The impact of the unfolded protein response on human disease

Shiyu Wang, Randal J Kaufman, Shiyu Wang, Randal J Kaufman

Abstract

A central function of the endoplasmic reticulum (ER) is to coordinate protein biosynthetic and secretory activities in the cell. Alterations in ER homeostasis cause accumulation of misfolded/unfolded proteins in the ER. To maintain ER homeostasis, eukaryotic cells have evolved the unfolded protein response (UPR), an essential adaptive intracellular signaling pathway that responds to metabolic, oxidative stress, and inflammatory response pathways. The UPR has been implicated in a variety of diseases including metabolic disease, neurodegenerative disease, inflammatory disease, and cancer. Signaling components of the UPR are emerging as potential targets for intervention and treatment of human disease.

Figures

Figure 1.
Figure 1.
ER stress and the unfolded protein response. A number of conditions such as disturbed lipid homeostasis, disturbed calcium signaling, oxidative stress, inhibition of glycosylation, increased protein synthesis, and decreased ER-associated degradation can cause ER stress and activate the unfolded protein response (UPR). The UPR is mediated by three ER membrane-associated proteins, PERK, IRE1α, and ATF6α, to induce translational and transcriptional changes upon ER stress. PERK phosphorylates eIF2α to attenuate general protein translation and decrease protein efflux into the ER. Phosphorylated eIF2α also selectively stimulates ATF4 translation to induce transcriptional regulation of UPR genes. IRE1α cleaves XBP1 mRNA to a spliced form of XBP1 that translates XBP1s to up-regulate UPR genes encoding factors involved in ER protein folding and degradation. ATF6α traffics to Golgi for cleavage by S1P and S2P to release pATF6α(N) that works synergistically or separately with XBP1s to regulate UPR gene expression.
Figure 2.
Figure 2.
UPR signaling in diseases. Pathophysiological conditions such as hypoxia, elevated levels of fatty acids or cholesterol, oxidative stress, high or low glucose levels, and inflammatory cytokines induce ER stress and activate the UPR chronically. UPR signaling is interconnected with oxidative stress and inflammatory response pathways and involved in a variety of diseases including metabolic disease, inflammatory disease, and cancer. The three arms of the UPR, IRE1α-XBP1s, PERK-eIF2α phosphorylation-ATF4, and ATF6 are important for tumor cell survival and growth under hypoxic conditions. The UPR, IRE1α, and PERK can activate c-JUN N-terminal kinase (JNK) and NFκB to promote inflammation and apoptosis that contribute to inflammation in obesity and pancreatic β-cell death in diabetes. In addition, CHOP production in the PERK pathway exacerbates oxidative stress in diabetic states and atherosclerosis to aggravate the diseases.

References

    1. Acosta-Alvear D., Zhou Y., Blais A., Tsikitis M., Lents N.H., Arias C., Lennon C.J., Kluger Y., Dynlacht B.D. 2007. XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol. Cell. 27:53–66 10.1016/j.molcel.2007.06.011
    1. Aghajani A., Rahimi A., Fadai F., Ebrahimi A., Najmabadi H., Ohadi M. 2006. A point mutation at the calreticulin gene core promoter conserved sequence in a case of schizophrenia. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 141B:294–295 10.1002/ajmg.b.30300
    1. Allagnat F., Christulia F., Ortis F., Pirot P., Lortz S., Lenzen S., Eizirik D.L., Cardozo A.K. 2010. Sustained production of spliced X-box binding protein 1 (XBP1) induces pancreatic beta cell dysfunction and apoptosis. Diabetologia. 53:1120–1130 10.1007/s00125-010-1699-7
    1. Anttonen A.K., Mahjneh I., Hämäläinen R.H., Lagier-Tourenne C., Kopra O., Waris L., Anttonen M., Joensuu T., Kalimo H., Paetau A., et al. 2005. The gene disrupted in Marinesco-Sjögren syndrome encodes SIL1, an HSPA5 cochaperone. Nat. Genet. 37:1309–1311 10.1038/ng1677
    1. Auf G., Jabouille A., Guérit S., Pineau R., Delugin M., Bouchecareilh M., Magnin N., Favereaux A., Maitre M., Gaiser T., et al. 2010. Inositol-requiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma. Proc. Natl. Acad. Sci. USA. 107:15553–15558 10.1073/pnas.0914072107
    1. Back S.H., Scheuner D., Han J., Song B., Ribick M., Wang J., Gildersleeve R.D., Pennathur S., Kaufman R.J. 2009. Translation attenuation through eIF2alpha phosphorylation prevents oxidative stress and maintains the differentiated state in beta cells. Cell Metab. 10:13–26 10.1016/j.cmet.2009.06.002
    1. Bailey D., O’Hare P. 2007. Transmembrane bZIP transcription factors in ER stress signaling and the unfolded protein response. Antioxid. Redox Signal. 9:2305–2321 10.1089/ars.2007.1796
    1. Basseri S., Lhoták S., Sharma A.M., Austin R.C. 2009. The chemical chaperone 4-phenylbutyrate inhibits adipogenesis by modulating the unfolded protein response. J. Lipid Res. 50:2486–2501 10.1194/jlr.M900216-JLR200
    1. Batchvarova N., Wang X.Z., Ron D. 1995. Inhibition of adipogenesis by the stress-induced protein CHOP (Gadd153). EMBO J. 14:4654–4661
    1. Bertolotti A., Zhang Y., Hendershot L.M., Harding H.P., Ron D. 2000. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell Biol. 2:326–332 10.1038/35014014
    1. Bobrovnikova-Marjon E., Grigoriadou C., Pytel D., Zhang F., Ye J., Koumenis C., Cavener D., Diehl J.A. 2010. PERK promotes cancer cell proliferation and tumor growth by limiting oxidative DNA damage. Oncogene. 29:3881–3895 10.1038/onc.2010.153
    1. Boyce M., Bryant K.F., Jousse C., Long K., Harding H.P., Scheuner D., Kaufman R.J., Ma D., Coen D.M., Ron D., Yuan J. 2005. A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science. 307:935–939 10.1126/science.1101902
    1. Breslow D.K., Collins S.R., Bodenmiller B., Aebersold R., Simons K., Shevchenko A., Ejsing C.S., Weissman J.S. 2010. Orm family proteins mediate sphingolipid homeostasis. Nature. 463:1048–1053 10.1038/nature08787
    1. Cavener D.R., Gupta S., McGrath B.C. 2010. PERK in beta cell biology and insulin biogenesis. Trends Endocrinol. Metab. 21:714–721 10.1016/j.tem.2010.08.005
    1. Cazanave S.C., Elmi N.A., Akazawa Y., Bronk S.F., Mott J.L., Gores G.J. 2010. CHOP and AP-1 cooperatively mediate PUMA expression during lipoapoptosis. Am. J. Physiol. Gastrointest. Liver Physiol. 299:G236–G243 10.1152/ajpgi.00091.2010
    1. Chen A., Muzzio I.A., Malleret G., Bartsch D., Verbitsky M., Pavlidis P., Yonan A.L., Vronskaya S., Grody M.B., Cepeda I., et al. 2003. Inducible enhancement of memory storage and synaptic plasticity in transgenic mice expressing an inhibitor of ATF4 (CREB-2) and C/EBP proteins. Neuron. 39:655–669 10.1016/S0896-6273(03)00501-4
    1. Cheng G., Feng Z., He B. 2005. Herpes simplex virus 1 infection activates the endoplasmic reticulum resident kinase PERK and mediates eIF-2alpha dephosphorylation by the gamma(1)34.5 protein. J. Virol. 79:1379–1388 10.1128/JVI.79.3.1379-1388.2005
    1. Chu W.S., Das S.K., Wang H., Chan J.C., Deloukas P., Froguel P., Baier L.J., Jia W., McCarthy M.I., Ng M.C., et al. 2007. Activating transcription factor 6 (ATF6) sequence polymorphisms in type 2 diabetes and pre-diabetic traits. Diabetes. 56:856–862 10.2337/db06-1305
    1. Costa-Mattioli M., Gobert D., Harding H., Herdy B., Azzi M., Bruno M., Bidinosti M., Ben Mamou C., Marcinkiewicz E., Yoshida M., et al. 2005. Translational control of hippocampal synaptic plasticity and memory by the eIF2alpha kinase GCN2. Nature. 436:1166–1173 10.1038/nature03897
    1. Costa-Mattioli M., Gobert D., Stern E., Gamache K., Colina R., Cuello C., Sossin W., Kaufman R., Pelletier J., Rosenblum K., et al. 2007. eIF2alpha phosphorylation bidirectionally regulates the switch from short- to long-term synaptic plasticity and memory. Cell. 129:195–206 10.1016/j.cell.2007.01.050
    1. Cross B.C., Bond P.J., Sadowski P.G., Jha B.K., Zak J., Goodman J.M., Silverman R.H., Neubert T.A., Baxendale I.R., Ron D., Harding H.P. 2012. The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule. Proc. Natl. Acad. Sci. USA. 109:E869–E878 10.1073/pnas.1115623109
    1. Crozat A., Aman P., Mandahl N., Ron D. 1993. Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature. 363:640–644 10.1038/363640a0
    1. Cullinan S.B., Zhang D., Hannink M., Arvisais E., Kaufman R.J., Diehl J.A. 2003. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol. Cell. Biol. 23:7198–7209 10.1128/MCB.23.20.7198-7209.2003
    1. Delépine M., Nicolino M., Barrett T., Golamaully M., Lathrop G.M., Julier C. 2000. EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat. Genet. 25:406–409 10.1038/78085
    1. Denzel A., Molinari M., Trigueros C., Martin J.E., Velmurgan S., Brown S., Stamp G., Owen M.J. 2002. Early postnatal death and motor disorders in mice congenitally deficient in calnexin expression. Mol. Cell. Biol. 22:7398–7404 10.1128/MCB.22.21.7398-7404.2002
    1. Dimopoulos M.A., San-Miguel J.F., Anderson K.C. 2011. Emerging therapies for the treatment of relapsed or refractory multiple myeloma. Eur. J. Haematol. 86:1–15 10.1111/j.1600-0609.2010.01542.x
    1. Dorner A.J., Wasley L.C., Kaufman R.J. 1989. Increased synthesis of secreted proteins induces expression of glucose-regulated proteins in butyrate-treated Chinese hamster ovary cells. J. Biol. Chem. 264:20602–20607
    1. Doyle K.M., Kennedy D., Gorman A.M., Gupta S., Healy S.J., Samali A. 2011. Unfolded proteins and endoplasmic reticulum stress in neurodegenerative disorders. J. Cell. Mol. Med. 15:2025–2039 10.1111/j.1582-4934.2011.01374.x
    1. Elefteriou F., Benson M.D., Sowa H., Starbuck M., Liu X., Ron D., Parada L.F., Karsenty G. 2006. ATF4 mediation of NF1 functions in osteoblast reveals a nutritional basis for congenital skeletal dysplasiae. Cell Metab. 4:441–451 10.1016/j.cmet.2006.10.010
    1. Fagone P., Jackowski S. 2009. Membrane phospholipid synthesis and endoplasmic reticulum function. J. Lipid Res. 50:S311–S316 10.1194/jlr.R800049-JLR200
    1. Fels D.R., Koumenis C. 2006. The PERK/eIF2alpha/ATF4 module of the UPR in hypoxia resistance and tumor growth. Cancer Biol. Ther. 5:723–728
    1. Fonseca S.G., Ishigaki S., Oslowski C.M., Lu S., Lipson K.L., Ghosh R., Hayashi E., Ishihara H., Oka Y., Permutt M.A., Urano F. 2010. Wolfram syndrome 1 gene negatively regulates ER stress signaling in rodent and human cells. J. Clin. Invest. 120:744–755 10.1172/JCI39678
    1. Franks P.W., Rolandsson O., Debenham S.L., Fawcett K.A., Payne F., Dina C., Froguel P., Mohlke K.L., Willer C., Olsson T., et al. 2008. Replication of the association between variants in WFS1 and risk of type 2 diabetes in European populations. Diabetologia. 51:458–463 10.1007/s00125-007-0887-6
    1. Fu S., Watkins S.M., Hotamisligil G.S. 2012. The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling. Cell Metab. 15:623–634 10.1016/j.cmet.2012.03.007
    1. Fujimoto T., Yoshimatsu K., Watanabe K., Yokomizo H., Otani T., Matsumoto A., Osawa G., Onda M., Ogawa K. 2007. Overexpression of human X-box binding protein 1 (XBP-1) in colorectal adenomas and adenocarcinomas. Anticancer Res. 27(1A):127–131
    1. Gardner B.M., Walter P. 2011. Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response. Science. 333:1891–1894 10.1126/science.1209126
    1. Ghosh R., Lipson K.L., Sargent K.E., Mercurio A.M., Hunt J.S., Ron D., Urano F. 2010. Transcriptional regulation of VEGF-A by the unfolded protein response pathway. PLoS ONE. 5:e9575 10.1371/journal.pone.0009575
    1. Gow A., Wrabetz L. 2009. CHOP and the endoplasmic reticulum stress response in myelinating glia. Curr. Opin. Neurobiol. 19:505–510 10.1016/j.conb.2009.08.007
    1. Gragnoli C. 2008. CHOP T/C and C/T haplotypes contribute to early-onset type 2 diabetes in Italians. J. Cell. Physiol. 217:291–295 10.1002/jcp.21553
    1. Greenman C., Stephens P., Smith R., Dalgliesh G.L., Hunter C., Bignell G., Davies H., Teague J., Butler A., Stevens C., et al. 2007. Patterns of somatic mutation in human cancer genomes. Nature. 446:153–158 10.1038/nature05610
    1. Han D., Lerner A.G., Vande Walle L., Upton J.P., Xu W., Hagen A., Backes B.J., Oakes S.A., Papa F.R. 2009. IRE1alpha kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell. 138:562–575 10.1016/j.cell.2009.07.017
    1. Harding H.P., Novoa I., Zhang Y., Zeng H., Wek R., Schapira M., Ron D. 2000a. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell. 6:1099–1108 10.1016/S1097-2765(00)00108-8
    1. Harding H.P., Zhang Y., Bertolotti A., Zeng H., Ron D. 2000b. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell. 5:897–904 10.1016/S1097-2765(00)80330-5
    1. Harding H.P., Zhang Y., Zeng H., Novoa I., Lu P.D., Calfon M., Sadri N., Yun C., Popko B., Paules R., et al. 2003. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell. 11:619–633 10.1016/S1097-2765(03)00105-9
    1. Hart K., Landvik N.E., Lind H., Skaug V., Haugen A., Zienolddiny S. 2011. A combination of functional polymorphisms in the CASP8, MMP1, IL10 and SEPS1 genes affects risk of non-small cell lung cancer. Lung Cancer. 71:123–129 10.1016/j.lungcan.2010.04.016
    1. Hayashi A., Kasahara T., Iwamoto K., Ishiwata M., Kametani M., Kakiuchi C., Furuichi T., Kato T. 2007. The role of brain-derived neurotrophic factor (BDNF)-induced XBP1 splicing during brain development. J. Biol. Chem. 282:34525–34534 10.1074/jbc.M704300200
    1. Hayashi A., Kasahara T., Kametani M., Kato T. 2008. Attenuated BDNF-induced upregulation of GABAergic markers in neurons lacking Xbp1. Biochem. Biophys. Res. Commun. 376:758–763 10.1016/j.bbrc.2008.09.059
    1. Healy S.J., Gorman A.M., Mousavi-Shafaei P., Gupta S., Samali A. 2009. Targeting the endoplasmic reticulum-stress response as an anticancer strategy. Eur. J. Pharmacol. 625:234–246 10.1016/j.ejphar.2009.06.064
    1. Hetz C.A., Soto C. 2006. Stressing out the ER: a role of the unfolded protein response in prion-related disorders. Curr. Mol. Med. 6:37–43 10.2174/156652406775574578
    1. Hetz C., Thielen P., Matus S., Nassif M., Court F., Kiffin R., Martinez G., Cuervo A.M., Brown R.H., Glimcher L.H. 2009. XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes Dev. 23:2294–2306 10.1101/gad.1830709
    1. Hjelmqvist L., Tuson M., Marfany G., Herrero E., Balcells S., Gonzalez-Duarte R. 2002. ORMDL proteins are a conserved new family of endoplasmic reticulum membrane proteins. Genome Biol. 3:RESEARCH0027.
    1. Höglinger G.U., Melhem N.M., Dickson D.W., Sleiman P.M., Wang L.S., Klei L., Rademakers R., de Silva R., Litvan I., Riley D.E., et al. ; PSP Genetics Study Group 2011. Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat. Genet. 43:699–705 10.1038/ng.859
    1. Hollien J., Lin J.H., Li H., Stevens N., Walter P., Weissman J.S. 2009. Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J. Cell Biol. 186:323–331 10.1083/jcb.200903014
    1. Hotamisligil G.S. 2010. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell. 140:900–917 10.1016/j.cell.2010.02.034
    1. Huang C.J., Lin C.Y., Haataja L., Gurlo T., Butler A.E., Rizza R.A., Butler P.C. 2007. High expression rates of human islet amyloid polypeptide induce endoplasmic reticulum stress mediated beta-cell apoptosis, a characteristic of humans with type 2 but not type 1 diabetes. Diabetes. 56:2016–2027 10.2337/db07-0197
    1. Inoue H., Tanizawa Y., Wasson J., Behn P., Kalidas K., Bernal-Mizrachi E., Mueckler M., Marshall H., Donis-Keller H., Crock P., et al. 1998. A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat. Genet. 20:143–148 10.1038/2441
    1. Ishihara H., Takeda S., Tamura A., Takahashi R., Yamaguchi S., Takei D., Yamada T., Inoue H., Soga H., Katagiri H., et al. 2004. Disruption of the WFS1 gene in mice causes progressive beta-cell loss and impaired stimulus-secretion coupling in insulin secretion. Hum. Mol. Genet. 13:1159–1170 10.1093/hmg/ddh125
    1. Itoh N., Sei T., Nose K., Okamoto H. 1978. Glucose stimulation of the proinsulin synthesis in isolated pancreatic islets without increasing amount of proinsulin mRNA. FEBS Lett. 93:343–347 10.1016/0014-5793(78)81136-3
    1. Iwakoshi N.N., Pypaert M., Glimcher L.H. 2007. The transcription factor XBP-1 is essential for the development and survival of dendritic cells. J. Exp. Med. 204:2267–2275 10.1084/jem.20070525
    1. Iwawaki T., Akai R., Yamanaka S., Kohno K. 2009. Function of IRE1 alpha in the placenta is essential for placental development and embryonic viability. Proc. Natl. Acad. Sci. USA. 106:16657–16662 10.1073/pnas.0903775106
    1. Ji C., Kaplowitz N., Lau M.Y., Kao E., Petrovic L.M., Lee A.S. 2011. Liver-specific loss of glucose-regulated protein 78 perturbs the unfolded protein response and exacerbates a spectrum of liver diseases in mice. Hepatology. 54:229–239 10.1002/hep.24368
    1. Kakiuchi C., Iwamoto K., Ishiwata M., Bundo M., Kasahara T., Kusumi I., Tsujita T., Okazaki Y., Nanko S., Kunugi H., et al. 2003a. Impaired feedback regulation of XBP1 as a genetic risk factor for bipolar disorder. Nat. Genet. 35:171–175 10.1038/ng1235
    1. Kakiuchi C., Iwamoto K., Ishiwata M., Bundo M., Kasahara T., Kusumi I., Tsujita T., Okazaki Y., Nanko S., Kunugi H., et al. 2003b. Impaired feedback regulation of XBP1 as a genetic risk factor for bipolar disorder. Nat. Genet. 35:171–175 10.1038/ng1235
    1. Kakiuchi C., Ishiwata M., Umekage T., Tochigi M., Kohda K., Sasaki T., Kato T. 2004. Association of the XBP1-116C/G polymorphism with schizophrenia in the Japanese population. Psychiatry Clin. Neurosci. 58:438–440 10.1111/j.1440-1819.2004.01280.x
    1. Kakiuchi C., Ishiwata M., Nanko S., Kunugi H., Minabe Y., Nakamura K., Mori N., Fujii K., Umekage T., Tochigi M., et al. 2005. Functional polymorphisms of HSPA5: possible association with bipolar disorder. Biochem. Biophys. Res. Commun. 336:1136–1143 10.1016/j.bbrc.2005.08.248
    1. Kakiuchi C., Ishiwata M., Nanko S., Kunugi H., Minabe Y., Nakamura K., Mori N., Fujii K., Umekage T., Tochigi M., et al. 2007. Association analysis of HSP90B1 with bipolar disorder. J. Hum. Genet. 52:794–803 10.1007/s10038-007-0188-4
    1. Kammoun H.L., Chabanon H., Hainault I., Luquet S., Magnan C., Koike T., Ferré P., Foufelle F. 2009. GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice. J. Clin. Invest. 119:1201–1215 10.1172/JCI37007
    1. Karasik A., O’Hara C., Srikanta S., Swift M., Soeldner J.S., Kahn C.R., Herskowitz R.D. 1989. Genetically programmed selective islet beta-cell loss in diabetic subjects with Wolfram’s syndrome. Diabetes Care. 12:135–138 10.2337/diacare.12.2.135
    1. Kars M., Yang L., Gregor M.F., Mohammed B.S., Pietka T.A., Finck B.N., Patterson B.W., Horton J.D., Mittendorfer B., Hotamisligil G.S., Klein S. 2010. Tauroursodeoxycholic Acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women. Diabetes. 59:1899–1905 10.2337/db10-0308
    1. Kasaikina M.V., Fomenko D.E., Labunskyy V.M., Lachke S.A., Qiu W., Moncaster J.A., Zhang J., Wojnarowicz M.W., Jr., Natarajan S.K., Malinouski M., et al. 2011. Roles of the 15-kDa selenoprotein (Sep15) in redox homeostasis and cataract development revealed by the analysis of Sep 15 knockout mice. J. Biol. Chem. 286:33203–33212 10.1074/jbc.M111.259218
    1. Kaser A., Lee A.H., Franke A., Glickman J.N., Zeissig S., Tilg H., Nieuwenhuis E.E., Higgins D.E., Schreiber S., Glimcher L.H., Blumberg R.S. 2008. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell. 134:743–756 10.1016/j.cell.2008.07.021
    1. Kaser A., Flak M.B., Tomczak M.F., Blumberg R.S. 2011. The unfolded protein response and its role in intestinal homeostasis and inflammation. Exp. Cell Res. 317:2772–2779 10.1016/j.yexcr.2011.07.008
    1. Kaufman R.J. 2002. Orchestrating the unfolded protein response in health and disease. J. Clin. Invest. 110:1389–1398
    1. Kaufman R.J. 2004. Regulation of mRNA translation by protein folding in the endoplasmic reticulum. Trends Biochem. Sci. 29:152–158 10.1016/j.tibs.2004.01.004
    1. Kaufman R.J., Scheuner D., Schröder M., Shen X., Lee K., Liu C.Y., Arnold S.M. 2002. The unfolded protein response in nutrient sensing and differentiation. Nat. Rev. Mol. Cell Biol. 3:411–421 10.1038/nrm829
    1. Koong A.C., Chauhan V., Romero-Ramirez L. 2006. Targeting XBP-1 as a novel anti-cancer strategy. Cancer Biol. Ther. 5:756–759 10.4161/cbt.5.7.2973
    1. Ladiges W.C., Knoblaugh S.E., Morton J.F., Korth M.J., Sopher B.L., Baskin C.R., MacAuley A., Goodman A.G., LeBoeuf R.C., Katze M.G. 2005. Pancreatic beta-cell failure and diabetes in mice with a deletion mutation of the endoplasmic reticulum molecular chaperone gene P58IPK. Diabetes. 54:1074–1081 10.2337/diabetes.54.4.1074
    1. Laybutt D.R., Preston A.M., Akerfeldt M.C., Kench J.G., Busch A.K., Biankin A.V., Biden T.J. 2007. Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia. 50:752–763 10.1007/s00125-006-0590-z
    1. Lee A.S. 2007. GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res. 67:3496–3499 10.1158/0008-5472.CAN-07-0325
    1. Lee A.H., Iwakoshi N.N., Glimcher L.H. 2003. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol. Cell. Biol. 23:7448–7459 10.1128/MCB.23.21.7448-7459.2003
    1. Lee A.H., Scapa E.F., Cohen D.E., Glimcher L.H. 2008. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science. 320:1492–1496 10.1126/science.1158042
    1. Lee A.H., Heidtman K., Hotamisligil G.S., Glimcher L.H. 2011. Dual and opposing roles of the unfolded protein response regulated by IRE1alpha and XBP1 in proinsulin processing and insulin secretion. Proc. Natl. Acad. Sci. USA. 108:8885–8890 10.1073/pnas.1105564108
    1. Lee J.H., Giannikopoulos P., Duncan S.A., Wang J., Johansen C.T., Brown J.D., Plutzky J., Hegele R.A., Glimcher L.H., Lee A.H. 2011. The transcription factor cyclic AMP-responsive element-binding protein H regulates triglyceride metabolism. Nat. Med. 17:812–815 10.1038/nm.2347
    1. Lee M.W., Chanda D., Yang J., Oh H., Kim S.S., Yoon Y.S., Hong S., Park K.G., Lee I.K., Choi C.S., et al. 2010. Regulation of hepatic gluconeogenesis by an ER-bound transcription factor, CREBH. Cell Metab. 11:331–339 10.1016/j.cmet.2010.02.016
    1. Leonardi R., Frank M.W., Jackson P.D., Rock C.O., Jackowski S. 2009. Elimination of the CDP-ethanolamine pathway disrupts hepatic lipid homeostasis. J. Biol. Chem. 284:27077–27089 10.1074/jbc.M109.031336
    1. Lipson K.L., Fonseca S.G., Ishigaki S., Nguyen L.X., Foss E., Bortell R., Rossini A.A., Urano F. 2006. Regulation of insulin biosynthesis in pancreatic beta cells by an endoplasmic reticulum-resident protein kinase IRE1. Cell Metab. 4:245–254 10.1016/j.cmet.2006.07.007
    1. Luo S., Mao C., Lee B., Lee A.S. 2006. GRP78/BiP is required for cell proliferation and protecting the inner cell mass from apoptosis during early mouse embryonic development. Mol. Cell. Biol. 26:5688–5697 10.1128/MCB.00779-06
    1. Ma K., Vattem K.M., Wek R.C. 2002. Dimerization and release of molecular chaperone inhibition facilitate activation of eukaryotic initiation factor-2 kinase in response to endoplasmic reticulum stress. J. Biol. Chem. 277:18728–18735 10.1074/jbc.M200903200
    1. Malhotra J.D., Miao H., Zhang K., Wolfson A., Pennathur S., Pipe S.W., Kaufman R.J. 2008. Antioxidants reduce endoplasmic reticulum stress and improve protein secretion. Proc. Natl. Acad. Sci. USA. 105:18525–18530 10.1073/pnas.0809677105
    1. Mao C., Wang M., Luo B., Wey S., Dong D., Wesselschmidt R., Rawlings S., Lee A.S. 2010. Targeted mutation of the mouse Grp94 gene disrupts development and perturbs endoplasmic reticulum stress signaling. PLoS ONE. 5:e10852 10.1371/journal.pone.0010852
    1. Marciniak S.J., Yun C.Y., Oyadomari S., Novoa I., Zhang Y., Jungreis R., Nagata K., Harding H.P., Ron D. 2004. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 18:3066–3077 10.1101/gad.1250704
    1. Martinon F., Chen X., Lee A.H., Glimcher L.H. 2010. TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat. Immunol. 11:411–418 10.1038/ni.1857
    1. Matus S., Glimcher L.H., Hetz C. 2011. Protein folding stress in neurodegenerative diseases: a glimpse into the ER. Curr. Opin. Cell Biol. 23:239–252 10.1016/j.ceb.2011.01.003
    1. McGovern D.P., Gardet A., Törkvist L., Goyette P., Essers J., Taylor K.D., Neale B.M., Ong R.T., Lagacé C., Li C., et al. ; NIDDK IBD Genetics Consortium 2010. Genome-wide association identifies multiple ulcerative colitis susceptibility loci. Nat. Genet. 42:332–337 10.1038/ng.549
    1. Meex S.J., van Greevenbroek M.M., Ayoubi T.A., Vlietinck R., van Vliet-Ostaptchouk J.V., Hofker M.H., Vermeulen V.M., Schalkwijk C.G., Feskens E.J., Boer J.M., et al. 2007. Activating transcription factor 6 polymorphisms and haplotypes are associated with impaired glucose homeostasis and type 2 diabetes in Dutch Caucasians. J. Clin. Endocrinol. Metab. 92:2720–2725 10.1210/jc.2006-2280
    1. Meex S.J., Weissglas-Volkov D., van der Kallen C.J., Thuerauf D.J., van Greevenbroek M.M., Schalkwijk C.G., Stehouwer C.D., Feskens E.J., Heldens L., Ayoubi T.A., et al. 2009. The ATF6-Met[67]Val substitution is associated with increased plasma cholesterol levels. Arterioscler. Thromb. Vasc. Biol. 29:1322–1327 10.1161/ATVBAHA.108.180240
    1. Merksamer P.I., Trusina A., Papa F.R. 2008. Real-time redox measurements during endoplasmic reticulum stress reveal interlinked protein folding functions. Cell. 135:933–947 10.1016/j.cell.2008.10.011
    1. Mimura N., Fulciniti M., Gorgun G., Tai Y.T., Cirstea D., Santo L., Hu Y., Fabre C., Minami J., Ohguchi H., et al. 2012. Blockade of XBP1 splicing by inhibition of IRE1alpha is a promising therapeutic option in multiple myeloma. Blood.
    1. Mita M., Miyake K., Zenibayashi M., Hirota Y., Teranishi T., Kouyama K., Sakaguchi K., Kasuga M. 2008. Association study of the effect of WFS1 polymorphisms on risk of type 2 diabetes in Japanese population. Kobe J. Med. Sci. 54:E192–E199
    1. Nawrocki S.T., Carew J.S., Dunner K., Jr., Boise L.H., Chiao P.J., Huang P., Abbruzzese J.L., McConkey D.J. 2005. Bortezomib inhibits PKR-like endoplasmic reticulum (ER) kinase and induces apoptosis via ER stress in human pancreatic cancer cells. Cancer Res. 65:11510–11519 10.1158/0008-5472.CAN-05-2394
    1. Nishitoh H., Matsuzawa A., Tobiume K., Saegusa K., Takeda K., Inoue K., Hori S., Kakizuka A., Ichijo H. 2002. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev. 16:1345–1355 10.1101/gad.992302
    1. Ohoka N., Yoshii S., Hattori T., Onozaki K., Hayashi H. 2005. TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death. EMBO J. 24:1243–1255 10.1038/sj.emboj.7600596
    1. Ota T., Gayet C., Ginsberg H.N. 2008. Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents. J. Clin. Invest. 118:316–332 10.1172/JCI32752
    1. Oyadomari S., Koizumi A., Takeda K., Gotoh T., Akira S., Araki E., Mori M. 2002. Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J. Clin. Invest. 109:525–532
    1. Ozcan U., Yilmaz E., Ozcan L., Furuhashi M., Vaillancourt E., Smith R.O., Görgün C.Z., Hotamisligil G.S. 2006. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science. 313:1137–1140 10.1126/science.1128294
    1. Papandreou I., Denko N.C., Olson M., Van Melckebeke H., Lust S., Tam A., Solow-Cordero D.E., Bouley D.M., Offner F., Niwa M., Koong A.C. 2011. Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood. 117:1311–1314 10.1182/blood-2010-08-303099
    1. Park S.W., Zhou Y., Lee J., Lu A., Sun C., Chung J., Ueki K., Ozcan U. 2010. The regulatory subunits of PI3K, p85alpha and p85beta, interact with XBP-1 and increase its nuclear translocation. Nat. Med. 16:429–437 10.1038/nm.2099
    1. Promlek T., Ishiwata-Kimata Y., Shido M., Sakuramoto M., Kohno K., Kimata Y. 2011. Membrane aberrancy and unfolded proteins activate the endoplasmic reticulum stress sensor Ire1 in different ways. Mol. Biol. Cell. 22:3520–3532 10.1091/mbc.E11-04-0295
    1. Puthalakath H., O’Reilly L.A., Gunn P., Lee L., Kelly P.N., Huntington N.D., Hughes P.D., Michalak E.M., McKimm-Breschkin J., Motoyama N., et al. 2007. ER stress triggers apoptosis by activating BH3-only protein Bim. Cell. 129:1337–1349 10.1016/j.cell.2007.04.027
    1. Reddy J.K., Rao M.S. 2006. Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am. J. Physiol. Gastrointest. Liver Physiol. 290:G852–G858 10.1152/ajpgi.00521.2005
    1. Reimold A.M., Etkin A., Clauss I., Perkins A., Friend D.S., Zhang J., Horton H.F., Scott A., Orkin S.H., Byrne M.C., et al. 2000. An essential role in liver development for transcription factor XBP-1. Genes Dev. 14:152–157
    1. Reimold A.M., Iwakoshi N.N., Manis J., Vallabhajosyula P., Szomolanyi-Tsuda E., Gravallese E.M., Friend D., Grusby M.J., Alt F., Glimcher L.H. 2001. Plasma cell differentiation requires the transcription factor XBP-1. Nature. 412:300–307 10.1038/35085509
    1. Rutkowski D.T., Arnold S.M., Miller C.N., Wu J., Li J., Gunnison K.M., Mori K., Sadighi Akha A.A., Raden D., Kaufman R.J. 2006. Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins. PLoS Biol. 4:e374 10.1371/journal.pbio.0040374
    1. Rutkowski D.T., Wu J., Back S.H., Callaghan M.U., Ferris S.P., Iqbal J., Clark R., Miao H., Hassler J.R., Fornek J., et al. 2008. UPR pathways combine to prevent hepatic steatosis caused by ER stress-mediated suppression of transcriptional master regulators. Dev. Cell. 15:829–840 10.1016/j.devcel.2008.10.015
    1. Sammels E., Parys J.B., Missiaen L., De Smedt H., Bultynck G. 2010. Intracellular Ca2+ storage in health and disease: a dynamic equilibrium. Cell Calcium. 47:297–314 10.1016/j.ceca.2010.02.001
    1. Scheuner D., Song B., McEwen E., Liu C., Laybutt R., Gillespie P., Saunders T., Bonner-Weir S., Kaufman R.J. 2001. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol. Cell. 7:1165–1176 10.1016/S1097-2765(01)00265-9
    1. Scheuner D., Vander Mierde D., Song B., Flamez D., Creemers J.W., Tsukamoto K., Ribick M., Schuit F.C., Kaufman R.J. 2005. Control of mRNA translation preserves endoplasmic reticulum function in beta cells and maintains glucose homeostasis. Nat. Med. 11:757–764 10.1038/nm1259
    1. Schewe D.M., Aguirre-Ghiso J.A. 2008. ATF6alpha-Rheb-mTOR signaling promotes survival of dormant tumor cells in vivo. Proc. Natl. Acad. Sci. USA. 105:10519–10524 10.1073/pnas.0800939105
    1. Schindler A.J., Schekman R. 2009. In vitro reconstitution of ER-stress induced ATF6 transport in COPII vesicles. Proc. Natl. Acad. Sci. USA. 106:17775–17780 10.1073/pnas.0910342106
    1. Schröder M., Kaufman R.J. 2005. The mammalian unfolded protein response. Annu. Rev. Biochem. 74:739–789 10.1146/annurev.biochem.73.011303.074134
    1. Schuck S., Prinz W.A., Thorn K.S., Voss C., Walter P. 2009. Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response. J. Cell Biol. 187:525–536 10.1083/jcb.200907074
    1. Sha H., He Y., Chen H., Wang C., Zenno A., Shi H., Yang X., Zhang X., Qi L. 2009. The IRE1alpha-XBP1 pathway of the unfolded protein response is required for adipogenesis. Cell Metab. 9:556–564 10.1016/j.cmet.2009.04.009
    1. Shen J., Chen X., Hendershot L., Prywes R. 2002. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev. Cell. 3:99–111 10.1016/S1534-5807(02)00203-4
    1. Shi Y., Vattem K.M., Sood R., An J., Liang J., Stramm L., Wek R.C. 1998. Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol. Cell. Biol. 18:7499–7509
    1. Silva R.M., Ries V., Oo T.F., Yarygina O., Jackson-Lewis V., Ryu E.J., Lu P.D., Marciniak S.J., Ron D., Przedborski S., et al. 2005. CHOP/GADD153 is a mediator of apoptotic death in substantia nigra dopamine neurons in an in vivo neurotoxin model of parkinsonism. J. Neurochem. 95:974–986 10.1111/j.1471-4159.2005.03428.x
    1. Song B., Scheuner D., Ron D., Pennathur S., Kaufman R.J. 2008. Chop deletion reduces oxidative stress, improves beta cell function, and promotes cell survival in multiple mouse models of diabetes. J. Clin. Invest. 118:3378–3389 10.1172/JCI34587
    1. Stutzmann G.E., Mattson M.P. 2011. Endoplasmic reticulum Ca(2+) handling in excitable cells in health and disease. Pharmacol. Rev. 63:700–727 10.1124/pr.110.003814
    1. Thameem F., Farook V.S., Bogardus C., Prochazka M. 2006. Association of amino acid variants in the activating transcription factor 6 gene (ATF6) on 1q21-q23 with type 2 diabetes in Pima Indians. Diabetes. 55:839–842 10.2337/diabetes.55.03.06.db05-1002
    1. Thorp E., Li G., Seimon T.A., Kuriakose G., Ron D., Tabas I. 2009. Reduced apoptosis and plaque necrosis in advanced atherosclerotic lesions of Apoe−/− and Ldlr−/− mice lacking CHOP. Cell Metab. 9:474–481 10.1016/j.cmet.2009.03.003
    1. Tsaytler P., Harding H.P., Ron D., Bertolotti A. 2011. Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science. 332:91–94 10.1126/science.1201396
    1. Tyson J.R., Stirling C.J. 2000. LHS1 and SIL1 provide a lumenal function that is essential for protein translocation into the endoplasmic reticulum. EMBO J. 19:6440–6452 10.1093/emboj/19.23.6440
    1. Usui M., Yamaguchi S., Tanji Y., Tominaga R., Ishigaki Y., Fukumoto M., Katagiri H., Mori K., Oka Y., Ishihara H. 2012. Atf6alpha-null mice are glucose intolerant due to pancreatic beta-cell failure on a high-fat diet but partially resistant to diet-induced insulin resistance. Metabolism.
    1. Vecchi C., Montosi G., Zhang K., Lamberti I., Duncan S.A., Kaufman R.J., Pietrangelo A. 2009. ER stress controls iron metabolism through induction of hepcidin. Science. 325:877–880 10.1126/science.1176639
    1. Wang Y., Vera L., Fischer W.H., Montminy M. 2009. The CREB coactivator CRTC2 links hepatic ER stress and fasting gluconeogenesis. Nature. 460:534–537
    1. Woo C.W., Cui D., Arellano J., Dorweiler B., Harding H., Fitzgerald K.A., Ron D., Tabas I. 2009. Adaptive suppression of the ATF4-CHOP branch of the unfolded protein response by toll-like receptor signalling. Nat. Cell Biol. 11:1473–1480 10.1038/ncb1996
    1. Wu J., Rutkowski D.T., Dubois M., Swathirajan J., Saunders T., Wang J., Song B., Yau G.D., Kaufman R.J. 2007. ATF6alpha optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Dev. Cell. 13:351–364 10.1016/j.devcel.2007.07.005
    1. Xiao C., Giacca A., Lewis G.F. 2011. Sodium phenylbutyrate, a drug with known capacity to reduce endoplasmic reticulum stress, partially alleviates lipid-induced insulin resistance and beta-cell dysfunction in humans. Diabetes. 60:918–924 10.2337/db10-1433
    1. Yamaguchi H., Wang H.G. 2004. CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. J. Biol. Chem. 279:45495–45502 10.1074/jbc.M406933200
    1. Yamaguchi S., Ishihara H., Yamada T., Tamura A., Usui M., Tominaga R., Munakata Y., Satake C., Katagiri H., Tashiro F., et al. 2008. ATF4-mediated induction of 4E-BP1 contributes to pancreatic beta cell survival under endoplasmic reticulum stress. Cell Metab. 7:269–276 10.1016/j.cmet.2008.01.008
    1. Yamamoto K., Sato T., Matsui T., Sato M., Okada T., Yoshida H., Harada A., Mori K. 2007. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev. Cell. 13:365–376 10.1016/j.devcel.2007.07.018
    1. Yamamoto K., Takahara K., Oyadomari S., Okada T., Sato T., Harada A., Mori K. 2010. Induction of liver steatosis and lipid droplet formation in ATF6alpha-knockout mice burdened with pharmacological endoplasmic reticulum stress. Mol. Biol. Cell. 21:2975–2986 10.1091/mbc.E09-02-0133
    1. Ye J., Kumanova M., Hart L.S., Sloane K., Zhang H., De Panis D.N., Bobrovnikova-Marjon E., Diehl J.A., Ron D., Koumenis C. 2010. The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation. EMBO J. 29:2082–2096 10.1038/emboj.2010.81
    1. Ye R., Jung D.Y., Jun J.Y., Li J., Luo S., Ko H.J., Kim J.K., Lee A.S. 2010. Grp78 heterozygosity promotes adaptive unfolded protein response and attenuates diet-induced obesity and insulin resistance. Diabetes. 59:6–16 10.2337/db09-0755
    1. Yilmaz E., Akar R., Eker S.T., Deda G., Adiguzel Y., Akar N. 2010. Relationship between functional promoter polymorphism in the XBP1 gene (-116C/G) and atherosclerosis, ischemic stroke and hyperhomocysteinemia. Mol. Biol. Rep. 37:269–272 10.1007/s11033-009-9674-4
    1. Yoshida H., Matsui T., Yamamoto A., Okada T., Mori K. 2001. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 107:881–891 10.1016/S0092-8674(01)00611-0
    1. Zhang C., Wang G., Zheng Z., Maddipati K.R., Zhang X., Dyson G., Williams P., Duncan S.A., Kaufman R.J., Zhang K. 2012. Endoplasmic reticulum-tethered transcription factor cAMP responsive element-binding protein, hepatocyte specific, regulates hepatic lipogenesis, fatty acid oxidation, and lipolysis upon metabolic stress in mice. Hepatology. 55:1070–1082 10.1002/hep.24783
    1. Zhang K., Wong H.N., Song B., Miller C.N., Scheuner D., Kaufman R.J. 2005. The unfolded protein response sensor IRE1alpha is required at 2 distinct steps in B cell lymphopoiesis. J. Clin. Invest. 115:268–281
    1. Zhang K., Shen X., Wu J., Sakaki K., Saunders T., Rutkowski D.T., Back S.H., Kaufman R.J. 2006. Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell. 124:587–599 10.1016/j.cell.2005.11.040
    1. Zhang K., Wang S., Malhotra J., Hassler J.R., Back S.H., Wang G., Chang L., Xu W., Miao H., Leonardi R., et al. 2011. The unfolded protein response transducer IRE1α prevents ER stress-induced hepatic steatosis. EMBO J. 30:1357–1375 10.1038/emboj.2011.52
    1. Zhao L., Longo-Guess C., Harris B.S., Lee J.W., Ackerman S.L. 2005. Protein accumulation and neurodegeneration in the woozy mutant mouse is caused by disruption of SIL1, a cochaperone of BiP. Nat. Genet. 37:974–979 10.1038/ng1620
    1. Zhao L., Rosales C., Seburn K., Ron D., Ackerman S.L. 2010. Alteration of the unfolded protein response modifies neurodegeneration in a mouse model of Marinesco-Sjögren syndrome. Hum. Mol. Genet. 19:25–35 10.1093/hmg/ddp464
    1. Zhou Y., Lee J., Reno C.M., Sun C., Park S.W., Chung J., Lee J., Fisher S.J., White M.F., Biddinger S.B., Ozcan U. 2011. Regulation of glucose homeostasis through a XBP-1-FoxO1 interaction. Nat. Med. 17:356–365 10.1038/nm.2293
    1. Zinszner H., Kuroda M., Wang X., Batchvarova N., Lightfoot R.T., Remotti H., Stevens J.L., Ron D. 1998. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 12:982–995 10.1101/gad.12.7.982

Source: PubMed

3
Abonneren