefore not directly comparable to the median values displayed in Table 2

References

    1. Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet. 1986;1(8489):1077–81. doi: 10.1016/S0140-6736(86)91340-1.
    1. Hales CN, Barker DJ. The thrifty phenotype hypothesis. Br Med Bull. 2001;60:5–20. doi: 10.1093/bmb/60.1.5.
    1. Yajnik CS. Fetal programming of diabetes: still so much to learn! Diabetes Care. 2010;33(5):1146–8. doi: 10.2337/dc10-0407.
    1. Crowther NJ. Early determinants of chronic disease in developing countries. Best Pract Res Clin Endocrinol Metab. 2012;26(5):655–65. doi: 10.1016/j.beem.2012.03.006.
    1. Harder T, Rodekamp E, Schellong K, Dudenhausen JW, Plagemann A. Birth weight and subsequent risk of type 2 diabetes: a meta-analysis. Am J Epidemiol. 2007;165(8):849–57. doi: 10.1093/aje/kwk071.
    1. Whincup PH, Kaye SJ, Owen CG, Huxley R, Cook DG, Anazawa S, Barrett-Connor E, Bhargava SK, Birgisdottir BE, Carlsson S, et al. Birth weight and risk of type 2 diabetes: a systematic review. JAMA. 2008;300(24):2886–97. doi: 10.1001/jama.2008.886.
    1. Vaag A, Poulsen P. Twins in metabolic and diabetes research: what do they tell us? Curr Opin Clin Nutr Metab Care. 2007;10(5):591–6. doi: 10.1097/MCO.0b013e3282ab9ea6.
    1. Bjerregaard-Andersen M, Gomes MA, Joaquim LC, Rodrigues A, Jensen DM, Christensen K, Benn CS, Aaby P, Beck-Nielsen H, Sodemann M. Establishing a twin registry in Guinea-Bissau. Twin Res Hum Genet. 2013;16(1):179–84. doi: 10.1017/thg.2012.90.
    1. Mbanya JC, Motala AA, Sobngwi E, Assah FK, Enoru ST. Diabetes in sub-Saharan Africa. Lancet. 2010;375(9733):2254–66. doi: 10.1016/S0140-6736(10)60550-8.
    1. Peer N, Kengne AP, Motala AA, Mbanya JC. Diabetes in the Africa Region: an update. Diabetes Res Clin Pract. 2014;103(2):197–205. doi: 10.1016/j.diabres.2013.11.006.
    1. Bo S, Cavallo-Perin P, Ciccone G, Scaglione L, Pagano G. The metabolic syndrome in twins: a consequence of low birth weight or of being a twin? Exp Clin Endocrinol Diabetes. 2001;109(3):135–40. doi: 10.1055/s-2001-14835.
    1. Poulsen P, Grunnet LG, Pilgaard K, Storgaard H, Alibegovic A, Sonne MP, Carstensen B, Beck-Nielsen H, Vaag A. Increased risk of type 2 diabetes in elderly twins. Diabetes. 2009;58(6):1350–5. doi: 10.2337/db08-1714.
    1. Petersen I, Nielsen MM, Beck-Nielsen H, Christensen K. No evidence of a higher 10 year period prevalence of diabetes among 77,885 twins compared with 215,264 singletons from the Danish birth cohorts 1910-1989. Diabetologia. 2011;54(8):2016–24. doi: 10.1007/s00125-011-2128-2.
    1. Johansson S, Iliadou A, Bergvall N, de Faire U, Kramer MS, Pawitan Y, Pedersen NL, Norman M, Lichtenstein P, Cnattingius S. The association between low birth weight and type 2 diabetes: contribution of genetic factors. Epidemiology. 2008;19(5):659–65. doi: 10.1097/EDE.0b013e31818131b9.
    1. Christian P, Lee SE, Donahue Angel M, Adair LS, Arifeen SE, Ashorn P, Barros FC, Fall CH, Fawzi WW, Hao W, et al. Risk of childhood undernutrition related to small-for-gestational age and preterm birth in low- and middle-income countries. Int J Epidemiol. 2013;42(5):1340–55. doi: 10.1093/ije/dyt109.
    1. Ayoola OO, Gemmell I, Omotade OO, Adeyanju OA, Cruickshank JK, Clayton PE. Maternal malaria, birth size and blood pressure in Nigerian newborns: insights into the developmental origins of hypertension from the Ibadan growth cohort. PLoS One. 2011;6(9):e24548. doi: 10.1371/journal.pone.0024548.
    1. Kodama K, Tojjar D, Yamada S, Toda K, Patel CJ, Butte AJ. Ethnic differences in the relationship between insulin sensitivity and insulin response: a systematic review and meta-analysis. Diabetes Care. 2013;36(6):1789–96. doi: 10.2337/dc12-1235.
    1. Moore SE, Halsall I, Howarth D, Poskitt EM, Prentice AM. Glucose, insulin and lipid metabolism in rural Gambians exposed to early malnutrition. Diabet Med. 2001;18(8):646–53. doi: 10.1046/j.1464-5491.2001.00565.x.
    1. Alberti KG. Impaired glucose tolerance: what are the clinical implications? Diabetes Res Clin Pract. 1998;40(Suppl):S3–8.
    1. Unwin N, Shaw J, Zimmet P, Alberti KG. Impaired glucose tolerance and impaired fasting glycaemia: the current status on definition and intervention. Diabet Med. 2002;19(9):708–23. doi: 10.1046/j.1464-5491.2002.00835.x.
    1. Balde NM, Diallo I, Balde MD, Barry IS, Kaba L, Diallo MM, Kake A, Camara A, Bah D, Barry MM, et al. Diabetes and impaired fasting glucose in rural and urban populations in Futa Jallon (Guinea): prevalence and associated risk factors. Diabetes Metab. 2007;33(2):114–20. doi: 10.1016/j.diabet.2006.10.001.
    1. Christensen DL, Friis H, Mwaniki DL, Kilonzo B, Tetens I, Boit MK, Omondi B, Kaduka L, Borch-Johnsen K. Prevalence of glucose intolerance and associated risk factors in rural and urban populations of different ethnic groups in Kenya. Diabetes Res Clin Pract. 2009;84(3):303–10. doi: 10.1016/j.diabres.2009.03.007.
    1. Mbanya JC, Ngogang J, Salah JN, Minkoulou E, Balkau B. Prevalence of NIDDM and impaired glucose tolerance in a rural and an urban population in Cameroon. Diabetologia. 1997;40(7):824–9. doi: 10.1007/s001250050755.
    1. Motala AA, Esterhuizen T, Gouws E, Pirie FJ, Omar MA. Diabetes and other disorders of glycemia in a rural South African community: prevalence and associated risk factors. Diabetes Care. 2008;31(9):1783–8. doi: 10.2337/dc08-0212.
    1. United Nations Development Programme . Human development indicators. 2015.
    1. Bjerregaard-Andersen M, Hansen L, da Silva LI, Joaquim LC, Hennild DE, Christiansen L, Aaby P, Benn CS, Christensen K, Sodemann M, et al. Risk of metabolic syndrome and diabetes among young twins and singletons in Guinea-Bissau. Diabetes Care. 2013;36(11):3549–56. doi: 10.2337/dc12-2653.
    1. Durnin JV, Rahaman MM. The assessment of the amount of fat in the human body from measurements of skinfold thickness. 1967. Br J Nutr. 2003;89(1):147–55.
    1. Slaughter MH, Lohman TG, Boileau RA, Horswill CA, Stillman RJ, Van Loan MD, Bemben DA. Skinfold equations for estimation of body fatness in children and youth. Hum Biol. 1988;60(5):709–23.
    1. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15(7):539–53. doi: 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>;2-S.
    1. World Health Organization . Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia: report of a WHO/IDF consultation. 2006.
    1. Boyne MS, Osmond C, Fraser RA, Reid M, Taylor-Bryan C, Soares-Wynter S, Forrester TE. Developmental origins of cardiovascular risk in Jamaican children: the Vulnerable Windows Cohort study. Br J Nutr. 2010;104(7):1026–33. doi: 10.1017/S0007114510001790.
    1. Tsou PL, Jiang YD, Chang CC, Wei JN, Sung FC, Lin CC, Chiang CC, Tai TY, Chuang LM. Sex-related differences between adiponectin and insulin resistance in schoolchildren. Diabetes Care. 2004;27(2):308–13. doi: 10.2337/diacare.27.2.308.
    1. Olusanya BO. Perinatal outcomes of multiple births in southwest Nigeria. J Health Popul Nutr. 2011;29(6):639–47.
    1. Bjerregaard-Andersen M, Lund N, Jepsen FS, Camala L, Gomes MA, Christensen K, Christiansen L, Jensen DM, Aaby P, Beck-Nielsen H, et al. A prospective study of twinning and perinatal mortality in urban Guinea-Bissau. BMC Pregnancy Childbirth. 2012;12:140. doi: 10.1186/1471-2393-12-140.
    1. Yajnik CS. Transmission of obesity-adiposity and related disorders from the mother to the baby. Ann Nutr Metab. 2014;64(Suppl 1):8–17. doi: 10.1159/000362608.
    1. Dunstan DW, Zimmet PZ, Welborn TA, De Courten MP, Cameron AJ, Sicree RA, Dwyer T, Colagiuri S, Jolley D, Knuiman M, et al. The rising prevalence of diabetes and impaired glucose tolerance: the Australian Diabetes, Obesity and Lifestyle Study. Diabetes Care. 2002;25(5):829–34. doi: 10.2337/diacare.25.5.829.
    1. Harris MI, Hadden WC, Knowler WC, Bennett PH. Prevalence of diabetes and impaired glucose tolerance and plasma glucose levels in U.S. population aged 20-74 yr. Diabetes. 1987;36(4):523–34. doi: 10.2337/diab.36.4.523.
    1. Poulsen P, Vaag A. The intrauterine environment as reflected by birth size and twin and zygosity status influences insulin action and intracellular glucose metabolism in an age- or time-dependent manner. Diabetes. 2006;55(6):1819–25. doi: 10.2337/db05-1462.
    1. Hall JG. Twinning. Lancet. 2003;362(9385):735–43. doi: 10.1016/S0140-6736(03)14237-7.
    1. Frost M, Petersen I, Brixen K, Beck-Nielsen H, Holst JJ, Christiansen L, Hojlund K, Christensen K. Adult glucose metabolism in extremely birthweight-discordant monozygotic twins. Diabetologia. 2012;55(12):3204–12. doi: 10.1007/s00125-012-2695-x.
    1. Bjerregaard-Andersen M, Biering-Sorensen S, Gomes GM, Bidonga A, Jensen DM, Rodrigues A, Christensen K, Aaby P, Beck-Nielsen H, Benn CS, et al. Infant twin mortality and hospitalisations after the perinatal period - a prospective cohort study from Guinea-Bissau. Trop Med Int Health. 2014;19(12):1477–87. doi: 10.1111/tmi.12388.
    1. Aaby P, Roth A, Ravn H, Napirna BM, Rodrigues A, Lisse IM, Stensballe L, Diness BR, Lausch KR, Lund N, et al. Randomized trial of BCG vaccination at birth to low-birth-weight children: beneficial nonspecific effects in the neonatal period? J Infect Dis. 2011;204(2):245–52. doi: 10.1093/infdis/jir240.
    1. Habib NA, Daltveit AK, Bergsjo P, Shao J, Oneko O, Lie RT. Maternal HIV status and pregnancy outcomes in northeastern Tanzania: a registry-based study. BJOG. 2008;115(5):616–24. doi: 10.1111/j.1471-0528.2008.01672.x.
    1. Assefa N, Berhane Y, Worku A. Wealth status, mid upper arm circumference (MUAC) and antenatal care (ANC) are determinants for low birth weight in Kersa, Ethiopia. PLoS One. 2012;7(6):e39957. doi: 10.1371/journal.pone.0039957.
    1. Osei K, Schuster DP, Amoah AG, Owusu SK. Diabetes in Africa. Pathogenesis of type 1 and type 2 diabetes mellitus in sub-Saharan Africa: implications for transitional populations. J Cardiovasc Risk. 2003;10(2):85–96. doi: 10.1097/00043798-200304000-00003.

Source: PubMed

3
Abonneren