Hyperoxia and hypergravity are independent risk factors of atelectasis in healthy sitting humans: a pulmonary ultrasound and SPECT/CT study

C Dussault, E Gontier, C Verret, M Soret, A Boussuges, G Hedenstierna, S Montmerle-Borgdorff, C Dussault, E Gontier, C Verret, M Soret, A Boussuges, G Hedenstierna, S Montmerle-Borgdorff

Abstract

Aeroatelectasis has developed in aircrew flying routine peacetime flights on the latest generation high-performance aircraft, when undergoing excessive oxygen supply. To single out the effects of hyperoxia and hypergravity on lung tissue compression, and on ventilation and perfusion, eight subjects were studied before and after 1 h 15 min exposure to +1 to +3.5 Gz in a human centrifuge. They performed the protocol three times, breathing air, 44.5% O2, or 100% O2 and underwent functional and topographical imaging of the whole lung by ultrasound and single-photon emission computed tomography combined with computed tomography (SPECT/CT). Ultrasound lung comets (ULC) and atelectasis both increased after exposure. The number of ULC was <1 pre protocol (i.e., normal lung) and larger post 100% O2 (22 ± 3, mean ± SD) than in all other conditions (P < 0.001). Post 44.5% O2 differed from air (P < 0.05). Seven subjects showed low- to medium-grade atelectasis post 100% O2 There was an effect on grade of gas mixture and hypergravity, with interaction (P < 0.001, respectively); 100% O2, 44.5% O2, and air differed from each other (P < 0.05). SPECT ventilation and perfusion were always normal. Ultrasound concurred with CT in showing normal lung in the upper third and ULC/atelectasis in posterior and inferior areas, not for other localizations. In conclusion, hyperoxia and hypergravity are independent risk factors of reversible atelectasis formation. Ultrasound is a useful screening tool. Together with electrical impedance tomography measurements (reported separately), these findings show that zones with decreased ventilation prone to transient airway closure are present above atelectatic areas.

Keywords: +Gz accelerations; computerized tomography; echography; excessive oxygen supply; lung collapse.

Copyright © 2016 the American Physiological Society.

Source: PubMed

3
Abonneren