Tear fluid hyperosmolality increases nerve impulse activity of cold thermoreceptor endings of the cornea

Andres Parra, Omar Gonzalez-Gonzalez, Juana Gallar, Carlos Belmonte, Andres Parra, Omar Gonzalez-Gonzalez, Juana Gallar, Carlos Belmonte

Abstract

Dry eye disease (DED) is a multifactorial disorder affecting the composition and volume of tears. DED causes ocular surface dryness, cooling, and hyperosmolality, leading ultimately to corneal epithelium damage and reduced visual performance. Ocular discomfort is the main clinical symptom in DED. However, the peripheral neural source of such unpleasant sensations is still unclear. We analyzed in excised, superfused mouse eyes, the effect of NaCl-induced hyperosmolality (325-1005 mOsm·kg(-1)) on corneal cold thermoreceptor and polymodal nociceptor nerve terminal impulse (NTI) activity. Osmolality elevations at basal corneal temperature (33.6°C) linearly increased the ongoing NTI frequency of cold thermoreceptors, at a mean rate of 0.34 imp·s(-1)/10 mOsm. This frequency increase became significant with osmolality values greater than 340 mOsm. Comparison of cold thermoreceptor activity increase induced by a dynamic temperature reduction of 1.8°C under iso- and hyperosmolal (360-mOsm) conditions provided evidence that more than 50% of the increased firing response was attributable to hyperosmolality. Comparatively, activation of corneal polymodal nociceptor endings by hyperosmolal solutions started with values of 600 mOsm and greater. Sensitization of polymodal nociceptors by continuous perfusion with an "inflammatory soup" (bradykinin, histamine, prostaglandin E2 [PGE2], serotonin, and adenosine triphosphate [ATP]) did not enhance their activation by hyperosmolal solutions. High osmolality also altered the firing pattern and shape of cold and polymodal NTIs, possibly reflecting disturbances in local membrane currents. Results strongly suggest that tear osmolality elevations in the range observed in DED predominantly excite cold thermoreceptors, supporting the hypothesis that dryness sensations experienced by these patients are due, at least in part, to an augmented activity of corneal cold thermoreceptors.

Keywords: Cold thermoreceptors; Cornea; Dry eye; Hyperosmotic stress; Polymodal nociceptors; Tear osmolality.

Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

References

    1. Acosta MC, Belmonte C, Gallar J. Sensory experiences in humans and single unit activity in cats evoked by polymodal stimulation of the cornea. J Physiol 2001;534:511-525.
    1. Alessandri-Haber N, Dina OA, Chen X, Levine JD. TRPC1 and TRPC6 channels cooperate with TRPV4 to mediate mechanical hyperalgesia and nociceptor sensitization. J Neurosci 2009;29:6217-6228.
    1. Alessandri-Haber N, Yeh JJ, Boyd AE, Parada CA, Chen X, Reichling DB, Levine JD. Hypotonicity induces TRPV4-mediated nociception in rat. Neuron 2003;39:497-511.
    1. Bean BP. The action potential in mammalian central neurons. Nat Rev Neurosci 2007;8:451-465.
    1. Belmonte C, Aracil A, Acosta MC, Luna C, Gallar J. Nerves and sensations from the eye surface. Ocul Surf 2004;2:248-253.
    1. Belmonte C, Brock JA, Viana F. Converting cold into pain. Exp Brain Res 2009;196:13-30.
    1. Belmonte C, Gallar J, Pozo MA, Rebollo I. Excitation by irritant chemical substances of sensory afferent units in the cat's cornea. J Physiol 1991;437:709-725.
    1. Belmonte C, Gallar J. Cold thermoreceptors, unexpected players in tear production and ocular dryness sensations. Invest Ophthalmol Vis Sci 2011;52:3888-3892.
    1. Belmonte C, Giraldez F. Responses of cat corneal sensory receptors to mechanical and thermal stimulation. J Physiol 1981;321:355-368.
    1. Benjamin WJ, Hill RM. Human tears: Osmotic characteristics. Invest Ophthalmol Vis Sci 1983;24:1624-1626.
    1. Borchman D, Foulks GN, Yappert MC, Mathews J, Leake K, Bell J. Factors affecting evaporation rates of tear film components measured in vitro. Eye Contact Lens 2009;35:32-37.
    1. Brickley SG, Aller MI, Sandu C, Veale EL, Alder FG, Sambi H, Mathie A, Wisden W. TASK-3 two-pore domain potassium channels enable sustained high-frequency firing in cerebellar granule neurons. J Neurosci 2007;27:9329-9340.
    1. Brock J, McLachlan EM, Belmonte C. Tetrodotoxin-resistant impulses in single nociceptor nerve terminals in guinea-pig corneas. J Physiol 1998;512:211-217.
    1. Brock JA, Pianova S, Belmonte C. Differences between nerve terminal impulses of polymodal nociceptors and cold sensory receptors of the guinea-pig cornea. J Physiol 2001;533:493-501.
    1. Bron AJ, Tiffany JM, Gouveia SM, Yokoi N, Voon LW. Functional aspects of the tear film lipid layer. Exp Eye Res 2004;78:347-360.
    1. Bron AJ, Yokoi N, Gaffney EA, Tiffany JM. A solute gradient in the tear meniscus. I. A hypothesis to explain Marx's line. Ocul Surf 2011;9:70-91.
    1. Carr RW, Pianova S, McKemy DD, Brock JA. Action potential initiation in the peripheral terminals of cold-sensitive neurons innervating the guinea pig cornea. J Physiol 2009;587:1249-1264.
    1. Craig JP, Tomlinson A. Importance of the lipid layer in human tear film stability and evaporation. Optom Vis Sci 1997;74:8-13.
    1. Deval E, Noël J, Lay N, Alloui A, Diochot S, Friend V, Jodar M, Lazdunski M, Lingueglia E. ASIC3, a sensor of acidic and primary inflammatory pain. EMBO J 2008;27:3047-3055.
    1. Efron N, Young G, Brennan NA. Ocular surface temperature. Curr Eye Res 1989;8:901-906.
    1. Foulks GN. The correlation between the tear film lipid layer and dry eye disease. Surv Ophthalmol 2007;52:369-374.
    1. Franzco IC. Fluids of the ocular surface: Concepts, functions and physics. Clin Exp Ophthalmol 2012;40:634-643.
    1. Gaffney EA, Tiffany JM, Yokoi N, Bron AJ. A mass and solute balance model for tear volume and osmolality in the normal and the dry eye. Prog Retin Eye Res 2010;29:59-78.
    1. Gallar J, Pozo MA, Tuckett RP, Belmonte C. Response of sensory units with unmyelinated fibres to mechanical, thermal and chemical stimulation of the cat's cornea. J Physiol 1993;468:609-622.
    1. Gilbard JP. Human tear film electrolyte concentrations in health and dry-eye disease. Int Ophthalmol Clin 1994;34:27-36.
    1. Gilbard JP, Carter JB, Sang DN, Refojo MF, Hanninen LA, Kenyon KR. Morphologic effect of hyperosmolarity on rabbit corneal epithelium. Ophthalmology 1984;91:1205-1212.
    1. Gilbard JP, Farris RL. Tear osmolality and ocular surface disease in keratoconjunctivitis sicca. Arch Ophthalmol 1979;97:1642-1646.
    1. Gilbard JP, Gray KL, Rossi SR. A proposed mechanism for increased tear-film osmolarity in contact lens wearers. Am J Ophthalmol 1986;102:505-507.
    1. Gomis A, Soriano S, Belmonte C, Viana F. Hypoosmotic- and pressure-induced membrane stretch activate TRPC5 channels. J Physiol 2008;586:5633-5649.
    1. Gonzalez JA, Jensen LT, Doyle SE, Miranda-Anaya M, Menaker M, Fugger L, Bayliss DA, Burdakow D. Deletion of TASK1 and TASK3 channels disrupts intrinsic excitability but does not abolish glucose or pH responses of orexin/hypocretin neurons. Eur J Neurosci 2009;30:57-64.
    1. Green WN, Andersen OS. Surface charges and ion channel function. Annu Rev Physiol 1991;53:341-359.
    1. Grimm C, Kraft R, Sauerbruch S, Schultz G, Harteneck C. Molecular and functional characterization of the melastatin-related cation channel TRPM3. J Biol Chem 2003;278:21493-21501.
    1. Hirata H, Meng ID. Cold-sensitive corneal afferents respond to a variety of ocular stimuli central to tear production: implications for dry eye disease. Invest Ophthalmol Vis Sci 2010;51:3969-3976.
    1. Hirata H, Okamoto K, Tashiro A, Bereiter DA. A novel class of neurons at the trigeminal subnucleus interpolaris/caudalis transition region monitors ocular surface fluid status and modulates tear production. J Neurosci 2004;24:4224-4232.
    1. Iwata S, Lemp MA, Holly FJ, Dohlman CH. Evaporation rate of water from the precorneal tear film and cornea in the rabbit. Invest Ophthalmol 1969;8:613-619.
    1. Jenerick H. Phase plane trajectories of the muscle spike potential. Biophys J 1963;3:363-377.
    1. Jiang Y, Ruta V, Chen J, Lee A, MacKinnon R. The principle of gating charge movement in a voltage-dependent K+ channel. Nature 2003;423:42-48.
    1. Johnson ME. The association between symptoms of discomfort and signs in dry eye. Ocul Surf 2009;7:199-211.
    1. Julio G, Lluch S, Pujol P, Merindano MD. Effects of tear hyperosmolality on conjunctival cells in mild to moderate dry eye. Ophthalmic Physiol Opt 2012;32:317-323.
    1. Kamao T, Yamaguchi M, Kawasaki S, Mizoue S, Shiraishi A, Ohashi Y. Screening for dry eye with newly developed ocular surface thermographer. Am J Ophthalmol 2011;151:782-791.
    1. Kessler W, Kirchoff C, Reeh PW, Handwerker HO. Excitation of cutaneous afferent nerve endings in vitro by a combination of inflammatory mediators and conditioning effect of substance P. Exp Brain Res 1992;91:467-476.
    1. Kurose M, Meng ID. Dry eye modifies the thermal and menthol responses in rat corneal primary afferent cool cells. J Neurophysiol 2013;110:495-504.
    1. Liu H, Begley C, Chen M, Bradley A, Bonanno J, McNamara NA, Nelson JD, Simpson T. A link between tear instability and hyperosmolality in dry eye. Invest Ophthalmol Vis Sci 2009;50:3671-3679.
    1. McCulley JP, Uchiyama E, Aronowicz JD, Butovich IA. Impact of evaporation on aqueous tear loss. Trans Am Ophthalmol Soc 2006;104:121-128.
    1. Mengher LS, Pandher KS, Bron AJ. Non-invasive tear film break-up time: Sensitivity and specificity. Acta Ophthalmol 1986;64:441-444.
    1. Meyer RA, Campbell JN. Myelinated nociceptive afferents account for the hyperalgesia that follows a burn to the hand. Science 1981;213:1527-1529.
    1. Mishima S, Maurice DM. The oily layer of the tear film and evaporation from the corneal surface. Exp Eye Res 1961;1:39-45.
    1. Parra A, Madrid R, Echevarria D, delOlmo S, Morenilla-Palao C, Acosta MC, Gallar J, Dhaka A, Viana F, Belmonte C. Ocular surface wetness is regulated by TRPM8-dependent cold thermoreceptors of the cornea. Nat Med 2010;16:1396-1399.
    1. Report of the International Dry eye Workshop. DEWS. Ocul Surf 2007;5:65-204.
    1. Stewart P, Chen Z, Farley W, Olmos L, Pflugfelder SC. Effect of experimental dry eye on tear sodium concentration in the mouse. Eye Contact Lens 2005;31:175-178.
    1. Sullivan BD, Whitmer D, Nichols KK, Tomlinson A, Foulks GN, Geerling G, Pepose JS, Kosheleff V, Porreco A, Lemp MA. An objective approach to dry eye disease severity. Invest Ophthalmol Vis Sci 2010;51:6125-6130.
    1. Tan JH, Ng EYK, Acharya UR. Evaluation of tear evaporation from ocular surface by functional infrared thermography. Med Phys 2010;37:6022-6034.
    1. Tashiro A, Okamoto K, Chang Z, Bereiter DA. Behavioral and neurophysiological correlates of nociception in an animal model of photokeratitis. Neuroscience 2010;169:455-462.
    1. Tomlinson A, Doane MG, McFadyen A. Inputs and outputs of the lacrimal system: Review of production and evaporative loss. Ocul Surf 2009;7:186-198.
    1. Tomlinson A, McCann LC, Pearce EI. Comparison of human tear film osmolality measured by electrical impedance and freezing point depression techniques. Cornea 2010;29:1036-1041.
    1. Versura P, Profazio V, Schiavi C, Campos EC. Hyperosmolar stress upregulates HLA-DR expression in human conjunctival epithelium in dry eye patients and in vitro models. Invest Ophthalmol Vis Sci 2011;52:5488-5496.
    1. Werkmeister RM, Alex A, Kaya S, Unterhuber A, Hofer B, Riedl J, Bronhagl M, Vietauer M, Schmidl D, Schmoll T, Garhöfer G, Drexler W, Leitgeb RA, Groeschl M, Schmetterer L. Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci 2013;54:5578-5583.
    1. Zhang X, Mak S, Li L, Parra A, Denlinger B, Belmonte C, McNaughton PA. Direct inhibition of the cold-activated TRPM8 ion channel by Gαq. Nat Cell Biol 2012;14:851-858.
    1. Zhang XF, Chen J, Faltynek CR, Moreland RB, Neelands TR. Transient receptor potential A1 mediates an osmotically activated ion channel. Eur J Neurosci 2008;27:605-611.
    1. Zubkov VS, Breward CJ, Gaffney EA. Coupling fluid and solute dynamics within the ocular surface tear film: A modelling study of black line osmolality. Bull Math Biol 2012;74:2062-2093.

Source: PubMed

3
Abonneren