The predictive validity for mortality of the driving pressure and the mechanical power of ventilation

David M P van Meenen, Ary Serpa Neto, Frederique Paulus, Coen Merkies, Laura R Schouten, Lieuwe D Bos, Janneke Horn, Nicole P Juffermans, Olaf L Cremer, Tom van der Poll, Marcus J Schultz, MARS Consortium, Friso M de Beer, Lieuwe D Bos, Gerie J Glas, Janneke Horn, Arie J Hoogendijk, Roosmarijn T van Hooijdonk, Mischa A Huson, Tom van der Poll, Brendon Scicluna, Laura R Schouten, Marcus J Schultz, Marleen Straat, Lonneke A van Vught, Luuk Wieske, Maryse A Wiewel, Esther Witteveen, Marc J Bonten, Olaf L Cremer, Jos F Frencken, Kirsten van de Groep, Peter M Klein Klouwenberg, Maria E Koster-Brouwer, David S Ong, Meri R Varkila, Diana M Verboom, David M P van Meenen, Ary Serpa Neto, Frederique Paulus, Coen Merkies, Laura R Schouten, Lieuwe D Bos, Janneke Horn, Nicole P Juffermans, Olaf L Cremer, Tom van der Poll, Marcus J Schultz, MARS Consortium, Friso M de Beer, Lieuwe D Bos, Gerie J Glas, Janneke Horn, Arie J Hoogendijk, Roosmarijn T van Hooijdonk, Mischa A Huson, Tom van der Poll, Brendon Scicluna, Laura R Schouten, Marcus J Schultz, Marleen Straat, Lonneke A van Vught, Luuk Wieske, Maryse A Wiewel, Esther Witteveen, Marc J Bonten, Olaf L Cremer, Jos F Frencken, Kirsten van de Groep, Peter M Klein Klouwenberg, Maria E Koster-Brouwer, David S Ong, Meri R Varkila, Diana M Verboom

Abstract

Background: Outcome prediction in critically ill patients under invasive ventilation remains extremely challenging. The driving pressure (ΔP) and the mechanical power of ventilation (MP) are associated with patient-centered outcomes like mortality and duration of ventilation. The objective of this study was to assess the predictive validity for mortality of the ΔP and the MP at 24 h after start of invasive ventilation.

Methods: This is a post hoc analysis of an observational study in intensive care unit patients, restricted to critically ill patients receiving invasive ventilation for at least 24 h. The two exposures of interest were the modified ΔP and the MP at 24 h after start of invasive ventilation. The primary outcome was 90-day mortality; secondary outcomes were ICU and hospital mortality. The predictive validity was measured as incremental 90-day mortality beyond that predicted by the Acute Physiology, Age and Chronic Health Evaluation (APACHE) IV score and the Simplified Acute Physiology Score (SAPS) II.

Results: The analysis included 839 patients with a 90-day mortality of 42%. The median modified ΔP at 24 h was 15 [interquartile range 12 to 19] cm H2O; the median MP at 24 h was 206 [interquartile range 145 to 298] 10-3 J/min/kg predicted body weight (PBW). Both parameters were associated with 90-day mortality (odds ratio (OR) for 1 cm H2O increase in the modified ΔP, 1.05 [95% confidence interval (CI) 1.03 to 1.08]; P < 0.001; OR for 100 10-3 J/min/kg PBW increase in the MP, 1.20 [95% CI 1.09 to 1.33]; P < 0.001). Area under the ROC for 90-day mortality of the modified ΔP and the MP were 0.70 [95% CI 0.66 to 0.74] and 0.69 [95% CI 0.65 to 0.73], which was neither different from that of the APACHE IV score nor that of the SAPS II.

Conclusions: In adult patients under invasive ventilation, the modified ΔP and the MP at 24 h are associated with 90 day mortality. Neither the modified ΔP nor the MP at 24 h has predictive validity beyond the APACHE IV score and the SAPS II.

Keywords: Driving pressure; Intensive care unit; Invasive ventilation; Mechanical power; Mechanical power of ventilation; Mortality; Predictive validity; Prognostication; Respiratory system driving pressure; ΔP.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flow chart of inclusion of patients. Abbreviations: ICU, intensive care unit; MARS, “Molecular diAgnosis and Risk Stratification”
Fig. 2
Fig. 2
Kaplan-Meier curves for 90-day mortality for low and high modified ΔP and low and high MP groups. Curves were compared using a log-rank test. Abbreviations: ΔP, respiratory system driving pressure; MP, mechanical power corrected for predicted body weight; PBW, predicted body weight
Fig. 3
Fig. 3
(a) Predictive validity for the ΔP and the MP compared to baseline risk based on APACHE IV scores; (b) predictive validity for the ΔP and the MP compared to baseline risk based on SAPS II. Abbreviations: ΔP, respiratory system driving pressure; ARDS, acute respiratory distress syndrome; ICU, intensive care unit; MP, mechanical power of ventilation normalized for predicted body weight; PBW, predicted body weight

References

    1. Sweeney RM, McAuley DF. Acute respiratory distress syndrome. Lancet. 2016;388:2416–2430. doi: 10.1016/S0140-6736(16)00578-X.
    1. Balzer F, Menk M, Ziegler J, Pille C, Wernecke K, Spies C, Schmidt M, Weber-Carstens S, Deja M. Predictors of survival in critically ill patients with acute respiratory distress syndrome (ARDS): an observational study. BMC Anesthesiol. 2016;16:108. doi: 10.1186/s12871-016-0272-4.
    1. Zimmerman JE, Kramer AA, McNair DS, Malila FM. Acute Physiology and Chronic Health Evaluation (APACHE) IV: hospital mortality assessment for today’s critically ill patients. Crit Care Med. 2006;34:1297–1310. doi: 10.1097/01.CCM.0000215112.84523.F0.
    1. Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1991;4:1957–1963.
    1. The ARDS Definition Task Force Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307:2526–2533. doi: 10.1001/jama.2012.5669.
    1. Bersten AD. Incidence and mortality of acute lung injury and the acute respiratory distress syndrome in three Australian States. Am J Resp Crit Care Med. 2002;165(4):443–448. doi: 10.1164/ajrccm.165.4.2101124.
    1. Seeley E, McAuley DF, Eisner M, Miletin M, Matthay MA, Kallet RH. Predictors of mortality in acute lung injury during the era of lung protective ventilation. Thorax. 2008;63(11):994–998. doi: 10.1136/thx.2007.093658.
    1. Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Paula Pinto Schettino G, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338:347–354. doi: 10.1056/NEJM199802053380602.
    1. Estenssoro E, Dubin A, Laffaire E, Canales H, Saenz G, Moseinco M, Pozo M, Gomez A, Baredes N, Jannello G, Osatnik J. Incidence, clinical course, and outcome in 217 patients with acute respiratory distress syndrome. Critical Care Medicine. 2002;30:2450–2456. doi: 10.1097/00003246-200211000-00008.
    1. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, Gattinoni L, van Haren F, Larsson A, DF MA, Ranieri M, Rubenfeld F, Thompson BT, Wrigge H, Slutsky A, Pesenti A, for the LUNG SAFE Investigators and the ESICM Trials Group Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315:788–800. doi: 10.1001/jama.2016.0291.
    1. Amato MBP, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA, Stewart TE, Briel M, Talmor D, Mercat A, Richard JM, Carvalho CR, Brower R. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372:747–755. doi: 10.1056/NEJMsa1410639.
    1. Neto AS, Hemmes SN, Barbas CS, Beiderlinden M, Fernandez-Bustamante A, Futier E, Gajic O, El-Tahan MR, Ghamdi AA, Günay E, Jaber S, Kokulu S, Kozian A, Licker M, Lin WQ, Maslow AD, Memtsoudis SG, Reis Miranda D, Moine P, Ng T, Paparella D, Ranieri VM, Scavonetto F, Schilling T, Selmo G, Severgnini P, Sprung J, Sundar S, Talmor D, Treschan T, Unzueta C, Weingarten TN, Wolthuis EK, Wrigge H, Amato MB, Costa EL, de Abreu MG, Pelosi P, Schultz MJ, Network Investigators PROVE. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data. Lancet Respir Med. 2016;4:272–280. doi: 10.1016/S2213-2600(16)00057-6.
    1. Bugedo G, Retamal J, Bruhn A. Driving pressure: a marker of severity, a safety limit, or a goal for mechanical ventilation? Crit Care. 2017;21:199. doi: 10.1186/s13054-017-1779-x.
    1. Cressoni M, Gotti M, Chiurazzi C, Massari D, Algieri I, Amini M, Cammaroto A, Brioni M, Montaruli C, Nikolla K, Guanziroli M, Dondossola D, Gatti S, Valerio V, Vergani GL, Pugni P, Cadringher P, Gagliano N, Gattinoni L. Mechanical power and development of ventilator-induced lung injury. Anesthesiology. 2016;124:1100–1108. doi: 10.1097/ALN.0000000000001056.
    1. Gattinoni L, Tonetti T, Cressoni M, Cadringher P, Herrmann P, Moerer O, Protti A, Gotti M, Chiurazzi C, Carlesso E, Chiumello D, Quintel M. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2016;42:1567–1575. doi: 10.1007/s00134-016-4505-2.
    1. Serpa Neto A, Deliberato RO, Johnson AEW, Bos LD, Amorim P, Pereira SM, Cazati DC, Cordioli RL, Correa TD, Pollard TJ, Schettino GPP, Timenetsky KT, Celi LA, Pelosi P, Gama de Abreu M, MJ S, PROVE Network Investigators Mechanical power of ventilation is associated with mortality in critically ill patients: an analysis of patients in two observational cohorts. Intensive Care Med. 2018;44(11):1914–1922. doi: 10.1007/s00134-018-5375-6.
    1. Zhang Z, Zheng B, Liu N, Ge H, Hong Y. Mechanical power normalized to predicted body weight as a predictor of mortality in patients with acute respiratory distress syndrome. Intensive Care Med. 2019;39:34–39. doi: 10.1007/s00134-019-05627-9.
    1. Klein Klouwenberg PM, Ong DS, Bos LD, de Beer FM, van Hooijdonk RT, Huson MA, Straat M, van Vught LA, Wieske L, Horn J, Schultz MJ, van der Poll T, Bonten MJ, Cremer OL. Interobserver agreement of centers for disease control and prevention criteria for classifying infections in critically ill patients. Critical Care Medicine. 2013;41(10):2373–2378. doi: 10.1097/CCM.0b013e3182923712.
    1. van Vught LA, Klein Klouwenberg PM, Spitoni C, Scicluna BP, Wiewel MA, Horn J, Schultz MJ, Nürnberg P, Bonten MJ, Cremer OL, van der Poll T, MARS Consortium Incidence, risk factors, and attributable mortality of secondary infections in the intensive care unit after admission for sepsis. JAMA. 2016;315(14):1469–1479. doi: 10.1001/jama.2016.2691.
    1. Villar J, Fernández RL, Ambrós A, et al. A clinical classification of the acute respiratory distress syndrome for predicting outcome and guiding medical therapy*. Critical Care Med. 2015;43:346–353. doi: 10.1097/CCM.0000000000000703.
    1. Villar J, Blanco J, del Campo R, et al. Assessment of PaO(2)/FiO(2) for stratification of patients with moderate and severe acute respiratory distress syndrome. BMJ Open. 2015;5:e006812. doi: 10.1136/bmjopen-2014-006812.
    1. Bos LD, Schouten LR, Cremer OL, Ong DSY, Schultz MJ, MARS consortium External validation of the APPS, a new and simple outcome prediction score in patients with the acute respiratory distress syndrome. Ann Intensive Care. 2016;6:89. doi: 10.1186/s13613-016-0190-0.
    1. Pisani L, Roozeman J, Simonis FD, et al. Risk stratification using SpO2/FiO2 and PEEP at initial ARDS diagnosis and after 24 h in patients with moderate or severe ARDS. Ann Intensive Care. 2017;7:108. doi: 10.1186/s13613-017-0327-9.
    1. Chatburn RL, Volsko TA. Documentation issues for mechanical ventilation in pressure-control modes. Respir Care. 2010;55:1705–1716.
    1. Gattinoni L, Marini JJ, Collino F, Maiolo G, Rapetti F, Tonetti T, Vasques F, Quintel M. The future of mechanical ventilation: lessons from the present and the past. Crit Care. 2017;21:183. doi: 10.1186/s13054-017-1750-x.

Source: PubMed

3
Abonneren