Cyclodextrin-Based Functional Glyconanomaterials

Gonzalo Rivero-Barbarroja, Juan Manuel Benito, Carmen Ortiz Mellet, José Manuel García Fernández, Gonzalo Rivero-Barbarroja, Juan Manuel Benito, Carmen Ortiz Mellet, José Manuel García Fernández

Abstract

Cyclodextrins (CDs) have long occupied a prominent position in most pharmaceutical laboratories as "off-the-shelve" tools to manipulate the pharmacokinetics of a broad range of active principles, due to their unique combination of biocompatibility and inclusion abilities. The development of precision chemical methods for their selective functionalization, in combination with "click" multiconjugation procedures, have further leveraged the nanoscaffold nature of these oligosaccharides, creating a direct link between the glyco and the nano worlds. CDs have greatly contributed to understand and exploit the interactions between multivalent glycodisplays and carbohydrate-binding proteins (lectins) and to improve the drug-loading and functional properties of nanomaterials through host-guest strategies. The whole range of capabilities can be enabled through self-assembly, template-assisted assembly or covalent connection of CD/glycan building blocks. This review discusses the advancements made in this field during the last decade and the amazing variety of functional glyconanomaterials empowered by the versatility of the CD component.

Keywords: cyclodextrins; drug delivery; gene delivery; glyconanomaterials; glyconanoparticles; glycopolymers; glycotargeting; multivalency; self-assembly; supramolecular nanomaterials.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Structures of α, β and γCD (left), 3D view of βCD (upper-right) and schematic representation of CD basket-shape architecture (lower right), with indication of the height, and average internal and external diameters for the three commercially available representatives. CD, cyclodextrin.
Figure 2
Figure 2
Docetaxel (DTX) carrier consisting of a hexamannosylated dimeric βCD derivative designed on the basis of the drug clusterization concept [35]. Adapted with permission from Reference [3]. Copyright 2013 Royal Society of Chemistry.
Figure 3
Figure 3
Heptamannosyl-βCD/Ru(II)-scaffolded hexa-adamantyl host–guest complex reported by Seeberger and coworkers [38] (a) and bis-adamantyl analogs with anti-apoptotic activity reported by Kikkeri and coworkers [40] (b). Adapted with permission from Reference [40]. Copyright 2016 Royal Society of Chemistry.
Figure 4
Figure 4
Structures of the CD-Man7 glycoCD host and BTA tritopic guest used by Zhang, Yin and coworkers (a) and schematic representation of their self-assembly into nanoaggregates for targeted photodynamic therapy against breast cancer (b) [42]. CD, cyclodextrin; Man, mannose; BODIPY, boron-dipyrromethene; BTA, BODIPY-tris-Ad derivative; LSD, dynamic light scattering; MR, mannose receptor.
Figure 5
Figure 5
Schematic illustration of the superamphiphile strategy developed by Zhang and coworkers for the self-assembly of acid-sensitive ASGPR-targeted prodrug glyconanoparticles [46]. ASGPR, asialoglycoprotein receptor; LA, lactobionic acid; PEG, poly(ethylenglycol); βCD, β-cyclodextrin; BM, benzimidazole; DOX, doxorubicin.
Figure 6
Figure 6
Structures of the GaCD derivative C3-CD-Man7, doxorubicin (DOX) and amphotericin B (AmB) (upper panel) and schematic representations of their co-assembly to afford pH-sensitive nanoparticles (Amb@DOX@C3-CD-Man7) (middle panel) and internalization in macrophages to treat visceral leishmaniasis (lower panel), as reported by Seeberger, Yin and coworkers [55,57]. GaCD, glycoamphiphilic cyclodextrin; Man, mannose; NP, nanoparticle.
Figure 7
Figure 7
Average structure of the triblock copolymer (P1) and structures of the βCD derivatives used by Bercer and coworkers [61] to self-assemble glycomicelles trough equimolecular mixing in water (a) and turbidity plots obtained upon mixing with concanavalin A (ConA) at 40 °C (b). Adapted with permission from Reference [61]. Copyright 2016 Royal Society of Chemistry. PDMA, poly(N,N-dimethylacrylamide); PNIPAM, poly(N-isopropyl acrylamide); PAdac, poly(adamantane-acrylate).
Figure 8
Figure 8
Triblock glycocopolymers bearing βCD units designed by Bercer and coworkers [63] to modulate the C-type lectin binding properties through intramolecular host–guest control of the folding state. Adapted with permission from Reference [63], https://pubs.acs.org/doi/abs/10.1021/acs.biomac.8b00600. Copyright 2018 American Chemical Society. ConA, concanavalin A.
Figure 9
Figure 9
One-pot multicomponent synthesis of polyrotaxane-based heteroglycopolymers developed by Gao, Chen and coworkers [68]. CuAAC, copper(II) azide-alkyne cycloaddition; PPG, polypropylene glycol.
Figure 10
Figure 10
Polyrotaxane-based glycopolymers developed by Jia, Ren and coworkers [76] and a schematic representation of their self-assembly into doxorubicin-loaded micelles for the targeted delivery of the drug to tumor cells. A representative transmission electron microscopy (TEM) micrograph of the later is also shown. Adapted with permission from Reference [76]. Copyright 2019 WILEY-VCH. PEG, polyethylene glycol; PPR, pseudo(polyrotaxane); GlcN-PR, 2-amino-2-deoxy-β-D-glucopyranose-appended αCD-based polyrotaxane; DOX, doxorubicin.
Figure 11
Figure 11
Structures and schematic representation of the functional supramolecular glycosystems developed by Vargas-Berenguel and coworkers for targeted nitric oxide-based therapies [80]. NO, nitric oxide.
Figure 12
Figure 12
Molecular structures and schematic illustrations of the mannosylated βCD derivative βCD-Man, the adamantane-equipped poly(ethylene glycol) derivative Ada-PEG, concanavalin A (ConA) and αCD, and of their combination to obtain supramolecular nanoparticles and hydrogels, as reported by Chen and coworkers [82]. CD, cyclodextrin; Man. Mannose; Ada-PEG, adamantane-equipped poly(ethylene glycol), ConA, concanavalin A.
Figure 13
Figure 13
Structures of the polycationic amphiphilic βCD derivative paCD-N14 (14 cationizable primary amines), the glycoamphiphilic βCD derivative GaCD-Man7 (neutral; 7 mannosyl residues) and the polycationic glycoamphiphilic βCD derivative (7 cationizable primary amines and 7 mannosyl residues) reported by García Fernández and coworkers [156]. A representative image at high magnification of the CDplexes obtained from the latter and the luciferase-encoding plasmid DNA (pDNA) pTG11236 (5739 bp) is also shown. Adapted with permission from Reference [156]. Copyright 2011 Elsevier.
Figure 14
Figure 14
Structures of the paCD-triazol (a), paCD-thiourea (b) and ManEt-NCS (c) precursors used by Di Giorgio, Benito and coworkers [164] to prepare pGaCDs with variable proportions of mannosyl motifs, and a schematic representation of their co-assembly with pDNA to form glycoCDplexes that selectively promoted receptor (MMR)-mediated transfection of the targeted cells (macrophages) (d). Adapted with permission from Reference [164]. Copyright 2015 Royal Society of Chemistry. paCD, polycationic amphiphilic cyclodextrin; Man, mannose; pGaCDs, polycationinc glycoamphiphlic cyclodextrins; MMR, macrophage mannose receptor.
Figure 15
Figure 15
Structures of the polycationic amphiphilic CDs (paCDs) and glycoamphiphilic CDs (GaCDs) used by O’Driscoll and coworkers [165] for the formulation of pDNA-templated nanocomplexes (glycoCDplexes) targeting the asialoglycoprotein receptor (ASGPR). DOPE, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine.
Figure 16
Figure 16
Schematic representation of the statistically galactosylated paCD (GalCD) vectors used by Rejman and coworkers to formulate glycoCDplexes with mRNA for the ASGPR-mediated transfection of hepatocytes [167].
Figure 17
Figure 17
Structure of the 6-amino-6-deoxy β-D-glucopyranosylthioureido/βCD conjugate prepared by Jiménez Blanco, Di Giorgio and coworkers, and an illustration of their co-assembly with pDNA to form nanocomplexes that promoted ASGPR-mediated transfection of hepatocytes [170,171]. A representative TEM micrograph of the nanocomplexes is also shown. Adapted with permission from Reference [170]. Copyright Centre National de la Recherche Scientifique (CNRS) and Royal Society of Chemistry.
Figure 18
Figure 18
Structures of the lactosylated (a) and thiomannosylated (b) αCD-coated glycodendrimers prepared by Arima and coworkers and a schematic representation of their co-assembly with siRNA to form dendriplexes targeted to hepatocytes or antigen-presenting cells (APCs) respectively, for the treatment of transthyretin-related (TTR) amyloidosis [176] or fulminant hepatitis [177].
Figure 19
Figure 19
Illustration of the strategy developed by Ravoo and coworkers for the preparation of self-assembled CD-based vesicles (CDVs), their coating with mannosyl dendrons through host–guest interactions and the potential of the resulting Man-CDVs in anti-adhesive therapy against uropathogenic FimH-expressing E. coli [184].
Figure 20
Figure 20
Illustration of the nanospheres (NSs) prepared by nanoprecipitation of βCD-calix[4]arene hybrids by Sansone, Casnati, García Fernández, Ceña and coworkers [185,186,187], their loading with anticancer drugs (e.g., docetaxel, DTX) and their host–guest decoration with glycoligands for targeted delivery. A representative tapping-mode atom force microscopy (AFM) image of the NSs (5 × 5 μM; insert 0.7 × 0.7 μM) is also shown. Adapted with permission from Reference [187]. Copyright Royal Society of Chemistry.
Figure 21
Figure 21
Illustration of the method for separation of proteins reported by Samanta and Ravoo [188] using the cross-linking and magnetic precipitation of magnetic nanoparticles modified with cyclodextrin-acid derivatives (MNP-CDA) and adamantane-armed glycoligands (G1 and G2). Reprinted with permission from Reference [188]. Copyright 2014 WILEY-VCH. FITC-PNA, fluorescein isothiocyanate-labelled peanut agglutinin; TRITC-ConA, tetramethylrhodamine-labelled concanavalin A.
Figure 22
Figure 22
Illustration of the lactose- and βCD-decorated gold nanoparticles developed by Vargas-Berenguel and coworkers [195] for the selective delivery of methotrexate (MTX) to human tumors expressing galectin-3 (Gal-3). Adapted with permission from Reference [195]. Copyright 2014 American Chemical Society.
Figure 23
Figure 23
Structures and schematic representation of the strategy developed by Riela, Lazzala and coworkers to assemble hybrid glycoCD/halloysite nanotubes to achieve functional glyconanomaterials for the co-administration of curcumin (Cur) and silibinin (Sil) in thyroid cancer cells [196,197].

References

    1. Tian B., Xiao D., Hei T., Ping R., Hua S., Liu J. The application and prospects of cyclodextrin inclusion complexes and polymers in the food industry: A review. Polym. Int. 2020;69:597–603. doi: 10.1002/pi.5992.
    1. Matencio A., Navarro-Orcajada S., García-Carmona F., López-Nicolás J.M. Applications of cyclodextrins in food science. A review. Trends Food Sci. Technol. 2020;104:132–143. doi: 10.1016/j.tifs.2020.08.009.
    1. Ortiz Mellet C., García Fernández J.M., Benito J.M. Cyclodextrins for pharmacological and biomedical applications. In: Schneider H.-J., editor. Supramolecular Systems in Biomedical Fields. Royal Society of Chemistry; Cambridge, UK: 2013. pp. 94–139. Chapter 5.
    1. Fakayode S.O., Lowry M., Fletcher K.A., Huang X., Powe A.M., Warner I.M. Cyclodextrins host-guest chemistry in analytical and environmental chemistry. Curr. Anal. Chem. 2007;3:171–181. doi: 10.2174/157341107781023811.
    1. Liu Q., Zhou Y., Lu J., Zhou Y. Novel cyclodextrin-based adsorbents for removing pollutants from wastewater: A critical review. Chemosphere. 2020;241:125043. doi: 10.1016/j.chemosphere.2019.125043.
    1. Davis M.E., Brewster M.E. Cyclodextrin-based pharmaceutics: Past, present and future. Nat. Rev. Drug Discov. 2004;3:1023–1035. doi: 10.1038/nrd1576.
    1. Tian B., Hua S., Liu J. Cyclodextrin-based delivery systems for chemotherapeutic anticancer drugs: A review. Carbohydr. Polym. 2020;232:115805. doi: 10.1016/j.carbpol.2019.115805.
    1. Tian B., Liu Y., Liu J. Cyclodextrin as a magic switch in covalent and noncovalent anticancer drug release systems. Carbohydr. Polym. 2020;242:116401. doi: 10.1016/j.carbpol.2020.116401.
    1. Tian B., Liu Y., Liu J. Smart stimuli-responsive drug delivery systems based on cyclodextrin: A review. Carbohydr. Polym. 2021;251:116871. doi: 10.1016/j.carbpol.2020.116871.
    1. Garrido P.F., Calvelo M., Blanco-González A., Veleiro U., Suárez F., Conde D., Cabezón A., Piñeiro A., Garcia-Fandino R. The Lord of the nanorings: Cyclodextrins and the battle against SARS-CoV-2. J. Pharm. Sci. 2020;588:119689.
    1. García Fernández J.M., Ortiz Mellet C., Defaye J. Glyconanocavities: Cyclodextrins and beyond. J. Incl. Phenom. Macrocyl. Chem. 2006;56:149–159. doi: 10.1007/s10847-006-9076-3.
    1. Crini G. Review: A history of cyclodextrins. Chem. Rev. 2014;114:10940–10975. doi: 10.1021/cr500081p.
    1. Zhang W.-B., Yu X., Wang C.-L., Sun H.-J., Hsieh I.-F., Li Y., Dong X.-H., Yue K., Van Horn R., Cheng S.Z.D. Molecular nanoparticles are unique elements for macromolecular science: From “nanoatoms” to giant molecules. Macromolecules. 2014;47:1221–1239. doi: 10.1021/ma401724p.
    1. Yin G.-Z., Zhang W.-B., Cheng S.Z.D. Giant molecules: Where chemistry, physics, and bio-science meet. Sci. China Chem. 2017;60:338–352. doi: 10.1007/s11426-016-0436-x.
    1. Fernández M.A., Silva O.F., Vico R.V., de Rossi R.H. Complex systems that incorporate cyclodextrins to get materials for some specific applications. Carbohydr. Res. 2019;480:12–34. doi: 10.1016/j.carres.2019.05.006.
    1. Zhang Y.-M., Liu Y.-H., Liu Y. Cyclodextrin-based multistimuli-responsive supramolecular assemblies and their biological functions. Adv. Mater. 2020;32:1806158. doi: 10.1002/adma.201806158.
    1. Gadade D.D., Pekamwar S.S. Cyclodextrin based nanoparticles for drug delivery and theranostics. Adv. Pharm. Bull. 2020;10:166–183. doi: 10.34172/apb.2020.022.
    1. Tian B., Liu J. The classification and application of cyclodextrin polymers: A review. New J. Chem. 2020;44:9137–9148. doi: 10.1039/C9NJ05844C.
    1. Shelley H., Babu R.J. Role of cyclodextrins in nanoparticle-based drug delivery systems. J. Pharm. Sci. 2018;107:1741–1753. doi: 10.1016/j.xphs.2018.03.021.
    1. Gim S., Zhu Y., Seeberger P., Delbianco M. Carbohydrate-based nanomaterials for biomedical applications. WIREs Nanomed. Nanobiotechnol. 2019;11:e1558. doi: 10.1002/wnan.1558.
    1. Ortiz-Mellet C., Benito J.M., García Fernández J.M., Law H., Chmurski K., Defaye J., O’Sullivan M.L., Caro H.N. Cyclodextrin-scaffolded glycoclusters. Chem. Eur. J. 1998;4:2523–2531. doi: 10.1002/(SICI)1521-3765(19981204)4:12<2523::AID-CHEM2523>;2-2.
    1. Vargas-Berenguel A., Ortega-Caballero F., Casas-Solvas J.M. Supramolecular chemistry of carbohydrate clusters with cores having guest binding abilities. Mini-Rev. Org. Chem. 2007;4:1–14. doi: 10.2174/157019307779815901.
    1. Martínez A., Ortiz Mellet C., García Fernández J.M. Cyclodextrin-based multivalent glycodisplays: Covalent and supramolecular conjugates to assess carbohydrate–protein interactions. Chem. Soc. Rev. 2013;42:4746–4773. doi: 10.1039/c2cs35424a.
    1. Roy R., Shiao T.C. Glyconanosynthons as powerful scaffolds and building blocks for the rapid construction of multifaceted, dense and chiral dendrimers. Chem. Soc. Rev. 2015;44:3924–3941. doi: 10.1039/C4CS00359D.
    1. Huang M.L., Godula K. Nanoscale materials for probing the biological functions of the glycocalyx. Glycobiology. 2016;26:797–803. doi: 10.1093/glycob/cww022.
    1. Zhan W., Wei T., Yu Q., Chen H. Fabrication of supramolecular bioactive surfaces via β-cyclodextrin based host−guest interactions. ACS Appl. Mater. Interfaces. 2018;10:36585–36601. doi: 10.1021/acsami.8b12130.
    1. Wei T., Tang Z., Yu Q., Chen H. Smart antibacterial surfaces with switchable bacteria-killing and bacteria-releasing capabilities. ACS Appl. Mater. Interfaces. 2017;9:37511–37523. doi: 10.1021/acsami.7b13565.
    1. Huang L., Liu X.-H., Zhang X.-H., Tan L., Liu C.-J. A highly efficient bactericidal surface based on the co-capture function and photodynamic sterilization. J. Mater. Chem. B. 2018;6:6831–6841. doi: 10.1039/C8TB02010H.
    1. Zhan W., Wei T., Cao L., Hu C., Qu Y., Yu Q., Chen H. Supramolecular platform with switchable multivalent affinity: Photo-reversible capture and release of bacteria. ACS Appl. Mater. Interfaces. 2017;9:3505–3513. doi: 10.1021/acsami.6b15446.
    1. Qu Y., Wei T., Zhan W., Hu C., Cao L., Yu Q., Chen H. A reusable supramolecular platform for the specific capture and release of proteins and bacteria. J. Mater. Chem. B. 2017;5:444–453. doi: 10.1039/C6TB02821G.
    1. Gade M., Paul A., Alex C., Choudhury D., Thulasiram H.V., Kikkeri R. Supramolecular scaffolds on glass slides as sugar based rewritable sensors for bacteria. Chem. Commun. 2015;51:6346–6349. doi: 10.1039/C5CC01019E.
    1. Lee Y.C., Lee R.T. Carbohydrate-protein interactions: Basis of glycobiology. Acc. Chem. Res. 1995;28:321–327. doi: 10.1021/ar00056a001.
    1. Jayaraman N. Multivalent ligand presentation as a central concept to study intricate carbohydrate–protein interactions. Chem. Soc. Rev. 2009;38:3463–3483. doi: 10.1039/b815961k.
    1. Cecioni S., Imberty A., Vidal S. Glycomimetics versus multivalent glycoconjugates for the design of high affinity lectin ligands. Chem. Rev. 2015;115:525–561. doi: 10.1021/cr500303t.
    1. Benito J.M., Gómez-García M., Ortiz Mellet C., Baussanne I., Defaye J., García Fernández J.M. Optimizing saccharide-directed molecular delivery to biological receptors: Design, synthesis, and biological evaluation of glycodendrimer-cyclodextrin conjugates. J. Am. Chem. Soc. 2004;126:10355–10363. doi: 10.1021/ja047864v.
    1. Connors K.A. The stability of cyclodextrin complexes in solution. Chem. Rev. 1997;97:1325–1357. doi: 10.1021/cr960371r.
    1. Schmidt B.V.K.J., Barner-Kowollik C. Dynamic macromolecular material design—The versatility of cyclodextrin-based host–guest chemistry. Angew. Chem. Int. Ed. 2017;56:8350–8369. doi: 10.1002/anie.201612150.
    1. Grünstein D., Maglinao M., Kikkeri R., Collot M., Barylyuk K., Lepenies B., Kamena F., Zenobi R., Seeberger P.H. Hexameric supramolecular scaffold orients carbohydrates to sense bacteria. J. Am. Chem. Soc. 2011;133:13957–13966. doi: 10.1021/ja2036767.
    1. Bavireddi H., Vasudeva Murthy R., Gade M., Sangabathuni S., Madhukar Chaudhary P., Alex C., Lepenies B., Kikkeri R. Understanding carbohydrate–protein interactions using homologous supramolecular chiral Ru(II)-glyconanoclusters. Nanoscale. 2016;8:19696–19702. doi: 10.1039/C6NR06431K.
    1. Bavireddi H., Vasudeva Murthy R., Gade M., Sangabathuni S., Kikkeri R. Supramolecular metalloglycodendrimers selectively modulate lectin binding and delivery of Ru(II) complexes into mammalian cells. Org. Biomol. Chem. 2016;14:10816–10821. doi: 10.1039/C6OB01546H.
    1. Bavireddi H., Bharatez P., Kikkeri R. Use of Boolean and fuzzy logics in lactose glycocluster research. Chem. Commun. 2013;49:9185–9187. doi: 10.1039/c3cc44615h.
    1. Zhang Q., Cai Y., Wang X.-J., Xu J.-L., Ye Z., Wang S., Seeberger P.H., Yin J. Targeted photodynamic killing of breast cancer cells employing heptamannosylated β-cyclodextrin-mediated nanoparticle formation of an adamantane-functionalized BODIPY photosensitizer. ACS Appl. Mater. Interfaces. 2016;8:33405–33411. doi: 10.1021/acsami.6b13612.
    1. Kang Y., Tang X., Cai Z., Zhang X. Supra-amphiphiles for functional assemblies. Adv. Funct. Mater. 2016;26:8920–8931. doi: 10.1002/adfm.201602998.
    1. Sun T., Wang Q., Bi Y., Chen X., Liu L., Ruan C., Zhao Z., Jiang C. Supramolecular amphiphiles based on cyclodextrin and hydrophobic drugs. J. Mater. Chem. B. 2017;5:2644–2654. doi: 10.1039/C6TB03272A.
    1. Bai Y., Liu C.P., Song X., Zhuo L., Bu H., Tian W. Photo- and pH- dual-responsive β-cyclodextrin-based supramolecular prodrug complex self-assemblies for programmed drug delivery. Chem. Asian J. 2018;13:3903–3911. doi: 10.1002/asia.201801366.
    1. Yang T., Du G., Cui Y., Yu R., Hua C., Tian W., Zhang Y. pH-sensitive doxorubicin-loaded polymeric nanocomplex based on β-cyclodextrin for liver cancer-targeted therapy. Int. J. Nanomed. 2019;14:1997–2010. doi: 10.2147/IJN.S193170.
    1. Varan G., Benito J.M., Ortiz Mellet C., Bilensoy E. Development of polycationic amphiphilic cyclodextrin nanoparticles for anticancer drug delivery. Beilstein J. Nanotechnol. 2017;8:1457–1467. doi: 10.3762/bjnano.8.145.
    1. Méndez-Ardoy A., Gomez-Garcia M., Geze A., Putaux J.L., Wouessidjewe D., Ortiz Mellet C., Defaye J., Garcia Fernandez J.M., Benito J.M. Monodisperse nanoparticles from self-assembling amphiphilic cyclodextrins: Modulable tools for the encapsulation and controlled release of pharmaceuticals. Med. Chem. 2012;8:524–532. doi: 10.2174/157340612801216265.
    1. Sallas F., Darcy R. Amphiphilic cyclodextrins—Advances in synthesis and supramolecular chemistry. Eur. J. Org. Chem. 2008:957–969. doi: 10.1002/ejoc.200700933.
    1. Sallas F., Niikura K., Nishimura S.-I. A practical synthesis of amphiphilic cyclodextrins fully substituted with sugar residues on the primary face. Chem. Commun. 2004:596–597. doi: 10.1039/B316365B.
    1. Mazzaglia A., Forde D., Garozzo D., Malvagna P., Ravoo B.J., Darcy R. Multivalent binding of galactosylated cyclodextrin vesicles to lectin. Org. Biomol. Chem. 2004;2:957–960. doi: 10.1039/B400988F.
    1. Micali N., Villari V., Mazzaglia A., Monsú Scolaro L., Valerio A., Rencurosi A., Lay L. Cyclodextrin nanoaggregates and their assembly with protein: A spectroscopic investigation. Nanotechnology. 2006;17:3239–3244. doi: 10.1088/0957-4484/17/13/027.
    1. Mazzaglia A., Valerio A., Villari V., Rencurosi A., Lay L., Spadaro S., Monsú Scolaro L., Micali N. Probing specific protein recognition by size-controlled glycosylated cyclodextrin nanoassemblies. New J. Chem. 2006;30:1662–1668. doi: 10.1039/b608495h.
    1. McNicholas S., Rencurosi A., Lay L., Mazzaglia A., Sturiale L., Perez M., Darcy R. Amphiphilic N-glycosyl-thiocarbamoyl cyclodextrins: synthesis, self-assembly, and fluorimetry of recognition by Lens culinaris lectin. Biomacromolecules. 2007;8:1851–1857. doi: 10.1021/bm070055u.
    1. Ye Z., Zhang Q., Wang S., Bharate P., Varela-Aramburu S., Lu M., Seeberger P.H., Yin J. Tumour-targeted drug delivery with mannose-functionalized nanoparticles self-assembled from amphiphilic β-cyclodextrins. Chem. Eur. J. 2016;22:15216–15221. doi: 10.1002/chem.201603294.
    1. Ortiz Mellet C., Méndez-Ardoy A., García Fernández J.M. Click multivalent glycomaterials: Glycoclusters, glycodendrimers, glycopolymers, hybrid glycomaterials, and glycosurfaces. In: Witczak Z.J., Bielski R., editors. Click Chemistry in Glycoscience: New Developments and Strategies. Wiley; Hoboken, NJ, USA: 2013. pp. 143–182. Chapter 6.
    1. Wei P., Ye Z., Cao S., Bai S., Seeberger P.H., Yin J., Hu J. Combination therapy with amphotericin B and doxorubicin encapsulated in mannosylated nanomicelles for visceral leishmaniasis. Coll. Surf. A. 2020;598:124804. doi: 10.1016/j.colsurfa.2020.124804.
    1. Fenyvesi É. Cyclodextrin polymers in the pharmaceutical industry. J. Incl. Phenom. 1988;6:537–545. doi: 10.1007/BF00660751.
    1. Simoes S.M.N., Rey-Rico A., Concheiro A., Alvarez-Lorenzo C. Supramolecular cyclodextrin-based drug nanocarriers. Chem. Commun. 2015;51:6275–6289. doi: 10.1039/C4CC10388B.
    1. Chen G., Jiang M. Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chem. Soc. Rev. 2011;40:2254–2266. doi: 10.1039/c0cs00153h.
    1. Cakir N., Hizal G., Becer C.R. Supramolecular glycopolymers with thermoresponsive self-assembly and lectin binding. Polym. Chem. 2015;6:6623–6631. doi: 10.1039/C5PY00939A.
    1. Seidi F., Shamsabadi A.A., Amini M., Shabanian M., Crespy D. Functional materials generated by allying cyclodextrin-based supramolecular chemistry with living polymerization. Polym. Chem. 2019;10:3674–3711. doi: 10.1039/C9PY00495E.
    1. Yilmaz G., Uzunova V., Napier R., Becer C.R. Single-chain glycopolymer folding via host−guest interactions and its unprecedented effect on DC-SIGN binding. Biomacromolecules. 2018;19:3040–3047. doi: 10.1021/acs.biomac.8b00600.
    1. Nelson A., Belitsky J.M., Vidal S., Joiner C.S., Baum L.G., Stoddart J.F. A self-assembled multivalent pseudopolyrotaxane for binding galectin-1. J. Am. Chem. Soc. 2004;126:11914–11922. doi: 10.1021/ja0491073.
    1. Yui N., Ooya T. Molecular mobility of interlocked structures exploiting new functions of advanced biomaterials. Chem. Eur. J. 2006;12:6730–6737. doi: 10.1002/chem.200600370.
    1. Nishide J.-I., Kashiwao K., Kitauchi K., Sasabe H. Lectin recognition characteristics of carbohydrate-polyrotaxane beads. Mol. Cryst. Liq. Cryst. 2010;519:108–114. doi: 10.1080/15421401003609368.
    1. Chwalek M., Auzély R., Fort S. Synthesis and biological evaluation of multivalent carbohydrate ligands obtained by click assembly of pseudo-rotaxanes. Org. Biomol. Chem. 2009;7:1680–1688. doi: 10.1039/b822976g.
    1. Hu X., Gao J., Luo Y., Wei T., Dong Y., Chen G., Chen H. One-pot multicomponent synthesis of glycopolymers through a combination of host-guest interaction, thiol-ene, and copper-catalyzed click reaction in water. Macromol. Rapid Commun. 2017;38:1700434. doi: 10.1002/marc.201700434.
    1. Gómez-García M., Benito J.M., Rodríguez-Lucena D., Yu J., Chmurski K., Ortiz Mellet C., Gutiérrez Gallego R., Maestre A., Defaye J., Garcıía Fernández J.M. Probing secondary carbohydrate-protein interactions with highly dense cyclodextrin-centered heteroglycoclusters: the heterocluster effect. J. Am. Chem. Soc. 2005;127:7970–7971. doi: 10.1021/ja050934t.
    1. Jiménez Blanco J.L., Ortiz Mellet C., García Fernández J.M. Multivalency in heterogeneous glycoenvironments: Hetero-glycoclusters, -glycopolymers and -glycoassemblies. Chem. Soc. Rev. 2013;42:4518–4531. doi: 10.1039/C2CS35219B.
    1. Müller C., Despras G., Lindhorst T.K. Organizing multivalency in carbohydrate recognition. Chem. Soc. Rev. 2016;45:3275–3302.
    1. Ortiz Mellet C., Nierengarten J.-F., García Fernández J.M. Multivalency as an action principle in multimodal lectin recognition and glycosidase inhibition: A paradigm shift driven by carbon-based Glyconanomaterials. J. Mater. Chem. B. 2017;5:6428–6436. doi: 10.1039/C7TB00860K.
    1. García-Moreno M.I., Ortega-Caballero F., Rísquez-Cuadro R., Ortiz Mellet C., García Fernández J.M. The impact of heteromultivalency in lectin recognition and glycosidase inhibition: An integrated mechanistic study. Chem. Eur. J. 2017;23:6295–6304. doi: 10.1002/chem.201700470.
    1. Rísquez-Cuadro R., Matsumoto R., Ortega-Caballero F., Nanba E., Higaki K., García Fernández J.M., Ortiz Mellet C. Pharmacological chaperones for the treatment of α-mannosidosis. J. Med. Chem. 2019;62:5832–5843. doi: 10.1021/acs.jmedchem.9b00153.
    1. González-Cuesta M., Ortiz Mellet C., García Fernández J.M. Carbohydrate supramolecular chemistry: Beyond the multivalent effect. Chem. Commun. 2020;56:5207–5222. doi: 10.1039/D0CC01135E.
    1. Liu S., Jin J., Jia Y.-G., Wang J., Mo L., Chen X., Qi D., Chen Y., Ren L. Glycopolymers made from polyrotaxanes terminated with bile acids: Preparation, self-assembly, and targeting delivery. Macromol. Biosci. 2019;19:1800478. doi: 10.1002/mabi.201800478.
    1. Miyawaki A., Miyauchi M., Takashima Y., Yamaguchi H., Harada A. Formation of supramolecular isomers; poly[2]rotaxane and supramolecular assembly. Chem. Commun. 2008;4:456–458. doi: 10.1039/B713588B.
    1. Tran D.N., Colesnic D., de Beaumais S.A., Pembouong G., Portier F., Queijo A.A., Vázquez Tato J., Zhang Y., Ménand M., Bouteiller L., et al. Cyclodextrin-adamantane conjugates, self-inclusion and aggregation versus supramolecular polymer formation. Org. Chem. Front. 2014;1:703–706. doi: 10.1039/C4QO00104D.
    1. Evenou P., Rossignol J., Pembouong G., Gothland A., Colesnic D., Barbeyron R., Rudiuk S., Marcelin A.-G., Ménand M., Baigl D., et al. Bridging β-cyclodextrin prevents self-Inclusion, promotes supramolecular polymerization, and promotes cooperative interaction with nucleic acids. Angew. Chem. Int. Ed. 2018;57:7753–7758. doi: 10.1002/anie.201802550.
    1. Cutrone G., Benkovics G., Malanga M., Casas-Solvas J.M., Fenyvesi É., Sortino S., García-Fuentes L., Vargas-Berenguel A. Mannoside and 1,2-mannobioside β-cyclodextrin-scaffolded NO-photodonors for targeting antibiotic resistant bacteria. Carbohydr. Polym. 2018;199:649–660. doi: 10.1016/j.carbpol.2018.07.018.
    1. Wang L., Gong C., Yuan X., Wei G. Controlling the self-assembly of biomolecules into functional nanomaterials through internal interactions and external stimulations: A review. Nanomaterials. 2019;9:285. doi: 10.3390/nano9020285.
    1. Wei K., Li J., Chen G., Jiang M. Dual molecular recognition leading to a protein−polymer conjugate and further self-assembly. ACS Macro Lett. 2013;2:278–283. doi: 10.1021/mz400036t.
    1. Bono N., Ponti F., Mantovani D., Candiani G. Non-viral in vitro gene delivery: It is now time to set the bar! Pharmaceutics. 2020;12:183. doi: 10.3390/pharmaceutics12020183.
    1. Yin H., Kanasty R.L., Eltoukhy A.A., Vegas A.J., Dorkin J.R., Anderson D.G. Nonviral vectors for gene-based therapy. Nat. Rev. Genet. 2014;15:541–555. doi: 10.1038/nrg3763.
    1. Lostalé-Seijo I., Montenegro J. Synthetic materials at the forefront of gene delivery. Nat. Rev. Chem. 2018;2:258–277. doi: 10.1038/s41570-018-0039-1.
    1. Ortiz Mellet C., Benito J.M., García Fernández J.M. Preorganized, macromolecular, gene-delivery systems. Chem. Eur. J. 2010;16:6728–6742. doi: 10.1002/chem.201000076.
    1. Jiménez Blanco J.L., Benito J.M., Ortiz Mellet C., García Fernández J.M. Molecular nanoparticle-based gene delivery systems. J. Drug Deliv. Sci. Technol. 2017;42:18–37. doi: 10.1016/j.jddst.2017.03.012.
    1. Geng W.-C., Huang Q., Xu Z., Wang R., Guo D.-S. Gene delivery based on macrocyclic amphiphiles. Theranostics. 2019;9:3094–3106. doi: 10.7150/thno.31914.
    1. Carbajo-Gordillo A.I., Jiménez Blanco J.L., Benito J.M., Lana H., Marcelo G., Di Giorgio C., Przybylski C., Hinou H., Ceña V., Ortiz Mellet C., et al. Click Synthesis of size and shape-tunable star polymers with functional macrocyclic cores for synergistic DNA complexation and delivery. Biomacromolecules. 2020;21:5173–5188. doi: 10.1021/acs.biomac.0c01283.
    1. Pan Y.-C., Hu X.-Y., Guo D.-S. Biomedical applications of calixarenes: State-of-the-art and perspectives. Angew. Chem. Int. Ed. 2020 doi: 10.1002/anie.201916380.
    1. Illescas B.M., Pérez-Sánchez A., Mallo A., Martín-Domenech Á., Rodríguez-Crespo I., Martín N. Multivalent cationic dendrofullerenes for gene transfer: Synthesis and DNA complexation. J. Chem. B. 2020;8:4505–4515. doi: 10.1039/D0TB00113A.
    1. Carbajo-Gordillo A.I., Rodríguez-Lavado J., Jiménez Blanco J.L., Benito J.M., Di Giorgio C., Vélaz I., Tros de Ilarduya C., Ortiz Mellet C., García Fernández J.M. Trehalose-based Siamese twin amphiphiles with tunable self-assembling, DNA nanocomplexing and gene delivery properties. Chem. Commun. 2019;55:8227–8230. doi: 10.1039/C9CC04489B.
    1. Gasparello J., Manicardi A., Casnati A., Corradini R., Gambari R., Finotti A., Sansone F. Efficient cell penetration and delivery of peptide nucleic acids by an argininocalix[4]arene. Sci. Rep. 2019;9:3036. doi: 10.1038/s41598-019-39211-4.
    1. Minami K., Okamoto K., Harano K., Noiri E., Nakamura E. Hierarchical assembly of siRNA with tetraamino fullerene in physiological conditions for efficient internalization into cells and knockdown. ACS Appl. Mater. Interfaces. 2018;10:19347–19354. doi: 10.1021/acsami.8b01869.
    1. Manzanares D., Araya-Durán I., Gallego-Yerga L., Játiva P., Márquez-Miranda V., Canan J., Jiménez Blanco J.L., Ortiz Mellet C., González-Nilo F.D., García Fernández J.M., et al. Molecular determinants for cyclooligosaccharide-based nanoparticle mediated effective siRNA transfection. Nanomedicine. 2017;12:1607–1621. doi: 10.2217/nnm-2017-0123.
    1. Jiménez Blanco J.L., Ortega-Caballero F., Blanco-Fernández L., Carmona T., Marcelo G., Martínez-Negro M., Aicart E., Junquera E., Mendicuti F., Tros de Ilarduya C., et al. Trehalose-based Janus cyclooligosaccharides: The “click” synthesis and DNA-directed assembly into pH-sensitive transfectious nanoparticles. Chem. Commun. 2016;52:10117–10120. doi: 10.1039/C6CC04791B.
    1. Ortiz Mellet C., García Fernández J.M., Benito J.M. Cyclodextrin-based gene delivery systems. Chem. Soc. Rev. 2011;40:1586–1608. doi: 10.1039/C0CS00019A.
    1. García Fernández J.M., Benito J.M., Ortiz Mellet C. Cyclodextrin-scaffolded glycotransporters for gene delivery. Pure Appl. Chem. 2013;85:1825–1845. doi: 10.1351/pac-con-12-10-13.
    1. Lai W.-F. Cyclodextrins in non-viral gene delivery. Biomaterials. 2014;35:401–411. doi: 10.1016/j.biomaterials.2013.09.061.
    1. Przybylski C., Benito J.M., Bonnet V., Ortiz Mellet C., García Fernández J.M. Deciphering of polycationic carbohydrate based non-viral gene delivery agents by ESI-LTQ-Orbitrap using CID/HCD pairwise tandem mass spectrometry. RSC Adv. 2016;6:78803–78817. doi: 10.1039/C6RA14508F.
    1. Przybylski C., Benito J.M., Bonnet V., Ortiz Mellet C., García Fernández J.M. Toward a suitable structural analysis of gene delivery carrier based on polycationic carbohydrates by electron transfer dissociation tandem mass spectrometry. Anal. Chim. Acta. 2016;948:62–72. doi: 10.1016/j.aca.2016.11.001.
    1. Przybylski C., Benito J.M., Bonnet V., Ortiz Mellet C., García Fernández J.M. Revealing cooperative binding of polycationic cyclodextrins with DNA oligomers by capillary electrophoresis coupled to mass spectrometry. Anal. Chim. Acta. 2018;1002:70–81. doi: 10.1016/j.aca.2017.11.034.
    1. Latxague L., Gaubert A., Barthélémy P. Recent advances in the chemistry of glycoconjugate amphiphiles. Molecules. 2018;23:89. doi: 10.3390/molecules23010089.
    1. Xu X., Wu Y.-L., Li Z., Loh X.J. Cyclodextrin-based sustained gene release systems: A supramolecular solution towards clinical applications. Mater. Chem. Front. 2019;3:181–192. doi: 10.1039/C8QM00570B.
    1. Díaz-Moscoso A., Patricia Balbuena P., Gómez-Garcia M., Ortiz Mellet C., Benito J.M., Le Gourriérec L., Di Giorgio C., Vierling P., Mazzaglia A., Micali N., et al. Rational design of cationic cyclooligosaccharides as efficient gene delivery systems. Chem. Commun. 2008;17:2001–2003. doi: 10.1039/b718672j.
    1. Ortega-Caballero F., Ortiz Mellet C., Le Gourriérec L., Guilloteau N., Di Giorgio C., Vierling P., Defaye J., García Fernández J.M. Tailoring β-cyclodextrin for DNA complexation and delivery by homogeneous functionalization at the secondary face. Org. Lett. 2008;10:5143–5146. doi: 10.1021/ol802081z.
    1. Byrne C., Sallas F., Rai D.K., Ogier J., Darcy R. Poly-6-cationic amphiphilic cyclodextrins designed for gene delivery. Org. Biomol. Chem. 2009;7:3763–3771. doi: 10.1039/b907232b.
    1. Díaz-Moscoso A., Vercauteren D., Rejman J., Benito J.M., Ortiz Mellet C., De Smedt S.C., García Fernández J.M. Insights in cellular uptake mechanisms of pDNA-policationic amphiphilic cyclodextrin nanoparticles (CDplexes) J. Control. Release. 2010;143:318–325. doi: 10.1016/j.jconrel.2010.01.016.
    1. O’Neill M.J., Guoa J., Byrne C., Darcy R., O’Driscoll C.M. Mechanistic studies on the uptake and intracellular trafficking of novel cyclodextrin transfection complexes by intestinal epithelial cells. Int. J. Pharm. 2011;413:174–183. doi: 10.1016/j.ijpharm.2011.04.021.
    1. Méndez-Ardoy A., Urbiola K., Aranda C., Ortiz Mellet C., García Fernández J.M., Tros de Ilarduya C. Polycationic amphiphilic cyclodextrin-based nanoparticles for therapeutic dene Delivery. Nanomedicine. 2011;6:1697–1707. doi: 10.2217/nnm.11.59.
    1. Bienvenu C., Martínez A., Jiménez Blanco J.L., Di Giorgio C., Vierling P., Ortiz Mellet C., Defaye J., García Fernández J.M. Polycationic amphiphilic cyclodextrins as gene vectors: Effect of the macrocyclic ring size on the DNA complexing and delivery properties. Org. Biomol. Chem. 2012;10:5570–5581. doi: 10.1039/c2ob25786f.
    1. O’Mahony A.M., Ogier J., Desgranges S., Cryan J.F., Darcy R., O’Driscoll C.M. A click chemistry route to 2-functionalised PEGylated and cationic β-cyclodextrins: Co-formulation opportunities for siRNA delivery. Org. Biomol. Chem. 2012;10:4954–4960. doi: 10.1039/c2ob25490e.
    1. O’Mahony A.M., Doyle D., Darcy R., Cryan J.F., O’Driscoll C.M. Characterisation of cationic amphiphilic cyclodextrins for neuronal delivery of siRNA: Effect of reversing primary and secondary face modifications. Eur. J. Pharm. Sci. 2012;47:896–903. doi: 10.1016/j.ejps.2012.08.020.
    1. O’Mahony A.M., Godinho B.M.D.C., Ogier J., Devocelle M., Darcy R., Cryan J.F., O’Driscoll C.M. Click-modified cyclodextrins as nonviral vectors for neuronal siRNA delivery. ACS Chem. Neurosci. 2012;3:744–752. doi: 10.1021/cn3000372.
    1. O’Mahony A.M., Ogier J., Darcy R., Cryan J.F., O’Driscoll C.M. Cationic and PEGylated amphiphilic cyclodextrins: Co-formulation opportunities for neuronal siRNA delivery. PLoS ONE. 2013;8:e66413. doi: 10.1371/journal.pone.0066413.
    1. O’Neill M.J., O’Mahony A.M., Byrne C., Darcy R., O’Driscoll C.M. Gastrointestinal gene delivery by cyclodextrins—In vitro quantification of extracellular barriers. Int. J. Pharm. 2013;456:390–399.
    1. Martínez A., Bienvenu C., Jiménez Blanco J.L., Vierling P., Ortiz Mellet C., García Fernández J.M., Di Giorgio C. Amphiphilic oligoethyleneimine-β-cyclodextrin “click” clusters for enhanced DNA delivery. J. Org. Chem. 2013;78:8143–8148. doi: 10.1021/jo400993y.
    1. Villari V., Mazzaglia A., Darcy R., O’Driscoll C.M., Micali N. Nanostructures of cationic amphiphilic cyclodextrin complexes with DNA. Biomacromolecules. 2013;14:811–817. doi: 10.1021/bm3018609.
    1. Godinho B.M.D.C., Ogier J.R., Darcy R., O’Driscoll C.M., Cryan J.F. Self-assembling modified β-cyclodextrin nanoparticles as neuronal siRNA delivery vectors: Focus on Huntington’s disease. Mol. Pharm. 2013;10:640–649. doi: 10.1021/mp3003946.
    1. McCarthy J., O’Neill M.J., Bourre L., Walsh D., Quinlan A., Hurley G., Ogier J., Shanahan F., Melgar S., Darcy R., et al. Gene silencing of TNF-alpha in a murine model of acute colitis using a modified cyclodextrin delivery system. J. Control. Release. 2013;168:28–34. doi: 10.1016/j.jconrel.2013.03.004.
    1. O’Mahony A.M., Cronin M.F., McMahon A., Evans J.C., Daly K., Darcy R., O’Driscoll C.M. Biophysical and structural characterisation of nucleic acid complexes with modified cyclodextrins using circular dichroism. J. Pharm. Sci. 2014;103:1346–1355. doi: 10.1002/jps.23922.
    1. Hibbitts A., O’Mahony A.M., Forde E., Nolan L., Ogier J., Desgranges S., Darcy R., MacLoughlin R., O’Driscoll C.M., Cryan S.A. Early-stage development of novel cyclodextrin siRNA nanocomplexes allows for successful postnebulization transfection of bronchial epithelial cells. J. Aerosol Med. Pulm. Drug Deliv. 2014;27:466–477. doi: 10.1089/jamp.2013.1045.
    1. Gallego-Yerga L., Lomazzi M., Franceschi V., Sansone F., Ortiz Mellet C., Donofrio G., Casnati A., García Fernández J.M. Cyclodextrin- and calixarene-based polycationic amphiphiles as gene delivery systems: A structure-activity relationship study. Org. Biomol. Chem. 2015;13:1708–1723. doi: 10.1039/C4OB02204A.
    1. Evans C., McCarthy J., Torres-Fuentes C., Cryan J.F., Ogier J., Darcy R., Watson R.W., O’Driscoll C.M. Cyclodextrin mediated delivery of NF-kB and SRF siRNA reduces the invasion potential of prostate cancer cells in vitro. Gene Ther. 2015;22:802–810. doi: 10.1038/gt.2015.50.
    1. Fitzgerald K.A., Guo J., Tierney E.G., Curtin C.M., Malhotra M., Darcy R., O’Brien F.J., O’Driscoll C.M. The use of collagen-based scaffolds to simulate prostate cancer bone metastases with potential for evaluating delivery of nanoparticulate gene therapeutics. Biomaterials. 2015;66:53–66. doi: 10.1016/j.biomaterials.2015.07.019.
    1. Pflueger I., Charrat C., Ortiz Mellet C., García Fernández J.M., Di Giorgio C., Benito J.M. Cyclodextrin-Based Facial Amphiphiles: Assessing the impact of the hydrophilic-lipophilic balance in the self-assembly, DNA complexation and gene delivery capabilities. Org. Biomol. Chem. 2016;14:10037–10049. doi: 10.1039/C6OB01882C.
    1. Fitzgerald K.A., Guo J., Raftery R.M., Mencía Castaño I., Curtin C.M., Gooding M., Darcy R., O’ Brien F.J., O’ Driscoll C.M. Nanoparticle-mediated siRNA delivery assessed in a 3D co-culture model simulating prostate cancer bone metastasis. Int. J. Pharm. 2016;511:1058–1069. doi: 10.1016/j.ijpharm.2016.07.079.
    1. Remaut K., De Clercq E., Andries V., Rombouts K., Van Gils V., Cicchelero V., Vandenbussche I., Van Praet S., Benito J.M., García Fernández J.M., et al. Aerosolized non-viral nucleic acid delivery in the vaginal tract of pigs. Pharm. Res. 2016;3:384–394. doi: 10.1007/s11095-015-1796-x.
    1. Minnaert A.-K., Dakwar G.R., Benito J.M., García Fernández J.M., Ceelen W., De Smedt S.C., Remaut K. High-Pressure Nebulization as Application Route for the Peritoneal Administration of siRNA Complexes. Macromol. Biosci. 2017;17:1700024.
    1. Martínez-Negro M., Caracciolo G., Palchetti S., Pozzi D., Capriotti A.L., Cavaliere C., Laganà A., Ortiz Mellet C., Benito J.M., García Fernández J.M., et al. Biophysics and protein corona analysis of Janus cyclodextrin-DNA nanocomplexes. Efficient cellular transfection on cancer cells. Biochim. Biophys. Acta Gen. Subj. 2017;1861:1737–1749. doi: 10.1016/j.bbagen.2017.03.010.
    1. Gallego-Yerga L., Benito J.M., Blanco-Fernández L., Martínez-Negro M., Vélaz I., Aicart E., Junquera E., Ortiz Mellet C., Tros de Ilarduya C., García Fernández J.M. Plasmid-templated control of DNA–cyclodextrin nanoparticle morphology through molecular vector design for effective gene delivery. Chem. Eur. J. 2018;24:3825–3835. doi: 10.1002/chem.201705723.
    1. Singh R.P., Hidalgo T., Cazade P.-A., Darcy R., Cronin M.F., Dorin I., O’Driscoll C.M., Thompson D. Self-assembled cationic β-cyclodextrin nanostructures for siRNA delivery. Mol. Pharmaceutics. 2019;16:1358–1366. doi: 10.1021/acs.molpharmaceut.8b01307.
    1. Martín-Moreno A., Jiménez Blanco J.L., Mosher J., Swanson D.R., García Fernández J.M., Sharma A., Ceña V., Muñoz-Fernández M.A. Nanoparticle-delivered HIV peptides to dendritic cells a promising approach to generate a therapeutic vaccine. Pharmaceutics. 2020;12:656. doi: 10.3390/pharmaceutics12070656.
    1. Gallego-Yerga L., Blanco-Fernández L., Urbiola K., Carmona T., Marcelo G., Benito J.M., Mendicuti F., Tros de Ilarduya C., Ortiz Mellet C., García Fernández J.M. Host-guest mediated DNA templation of polycationic supramolecules for hierarchical nanocondensation and the delivery of gene material. Chem. Eur. J. 2015;21:12093–12104. doi: 10.1002/chem.201501678.
    1. Balbuena P., Lesur D., González Álvarez M.J., Mendicuti F., Ortiz Mellet C., García Fernández J.M. One-pot regioselective synthesis of 2I,3I-O-(o-xylylene)-capped cyclomaltooligosaccharides: Tailoring the topology and supramolecular properties of cyclodextrins. Chem Commun. 2007;31:3270–3272. doi: 10.1039/b705644c.
    1. González-Álvarez M.J., Balbuena P., Ortiz Mellet C., García Fernández J.M., Mendicuti F. Study of the conformational and self-aggregation properties of 2I,3I-O-(o-Xylylene)-per-O-Me-α- and -β-cyclodextrins by fluorescence and molecular modeling. J. Phys. Chem. B. 2008;112:13717–13729. doi: 10.1021/jp077670c.
    1. Gonzalez-Álvarez M.J., Vicente J., Ortiz Mellet C., García Fernández J.M., Mendicuti F. Thermodynamics of the dimer formation of 2I,3I-O-(o-xylylene)-per-O-Me-γ-cyclodextrin: Fluorescence, molecular mechanics and molecular dynamics. J. Fluoresc. 2009;19:975–988. doi: 10.1007/s10895-009-0497-4.
    1. González-Álvarez M.J., Méndez-Ardoy A., Benito J.M., García Fernández J.M., Mendicuti F. Self-association of a naphthalene-capped-β-cyclodextrin through cooperative strong hydrophobic interactions. J. Photochem. Photobiol. A. 2011;223:25–36. doi: 10.1016/j.jphotochem.2011.07.013.
    1. González-Álvarez M.J., Mayordomo N., Gallego-Yerga L., Ortiz Mellet C., Mendicuti F. Improving inclusion capabilities of permethylated cyclodextrins by appending a cap-like aromatic moiety. Tetrahedron. 2012;68:2961–2972. doi: 10.1016/j.tet.2012.02.037.
    1. González-Álvarez M.J., Benito J.M., García Fernández J.M., Ortiz Mellet C., Mendicuti F. Influence of the macroring size on the self-association thermodynamics of cyclodextrins with a double-linked naphthalene at the secondary face. J. Phys. Chem. B. 2013;117:5472–5485. doi: 10.1021/jp400784t.
    1. Balbuena P., Gonçalves-Pereira R., Jiménez Blanco J.L., García-Moreno M.I., Lesur D., Ortiz Mellet C., García Fernández J.M. o-Xylylene protecting group in carbohydrate chemistry: Application to the regioselective protection of a single vic-diol segment in cyclodextrins. J. Org. Chem. 2013;78:1390–1403. doi: 10.1021/jo302178f.
    1. Gallego-Yerga L., González-Álvarez M.J., Mayordomo N., Santoyo-González F., Benito J.M., Ortiz Mellet C., Mendicuti F., García Fernández J.M. Dynamic self-assembly of polycationic clusters based on cyclodextrins for pH-Sensitive DNA nanocondensation and delivery by component design. Chem. Eur. J. 2014;22:6622–6627. doi: 10.1002/chem.201402026.
    1. Neva T., Carmona T., Benito J.M., Przybylski C., Ortiz Mellet C., Mendicuti F., García Fernández J.M. Xylylene clips for the topology-guided control of the inclusion and self-assembling properties of cyclodextrins. J. Org. Chem. 2018;83:5588–5597. doi: 10.1021/acs.joc.8b00602.
    1. Neva T., Carmona T., Benito J.M., Przybylski C., Ortiz Mellet C., Mendicuti F., García Fernández J.M. Dynamic control of the self-assembling properties of cyclodextrins by the interplay of aromatic and host-guest interactions. Front. Chem. 2019;7:72. doi: 10.3389/fchem.2019.00072.
    1. Neva T., Ortiz Mellet C., García Fernández J.M., Benito J.M. Multiply–linked cyclodextrin–aromatic hybrids: Caps, hinges and clips. J. Carbohydr. Chem. 2019;38:470–493. doi: 10.1080/07328303.2019.1609020.
    1. Neva T., Carbajo-Gordillo A.I., Benito J.M., Lana H., Marcelo G., Ortiz Mellet C., Tros de Ilarduya C., Mendicuti F., García Fernández J.M. Tuning the topological landscape of DNA-cyclodextrin nanocomplexes by molecular design. Chem. Eur. J. 2020;26:15259–15269. doi: 10.1002/chem.202002951.
    1. Guo J., Ogier J.R., Desgranges S., Darcy R., O’Driscoll C. Anisamide-targeted cyclodextrin nanoparticles for siRNA delivery to prostate tumours in mice. Biomaterials. 2012;33:7775–7784. doi: 10.1016/j.biomaterials.2012.07.012.
    1. O’Mahony A.M., Desgranges S., Ogier J., Quinlan A., Devocelle M., Darcy R., Cryan J.F., O’Driscoll C.M. In vitro investigations of the efficacy of cyclodextrin-siRNA complexes modified with lipid-PEG-octaarginine: Towards a formulation strategy for non-viral neuronal siRNA delivery. Pharm. Res. 2013;30:1086–1098. doi: 10.1007/s11095-012-0945-8.
    1. Aranda C., Urbiola K., Méndez Ardoy A., García Fernández J.M., Ortiz Mellet C., Tros de Ilarduya C. Targeted gene delivery by new folate–polycationic amphiphilic cyclodextrin–DNA nanocomplexes in vitro and in vivo. Eur. J. Pharm. Biopharm. 2013;85:390–397. doi: 10.1016/j.ejpb.2013.06.011.
    1. Gooding M., Malhotra M., McCarthy D.J., Godinho B.M.D.C., Cryan J.F., Darcy R., O’Driscoll C.M. Synthesis and characterization of rabies virus glycoprotein tagged amphiphilic cyclodextrins for siRNA delivery in human glioblastoma cells: In vitro analysis. Eur. J. Pharm. Sci. 2015;71:80–92. doi: 10.1016/j.ejps.2015.02.007.
    1. Malhotra M., Gooding M., Sallas F., Evans J.C., Fitzgerald K.A., Evans J.C., Darcy R., O’Driscoll C.M. A novel, anisamide-targeted cyclodextrin nanoformulation for siRNA delivery to prostate cancer cells expressing the sigma-1 receptor. Int. J. Pharm. 2016;499:131–145.
    1. Malhotra M., Guo J., Guo J.F., O’Shea J.P., Hanrahan K., O’Neill A., Landry W.D., Griffin B.T., Darcy R., Watson R.W., et al. Folate-targeted amphiphilic cyclodextrin.siRNA nanoparticles for prostate cancer therapy exhibit PSMA mediated uptake, therapeutic gene silencing in vitro and prolonged circulation in vivo. Nanomedicine Nanotechnol. Biol. Med. 2016;12:2341–2351.
    1. Evans J.C., Malhotra M., Fitzgerald K.A., Guo J., Cronin M.F., Fitzgerald K.A., Cronin M.F., Curtin C.M., O’Brien F.J., Darcy R., et al. Formulation and evaluation of anisamide-targeted amphiphilic cyclodextrin nanoparticles to promote therapeutic gene silencing in a 3D prostate cancer bone metastases model. Mol. Pharmaceutics. 2017;14:42–52. doi: 10.1021/acs.molpharmaceut.6b00646.
    1. Guo J., Russell E.G., Darcy R., Cotter T.G., McKenna S.L., Cahill M.R., O’Driscoll C.M. Antibody-targeted cyclodextrin-based nanoparticles for siRNA delivery in the treatment of acute myeloid leukemia: Physicochemical characteristics, in vitro mechanistic studies, and ex vivo patient derived therapeutic efficacy. Mol. Pharmaceutics. 2017;14:940–952. doi: 10.1021/acs.molpharmaceut.6b01150.
    1. Evans J.C., Malhotra M., Sweeney K., Darcy R., Nelson C.C., Hollier B.G., O’Driscoll C.M. Folate-targeted amphiphilic cyclodextrin nanoparticles incorporating a fusogenic peptide deliver therapeutic siRNA and inhibit the invasive capacity of 3D prostate cancer tumours. Int. J. Pharm. 2017;532:511–518. doi: 10.1016/j.ijpharm.2017.09.013.
    1. Díaz-Moscoso A., Guilloteau N., Bienvenu C., Mendez-Ardoy A., Jiménez Blanco J.L., Benito J.M., Le Gourriérec L., Di Giorgio C., Vierling P., Defaye J., et al. Mannosyl-coated nanocomplexes from amphiphilic cyclodextrins and pDNA for site-specific gene delivery. Biomaterials. 2011;32:7263–7273. doi: 10.1016/j.biomaterials.2011.06.025.
    1. Cendret V., François-Heude M., Méndez-Ardoy A., Moreau V., García Fernández J.M., Djedaïni-Pilard F. Design and synthesis of a ‘‘click’’ high-mannose oligosaccharide mimic emulating Man8 binding affinity towards Con A. Chem. Commun. 2012;48:3733–3735. doi: 10.1039/c2cc30773a.
    1. Rodríguez-Lavado J., de La Mata M., Jiménez-Blanco J.L., García-Moreno M.I., Benito J.M., Díaz-Quintana A., Sánchez-Alcázar J.A., Higaki K., Nanba E., Ohno K., et al. Targeted delivery of pharmacological chaperones for Gaucher disease to macrophages by a mannosylated cyclodextrin carrier. Org. Biomol. Chem. 2014;12:2289–2301. doi: 10.1039/C3OB42530D.
    1. François-Heude M., Méndez-Ardoy A., Cendret V., Lafite P., Daniellou R., Ortiz Mellet C., García Fernández J.M., Moreau V., Djedaïni-Pilard F. Synthesis of high-mannose oligosaccharide analogues through click chemistry: True functional mimics of their natural counterparts against lectins? Chem. Eur. J. 2015;21:1978–1991. doi: 10.1002/chem.201405481.
    1. González-Cuesta M., Goyard D., Nanba E., Higaki K., García Fernández J.M., Renaudet O., Ortiz Mellet C. Multivalent glycoligands with lectin/enzyme dual specificity: Self-deliverable glycosidase regulators. Chem. Commun. 2019;55:12845–12848. doi: 10.1039/C9CC06376E.
    1. Gadekar A., Bhowmick S., Pandit A. A glycotherapeutic approach to functionalize biomaterial-based systems. Adv. Funct. Mater. 2020:1910031. doi: 10.1002/adfm.201910031.
    1. Chen F., Huang G. Application of glycosylation in targeted drug delivery. Eur. J. Med. Chem. 2019;182:111612. doi: 10.1016/j.ejmech.2019.111612.
    1. Kawakami S., Hashida M. Glycosylation-mediated targeting of carriers. J. Control. Release. 2014;190:542–555. doi: 10.1016/j.jconrel.2014.06.001.
    1. Méndez-Ardoy A., Díaz-Moscoso A., Ortiz Mellet C., Di Giorgio C., Vierling P., Benito J.M., García Fernández J.M. Harmonized tuning of nucleic acid and lectin binding properties with multivalent cyclodextrins for macrophage-selective gene delivery. RSC Adv. 2015;5:76464–76471. doi: 10.1039/C5RA16087A.
    1. McMahon A., O’Neill M.J., Gomez E., Donohue R., Forde D., Darcy R., O’Driscoll C.M. Targeted gene delivery to hepatocytes with galactosylated amphiphilic cyclodextrins. J. Pharm. Pharmacol. 2012;64:1063–1073. doi: 10.1111/j.2042-7158.2012.01497.x.
    1. Donohue R., Mazzaglia A., Ravoo B.J., Darcy R. Cationic β-cyclodextrin bilayer vesicles. Chem. Commun. 2002;7:2864–2865. doi: 10.1039/B207238F.
    1. Symens N., Méndez-Ardoy A., Díaz-Moscoso A., Sánchez-Fernández E., Remaut K., Demeester J., García Fernández J.M., De Smedt S.C., Rejman J. Efficient transfection of hepatocytes mediated by mRNA complexed to galactosylated cyclodextrins. Bioconjugate Chem. 2012;23:1276–1289. doi: 10.1021/bc3001003.
    1. Baussanne I., Benito J.M., Ortiz Mellet C., García Fernández J.M., Law H., Defaye J. Synthesis and comparative lectin-binding affinity of mannosyl-coated β-cyclodextrin-dendrimer constructs. Chem. Commun. 2000:1489–1490. doi: 10.1039/b003765f.
    1. Smiljanic N., Moreau V., Yockot D., Benito J.M., García Fernández J.M., Djedaïni-Pilard F. Supramolecular control of oligosaccharide-protein interactions: Switchable and tunable ligands for concanavalin A based on β-cyclodextrin. Angew. Chem. Int. Ed. 2006;45:5465–5468. doi: 10.1002/anie.200601123.
    1. Aguilar-Moncayo E.M., Guilloteau N., Bienvenu C., Jiménez Blanco J.L., Di Giorgio C., Vierling P., Benito J.M., Ortiz Mellet C., García Fernández J.M. Cyclodextrin-scaffolded amphiphilic aminoglucoside clusters: Self-assembling and gene delivery capabilities. New J. Chem. 2014;38:5215–5225. doi: 10.1039/C4NJ00700J.
    1. Guilloteau N., Bienvenu C., Charrat C., Jiménez Blanco J.L., Díaz-Moscoso A., Ortiz Mellet C., García Fernández J.M., Vierling P., Di Giorgio C. Cell uptake mechanisms of glycosylated cationic pDNA–cyclodextrin nanoparticles. RSC Adv. 2015;5:29135–29144. doi: 10.1039/C5RA00964B.
    1. Kihara F., Arima H., Tsutsumi T., Hirayama F., Uekama K. Effects of structure of polyamidoamine dendrimer on gene transfer efficiency of the dendrimer conjugate with α-cyclodextrin. Bioconjugate Chem. 2002;13:1211–1219. doi: 10.1021/bc025557d.
    1. Kihara F., Arima H., Tsutsumi T., Hirayama F., Uekama K. In vitro and in vivo gene transfer by an optimized α-cyclodextrin conjugate with polyamidoamine dendrimer. Bioconjugate Chem. 2003;14:342–350. doi: 10.1021/bc025613a.
    1. Hayashi Y., Higashi T., Motoyama K., Mori Y., Jono H., Ando Y., Arima H. Design and evaluation of polyamidoamine dendrimer conjugate with PEG, α-cyclodextrin and lactose as a novel hepatocyte-selective gene carrier in vitro and in vivo. J. Drug Target. 2013;21:487–496. doi: 10.3109/1061186X.2013.769105.
    1. Motoyama K., Mitsuyasu R., Akao C., Tanaka T., Ohyama A., Sato N., Higashi T., Arima H. Design and Evaluation of Thioalkylated Mannose-Modified Dendrimer (G3)/α-cyclodextrin conjugates as antigen-presenting cell-selective siRNA carriers. AAPS J. 2014;16:1298–1308. doi: 10.1208/s12248-014-9665-9.
    1. Hayashi Y., Higashi T., Motoyama K., Hiroumi Jono H., Yukio Ando Y., Onodera R., Arima H. Hepatocyte-targeted delivery of siRNA polyplex with PEG-modified lactosylated dendrimer/cyclodextrin conjugates for transthyretin-related amyloidosis therapy. Biol. Pharm. Bull. 2019;42:1679–1688. doi: 10.1248/bpb.b19-00278.
    1. Motoyama K., Mitsuyasu R., Akao C., Hashim I.I.A., Sato N., Tanaka T., Higashi T., Arima H. Potential use of thioalkylated mannose-modified dendrimer (G3)/α-cyclodextrin conjugate as an NF-κB siRNA carrier for the treatment of fulminant hepatitis. Mol. Pharmaucetics. 2015;12:3129–3136. doi: 10.1021/mp500814f.
    1. Voskuhl J., Stuart M.C.A., Ravoo B.J. Sugar-decorated sugar vesicles: Lectin-carbohydrate recognition at the surface of cyclodextrin vesicles. Chem. Eur. J. 2010;16:2790–2796. doi: 10.1002/chem.200902423.
    1. Vico R.V., Voskuhl J., Ravoo B.J. Multivalent interaction of cyclodextrin vesicles, carbohydrate guests, and lectins: A kinetic investigation. Langmuir. 2011;27:1391–1397. doi: 10.1021/la1038975.
    1. Ravoo B.J., Darcy R. Cyclodextrin bilayer vesicles. Angew. Chem. Int. Ed. 2000;39:4324–4326. doi: 10.1002/1521-3773(20001201)39:23<4324::AID-ANIE4324>;2-O.
    1. Falvey P., Lim C.W., Darcy R., Revermann T., Karst U., Giesbers M., Marcelis A.T.M., Lazar A., Coleman A.W., Reinhoudt D.N., et al. Bilayer vesicles of amphiphilic cyclodextrins: Host membranes that recognize guest molecules. Chem. Eur. J. 2005;11:1171–1180. doi: 10.1002/chem.200400905.
    1. de Vries W.C., Tesch M., Studer A., Ravoo B.J. Molecular recognition and immobilization of ligand-conjugated redox-responsive polymer nanocontainers. ACS Appl. Mater. Interfaces. 2017;9:41760–41766. doi: 10.1021/acsami.7b15516.
    1. Schibilla F., Voskuhl J., Fokina N.A., Jeremy E.P., Dahl J.E.P., Schreiner P.R., Ravoo B.J. Host-guest complexes of cyclodextrins and nanodiamonds as a strong non-covalent binding motif for self-sssembled nanomaterials. Chem. Eur. J. 2017;23:16059–16065. doi: 10.1002/chem.201703392.
    1. Ehrmann S., Chu C.-W., Kumari S., Silberreis K., Böttcher C., Dernedde J., Ravoo B.J., Haag R. A toolbox approach for multivalent presentation of ligand–receptor recognition on a supramolecular scaffold. J. Mater. Chem. B. 2018;6:4216–4222. doi: 10.1039/C8TB00922H.
    1. Gallego-Yerga L., de la Torre C., Sansone F., Casnati F., Ortiz Mellet C., García Fernández J.M., Ceña V. Synthesis, self-assembly and anticancer drug encapsulation and delivery properties of cyclodextrin-based giant amphiphiles. Carbohydr. Polym. 2021;252:117135. doi: 10.1016/j.carbpol.2020.117135.
    1. Gallego-Yerga L., Posadas I., de la Torre C., Ruiz-Almansa J., Sansone F., Ortiz Mellet C., Casnati A., García Fernández J.M., Ceña V. Docetaxel-loaded nanoparticles assembled from β- cyclodextrin/calixarene giant surfactants: Physicochemical properties and cytotoxic effect in prostate cancer and glioblastoma cells. Front. Pharmacol. 2017;8:249. doi: 10.3389/fphar.2017.00249.
    1. Gallego-Yerga L., Lomazzi M., Sansone F., Ortiz Mellet C., Casnati A., García Fernandez J.M. Glycoligand-targeted core-shell nanospheres with tunable drug release profiles from calixarene-cyclodextrin heterodimers. Chem. Commun. 2014;50:7440–7443. doi: 10.1039/C4CC02703E.
    1. Samanta A., Ravoo B.J. Magnetic separation of proteins by a self-assembled supramolecular ternary complex. Angew. Chem. Int. Ed. 2014;53:12946–12950. doi: 10.1002/anie.201405849.
    1. Hu C., Wu J., Wei T., Zhan W., Qu Y., Pan Y., Yu Q., Chen H. A supramolecular approach for versatile biofunctionalization of magnetic nanoparticles. J. Mater. Chem. B. 2018;6:2198–2203. doi: 10.1039/C8TB00490K.
    1. Oz Y., Abdouni Y., Yilmaz G., Becer C.R., Sanyal A. Magnetic glyconanoparticles for selective lectin separation and purification. Polym. Chem. 2019;10:3351–3361. doi: 10.1039/C8PY01748D.
    1. Bavireddi H., Kikkeri R. Glyco-β-cyclodextrin capped quantum dots: Synthesis, cytotoxicity and optical detection of carbohydrate–protein interactions. Analyst. 2012;137:5123–5127. doi: 10.1039/c2an35983a.
    1. Oikonomou M., Wang J., Carvalho J.J., Velders A.H. Ternary supramolecular quantum-dot network flocculation for selective lectin detection. Nano Res. 2016;9:1904–1912. doi: 10.1007/s12274-016-1082-1.
    1. Luo G.-F., Chen W.-H., Lei Q., Qiu W.-X., Liu Y.-X., Cheng Y.-J., Zhang X.-Z. A triple-collaborative strategy for high-performance tumor therapy by multifunctional mesoporous silica-coated gold nanorods. Adv. Funct. Mater. 2016;26:4339–4350. doi: 10.1002/adfm.201505175.
    1. Qi Z., Bharate P., Lai C.-H., Ziem B., Böttcher C., Schulz A., Beckert F., Hatting B., Mülhaupt R., Seeberger P.H., et al. Multivalency at interfaces: Supramolecular carbohydrate-functionalized graphene derivatives for bacterial capture, release, and disinfection. Nano Lett. 2015;15:6051–6057. doi: 10.1021/acs.nanolett.5b02256.
    1. Aykaç A., Martos-Maldonado M.C., Casas-Solvas J.M., Quesada-Soriano I., García-Maroto F., García-Fuentes L., Vargas-Berenguel A. β-Cyclodextrin-bearing gold glyconanoparticles for the development of site specific drug delivery systems. Langmuir. 2014;30:234–242. doi: 10.1021/la403454p.
    1. Massaro M., Riela S., Lo Meo P., Noto R., Cavallaro G., Milioto S., Lazzara G. Functionalized halloysite multivalent glycocluster as a new drug delivery system. J. Mater. Chem. B. 2014;2:7732–7738. doi: 10.1039/C4TB01272K.
    1. Massaro M., Riela S., Baiamonte C., Jiménez Blanco J.L., Giordano C., Lo Meo P., Milioto S., Noto R., Parisi F., Pizzolanti G., et al. Dual drug-loaded halloysite hybrid-based glycocluster for sustained release of hydrophobic molecules. RSC Adv. 2016;6:87935–87944. doi: 10.1039/C6RA14657K.
    1. Cutrone G., Li X., Casas-Solvas J.M., Menendez-Miranda M., Qiu J., Benkovics G., Constantin D., Malanga M., Moreira-Alvarez B., Costa-Fernandez J.M., et al. Design of engineered cyclodextrin derivatives for spontaneous coating of highly porous metal-organic framework nanoparticles in aqueous media. Nanomaterials. 2019;9:1103. doi: 10.3390/nano9081103.
    1. Hapiot F., Menuel S., Ferreira M., Léger B., Bricout H., Tilloy S., Monflier E. Catalysis in cyclodextrin-based unconventional reaction media: Recent developments and future opportunities. ACS Sustainable Chem. Eng. 2017;5:3598–3606. doi: 10.1021/acssuschemeng.6b02886.
    1. Zhu X., Xu G., Chamoreau L.-M., Zhang Y., Mouriès-Mansuy V., Fensterbank L., Bistri-Aslanoff O., Sylvain Roland S., Sollogoub M. Permethylated NHC-capped α- and β-cyclodextrins (ICyDMe) regioselective and enantioselective gold-catalysis in pure water. Chem. Eur. J. 2020 doi: 10.1002/chem.202003347. in press.
    1. Morillo E., Madrid F., Lara-Moreno A., Villaverde J. Soil bioremediation by cyclodextrins. A review. Int. J. Pharm. 2020;591:119943. doi: 10.1016/j.ijpharm.2020.119943.
    1. Muñoz J., Crivillers N., Ravoo B.J., Mas-Torrent M. Cyclodextrin-based superparamagnetic host vesicles as ultrasensitive nanobiocarriers for electrosensing. Nanoscale. 2020;12:9884–9889. doi: 10.1039/D0NR01702G.
    1. Zhao Y.-Y., Yang J.-M., Jin X.-Y., Cong H., Ge Q.-M., Liu M., Tao Z. Recent development of supramolecular sensors constructed by hybridization of organic macrocycles with nanomaterials. Curr. Org. Chem. 2020;24:265–290. doi: 10.2174/1385272824666200214110110.
    1. Casulli M.A., Taurino I., Carrara S., Hayashita T. Integration methods of cyclodextrins on gold and carbon electrodes for electrochemical sensors. C J. Carbon Res. 2019;5:78. doi: 10.3390/c5040078.
    1. Luo H., Chen L.-X., Ge Q.-M., Liu M., Tao Z., Zhou Y.-H., Cong H. Applications of macrocyclic compounds for electrochemical sensors to improve selectivity and sensitivity. J. Incl. Phenom. Macrocycl. Chem. 2019;95:171–198. doi: 10.1007/s10847-019-00934-6.
    1. Oliveri V., Vecchio G. Metallocyclodextrins in medicinal chemistry. Future Med. Chem. 2018;10:663–677. doi: 10.4155/fmc-2017-0249.
    1. Guillen-Poza P.A., Sánchez-Fernández E.M., Artigas G., García Fernández J.M., Hinou H., Ortiz Mellet C., Nishimura S.-I., Garcia-Martin F. Amplified detection of breast cancer autoantibodies using MUC1-based Tn antigen mimics. J. Med. Chem. 2020;63:8524–8533. doi: 10.1021/acs.jmedchem.0c00908.
    1. Yao X., Mu J., Zeng L., Lin J., Nie Z., Jiang X., Huang P. Stimuli-responsive cyclodextrin-based nanoplatforms for cancer treatment and theranostics. Mater. Horiz. 2019;6:846–870. doi: 10.1039/C9MH00166B.
    1. Yu G., Chen X. Host-guest chemistry in supramolecular theranostics. Theranostics. 2019;9:3041–3074. doi: 10.7150/thno.31653.
    1. Braga S.S. Cyclodextrins: Emerging medicines of the new millennium. Biomolecules. 2019;9:801. doi: 10.3390/biom9120801.
    1. Bermejo I.A., Navo C.D., Castro-López J., Guerreiro A., Jiménez-Moreno E., Sánchez Fernández E.M., García-Martín F., Hinou H., Nishimura S.-I., García Fernández J.M., et al. Synthesis, conformational analysis and in vivo assays of an anti-cancer vaccine that features an unnatural antigen based on an sp2-iminosugar fragment. Chem. Sci. 2020;11:3996–4006. doi: 10.1039/C9SC06334J.
    1. Wankar J., Kotla N.G., Gera S., Rasala S., Abhay Pandit A., Rochev Y.A. Recent advances in host–guest self-assembled cyclodextrin carriers: Implications for responsive drug delivery and biomedical engineering. Adv. Funct. Mater. 2020;30:1909049. doi: 10.1002/adfm.201909049.
    1. García-Moreno M.I., de la Mata M., Sánchez-Fernández E.M., Juan M., Benito J.M., Díaz-Quintana A., Fustero S., Nanba E., Higaki K., Sánchez-Alcázar J.A., et al. Fluorinated chaperone_β-cyclodextrin formulations for β-glucocerebrosidase activity enhancement in neuronopathic Gaucher disease. J. Med. Chem. 2017;60:1829–1842. doi: 10.1021/acs.jmedchem.6b01550.

Source: PubMed

3
Abonneren