Clinical and Molecular Aspects of Vitiligo Treatments

Anuradha Bishnoi, Davinder Parsad, Anuradha Bishnoi, Davinder Parsad

Abstract

Vitiligo is an asymptomatic but cosmetically disfiguring disorder that results in the formation of depigmented patches on skin and/or mucosae. Vitiligo can be segmental or non-segmental depending upon the morphology of the clinical involvement. It can also be classified as progressing or stable based on the activity of the disease. Further, the extent of involvement can be limited (localized disease) or extensive (generalized disease). The treatment of vitiligo therefore depends on the clinical classification/characteristics of the disease and usually comprises of 2 strategies. The first involves arresting the progression of active disease (to provide stability) in order to limit the area involved by depigmentation. The second strategy aims at repigmentation of the depigmented area. It is also important to maintain the disease in a stable phase and to prevent relapse. Accordingly, a holistic treatment approach for vitiligo should be individualistic and should take care of all these considerations. In this review, we shall discuss the vitiligo treatments and their important clinical and molecular aspects.

Keywords: repigmenting treatments; stabilizing treatments; vitiligo.

Conflict of interest statement

The authors declare no conflicts of interest.

References

    1. Ezzedine K., Eleftheriadou V., Whitton M., Van Geel N. Vitiligo. Lancet. 2015;386:74–84. doi: 10.1016/S0140-6736(14)60763-7.
    1. Picardo M., Dell’Anna M.L., Ezzedine K., Hamzavi I., Harris J.E., Parsad D., Taieb A. Vitiligo. Nat. Rev. Dis. Prim. 2015 doi: 10.1038/nrdp.2015.11.
    1. Ezzedine K., Lim H.W., Suzuki T., Katayama I., Hamzavi I., Lan C.C., Goh B.K., Anbar T., de Castro C.S., Lee A.Y., et al. Revised classification/nomenclature of vitiligo and related issues: The Vitiligo Global Issues Consensus Conference. Pigment Cell Melanoma Res. 2012;25 doi: 10.1111/j.1755-148X.2012.00997.x.
    1. Passeron T. Medical and Maintenance Treatments for Vitiligo. Dermatol. Clin. 2017;35:163–170. doi: 10.1016/j.det.2016.11.007.
    1. Boniface K., Seneschal J., Picardo M., Taïeb A. Vitiligo: Focus on Clinical Aspects, Immunopathogenesis, and Therapy. Clin. Rev. Allergy Immunol. 2018;54:52–67. doi: 10.1007/s12016-017-8622-7.
    1. Esmat S., Hegazy R.A., Shalaby S., Chu-Sung Hu S., Lan C.C.E. Phototherapy and Combination Therapies for Vitiligo. Dermatol. Clin. 2017;35:171–192. doi: 10.1016/j.det.2016.11.008.
    1. Benzekri L., Gauthier Y. Clinical markers of vitiligo activity. J. Am. Acad. Dermatol. 2017;76:856–862. doi: 10.1016/j.jaad.2016.12.040.
    1. Pasricha J.S., Khaitan B.K. Oral mini-pulse therapy with betamethasone in vitiligo patients having extensive or fast-spreading disease. Int. J. Dermatol. 1993;32:753–757. doi: 10.1111/j.1365-4362.1993.tb02754.x.
    1. Kanwar A.J., Mahajan R., Parsad D. Low-Dose Oral Mini-Pulse Dexamethasone Therapy in Progressive Unstable Vitiligo. J. Cutan. Med. Surg. 2013;17:259–268. doi: 10.2310/7750.2013.12053.
    1. Radakovic-Fijan S., Fürnsinn-Friedl A.M., Hönigsmann H., Tanew A. Oral dexamethasone pulse treatment for vitiligo. J. Am. Acad. Dermatol. 2001;44:814–817. doi: 10.1067/mjd.2001.113475.
    1. Spritz R.A. Shared Genetic Relationships Underlying Generalized Vitiligo and Autoimmune Thyroid Disease. Thyroid. 2010;20:745–754. doi: 10.1089/thy.2010.1643.
    1. Van Geel N.A.C., Mollet I.G., De Schepper S., Tjin E.P., Vermaelen K., Clark R.A., Kupper T.S., Luiten R.M., Lambert J. First histopathological and immunophenotypic analysis of early dynamic events in a patient with segmental vitiligo associated with halo nevi. Pigment Cell Melanoma Res. 2010;23:375–384. doi: 10.1111/j.1755-148X.2010.00703.x.
    1. Jin Y., Birlea S.A., Fain P.R., Gowan K., Riccardi S.L., Holland P.J., Bennett D.C., Herbstman D.M., Wallace M.R., McCormack W.T., et al. Genome-wide analysis identifies a quantitative trait locus in the MHC class II region associated with generalized vitiligo age of onset. J. Investig. Dermatol. 2011;131:1308–1312. doi: 10.1038/jid.2011.12.
    1. Spritz R.A. Recent progress in the genetics of generalized vitiligo. J. Genet. Genom. 2011;38:271–278. doi: 10.1016/j.jgg.2011.05.005.
    1. Spritz R.A., Andersen G.H.L. Genetics of Vitiligo. Dermatol. Clin. 2017;35:245–255. doi: 10.1016/j.det.2016.11.013.
    1. Czajkowski R., Mecińska-Jundziłł K. Current aspects of vitiligo genetics. Postepy Dermatol. Alergol. 2014;31:247–255. doi: 10.5114/pdia.2014.43497.
    1. Kemp E.H., Gavalas N.G., Gawkrodger D.J., Weetman A.P. Autoantibody responses to melanocytes in the depigmenting skin disease vitiligo. Autoimmun. Rev. 2007;6:138–142. doi: 10.1016/j.autrev.2006.09.010.
    1. Boissy R.E., Spritz R.A. Frontiers and controversies in the pathobiology of vitiligo: Separating the wheat from the chaff. Exp. Dermatol. 2009;18:583–585. doi: 10.1111/j.1600-0625.2008.00826.x.
    1. Wang X.X., Wang Q.Q., Wu J.Q., Jiang M., Chen L., Zhang C.F., Xiang L.H. Increased expression of CXCR3 and its ligands in patients with vitiligo and CXCL10 as a potential clinical marker for vitiligo. Br. J. Dermatol. 2016;174:1318–1326. doi: 10.1111/bjd.14416.
    1. Ogg B.G.S., Dunbar P.R., Romero P., Chen J.L., Cerundolo V. High frequency of skin-homing melanocyte-specific cytotoxic T lymphocytes in autoimmune vitiligo. Analysis. 1998;188:1203–1208. doi: 10.1084/jem.188.6.1203.
    1. Harris J.E., Harris T.H., Weninger W., Wherry E.J., Hunter C.A., Turka L.A. A mouse model of vitiligo with focused epidermal depigmentation requires IFN-γ for autoreactive CD8 + T-cell accumulation in the skin. J. Investig. Dermatol. 2012;132:1869–1876. doi: 10.1038/jid.2011.463.
    1. Luiten R.M., Van Den Boorn J.G., Konijnenberg D., Dellemijn T.A., van der Veen J.P., Bos J.D., Melief C.J., Vyth-Dreese F.A. Autoimmune destruction of skin melanocytes by perilesional T cells from vitiligo patients. J. Investig. Dermatol. 2009;129:2220–2232. doi: 10.1038/jid.2009.32.
    1. Lee A.Y. Role of keratinocytes in the development of vitiligo. Ann. Dermatol. 2012;24:115–125. doi: 10.5021/ad.2012.24.2.115.
    1. Rashighi M., Agarwal P., Richmond J.M., Harris T.H., Dresser K., Su M.W., Zhou Y., Deng A., Hunter C.A., Luster A.D., et al. CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo. Sci. Transl. Med. 2014;6 doi: 10.1126/scitranslmed.3007811.
    1. Wang S., Zhou M., Lin F., Liu D., Hong W., Lu L., Zhu Y., Xu A. Interferon-γ induces senescence in normal human melanocytes. PLoS ONE. 2014;9 doi: 10.1371/journal.pone.0093232.
    1. Craiglow B.G., King B.A. Tofacitinib citrate for the treatment of Vitiligo a pathogenesis-directed therapy. JAMA Dermatol. 2015;151:1110–1112. doi: 10.1001/jamadermatol.2015.1520.
    1. Liu L.Y., Strassner J.P., Refat M.A., Harris J.E., King B.A. Repigmentation in vitiligo using the Janus kinase inhibitor tofacitinib may require concomitant light exposure. J. Am. Acad. Dermatol. 2017;77:675–682. doi: 10.1016/j.jaad.2017.05.043.
    1. Iannella G., Greco A., Didona D., Didona B., Granata G., Manno A., Pasquariello B., Magliulo G. Vitiligo: Pathogenesis, clinical variants and treatment approaches. Autoimmun. Rev. 2016;15:335–343. doi: 10.1016/j.autrev.2015.12.006.
    1. Singh H., Kumaran M.S., Bains A., Parsad D. A Randomized Comparative Study of Oral Corticosteroid Minipulse and Low-Dose Oral Methotrexate in the Treatment of Unstable Vitiligo. Dermatology. 2015;231:286–290. doi: 10.1159/000433424.
    1. Radmanesh M., Saedi K. The efficacy of combined PUVA and low-dose azathioprine for early and enhanced repigmentation in vitiligo patients. J. Dermatol. Treat. 2006;17:151–153. doi: 10.1080/09546630600791442.
    1. Khurrum H., AlGhamdi K.M., Osman E. Screening of glaucoma or cataract prevalence in vitiligo patients and its relationship with periorbital steroid use. J. Cutan. Med. Surg. 2016;20:146–149. doi: 10.1177/1203475415615325.
    1. Moretti S., Fabbri P., Baroni G., Berti S., Bani D., Berti E., Nassini R., Lotti T., Massi D. Keratinocyte dysfunction in vitiligo epidermis: Cytokine microenvironment and correlation to keratinocyte apoptosis. Histol. Histopathol. 2009;24:849–857. doi: 10.14670/HH-24.849.
    1. Taïeb A. Vitiligo as an inflammatory skin disorder: A therapeutic perspective. Pigment Cell Melanoma Res. 2012;25:9–13. doi: 10.1111/j.1755-148X.2011.00939.x.
    1. Sravani P.V., Babu N.K., Gopal K.V., Rao G.R., Rao A.R., Moorthy B., Rao T.R. Determination of oxidative stress in vitiligo by measuring superoxide dismutase and catalase levels in vitiliginous and non-vitiliginous skin. Indian J. Dermatol. Venereol. Leprol. 2009;75:268. doi: 10.4103/0378-6323.48427.
    1. Wagner R.Y., Luciani F., Cario-André M., Rubod A., Petit V., Benzekri L., Ezzedine K., Lepreux S., Steingrimsson E., Taieb A., et al. Altered E-cadherin levels and distribution in melanocytes precede clinical manifestations of vitiligo. J. Investig. Dermatol. 2015;135:1810–1819. doi: 10.1038/jid.2015.25.
    1. Tang A., Eller M.S., Hara M., Yaar M., Hirohashi S., Gilchrest B.A. E-cadherin is the major mediator of human melanocyte adhesion to keratinocytes in vitro. J. Cell Sci. 1994;107:983–992.
    1. Levy C., Khaled M. Ecad vitiliGONE. Pigment Cell Melanoma Res. 2015;28:376–377. doi: 10.1111/pcmr.12377.
    1. Picardo M., Bastonini E. A new view of vitiligo: Looking at normal-appearing skin. J. Investig. Dermatol. 2015;135:1713–1714. doi: 10.1038/jid.2015.92.
    1. Cario-André M., Pain C., Gauthier Y., Taïeb A. The melanocytorrhagic hypothesis of vitiligo tested on pigmented, stressed, reconstructed epidermis. Pigment Cell Res. 2007;20:385–393. doi: 10.1111/j.1600-0749.2007.00396.x.
    1. Gauthier Y., Cario-Andre M., Lepreux S., Pain C., Taïeb A. Melanocyte detachment after skin friction in non lesional skin of patients with generalized vitiligo. Br. J. Dermatol. 2003;148:95–101. doi: 10.1046/j.1365-2133.2003.05024.x.
    1. Reichert Faria A., Jung J.E., Silva de Castro C.C., de Noronha L. Reduced immunohistochemical expression of adhesion molecules in vitiligo skin biopsies. Pathol. Res. Pract. 2017;213:199–204. doi: 10.1016/j.prp.2016.12.019.
    1. Laddha N.C., Dwivedi M., Mansuri M.S., Gani A.R., Ansarullah M., Ramachandran A.V., Dalai S., Begum R. Vitiligo: Interplay between oxidative stress and immune system. Exp. Dermatol. 2013;22:245–250. doi: 10.1111/exd.12103.
    1. Khan R., Satyam A., Gupta S., Sharma V.K., Sharma A. Circulatory levels of antioxidants and lipid peroxidation in Indian patients with generalized and localized vitiligo. Arch. Dermatol. Res. 2009;301:731–737. doi: 10.1007/s00403-009-0964-4.
    1. Zailaie M.Z. Epidermal hydrogen peroxide is not increased in lesional and non-lesional skin of vitiligo. Arch. Dermatol. Res. 2017;309:31–42. doi: 10.1007/s00403-016-1695-y.
    1. Shi M.H., Wu Y., Li L., Cai Y.F., Liu M., Gao X.H., Chen H.D. Meta-analysis of the association between vitiligo and the level of superoxide dismutase or malondialdehyde. Clin. Exp. Dermatol. 2017;42:21–29. doi: 10.1111/ced.12950.
    1. Xiao B.H., Shi M., Chen H., Cui S., Wu Y., Gao X.H., Chen H.D. Glutathione Peroxidase Level in Patients with Vitiligo: A Meta-Analysis. Biomed. Res. Int. 2016 doi: 10.1155/2016/3029810.
    1. Yildirim M., Baysal V., Inaloz H.S., Can M. The role of oxidants and antioxidants in generalized vitiligo at tissue level. J. Eur. Acad. Dermatol. Venereol. 2004;18:683–686. doi: 10.1111/j.1468-3083.2004.01080.x.
    1. Xie H., Zhou F., Liu L., Zhu G., Li Q., Li C., Gao T. Vitiligo: How do oxidative stress-induced autoantigens trigger autoimmunity? J. Dermatol. Sci. 2016;81:3–9. doi: 10.1016/j.jdermsci.2015.09.003.
    1. Jian Z., Li K., Song P., Zhu G., Zhu L., Cui T., Liu B., Tang L., Wang X., Wang G., et al. Impaired activation of the Nrf2-ARE signaling pathway undermines H2O2-induced oxidative stress response: A possible mechanism for melanocyte degeneration in vitiligo. J. Investig. Dermatol. 2014;134:2221–2230. doi: 10.1038/jid.2014.152.
    1. Tobin D.J., Swanson N.N., Pittelkow M.R., Peters E.M., Schallreuter K.U. Melanocytes are not absent in lesional skin of long duration vitiligo. J. Pathol. 2000;191:407–416. doi: 10.1002/1096-9896(2000)9999:9999<::AID-PATH659>;2-D.
    1. Richmond J.M., Frisoli M.L., Harris J.E. Innate immune mechanisms in vitiligo: Danger from within. Curr. Opin. Immunol. 2013;25:676–682. doi: 10.1016/j.coi.2013.10.010.
    1. Dell’Anna M.L., Mastrofrancesco A., Sala R., Venturini M., Ottaviani M., Vidolin A.P., Leone G., Calzavara P.G., Westerhof W., Picardo M. Antioxidants and narrow band-UVB in the treatment of vitiligo: A double-blind placebo controlled trial. Clin. Exp. Dermatol. 2007;32:631–636. doi: 10.1111/j.1365-2230.2007.02514.x.
    1. Middelkamp-Hup M.A., Bos J.D., Rius-diaz F., Gonzalez S., Westerhof W. Treatment of vitiligo vulgaris with narrow-band UVB and oral polypodium leucotomos extract: A randomized double-blind placebo-controlled study. J. Eur. Acad. Dermatol. Venereol. 2007;21:942–950. doi: 10.1111/j.1468-3083.2006.02132.x.
    1. Parsad D., Pandhi R., Juneja A. Effectiveness of oral Ginkgo biloba in treating limited, slowly spreading vitiligo. Clin. Exp. Dermatol. 2003;28:285–287. doi: 10.1046/j.1365-2230.2003.01207.x.
    1. Kanwar A., Parsad D., Mahajan R., Singh A. Randomized controlled study to evaluate the effectiveness of dexamethasone oral minipulse therapy versus oral minocycline in patients with active vitiligo vulgaris. Indian J. Dermatol. Venereol. Leprol. 2014;80:29. doi: 10.4103/0378-6323.125479.
    1. Song X., Xu A., Pan W., Wallin B., Kivlin R., Lu S., Cao C., Bi Z., Wan Y. Minocycline protects melanocytes against H2O2-induced cell death via JNK and p38 MAPK pathways. Int. J. Mol. Med. 2008;22:9–16.
    1. Rodrigues M., Ezzedine K., Hamzavi I., Pandya A.G., Harris J.E. New discoveries in the pathogenesis and classification of vitiligo. J. Am. Acad. Dermatol. 2017;77:1–13. doi: 10.1016/j.jaad.2016.10.048.
    1. Bhardwaj S., Rani S., Srivastava N., Kumar R., Parsad D. Increased systemic and epidermal levels of IL-17A and IL-1β promotes progression of non-segmental vitiligo. Cytokine. 2017;91:153–161. doi: 10.1016/j.cyto.2016.12.014.
    1. Boniface K., Jacquemin C., Darrigade A.S., Dessarthe B., Martins C., Boukhedouni N., Vernisse C., Grasseau A., Thiolat D., Rambert J., et al. Vitiligo Skin Is Imprinted with Resident Memory CD8 T Cells Expressing CXCR3. J. Investig. Dermatol. 2018;138:355–364. doi: 10.1016/j.jid.2017.08.038.
    1. Kumar R., Parsad D., Kanwar A., Kaul D. Altered levels of LXR-α: Crucial implications in the pathogenesis of vitiligo. Exp. Dermatol. 2012;21:853–858. doi: 10.1111/exd.12017.
    1. Le Poole I.C., van den Wijngaard R.M., Westerhof W., Das P.K. Tenascin is overexpressed in vitiligo lesional skin and inhibits melanocyte adhesion. Br. J. Dermatol. 1997;137:171–178. doi: 10.1046/j.1365-2133.1997.18011894.x.
    1. Esmat S.M., El-Tawdy A.M., Hafez G.A., Zeid O.A., Abdel Halim D.M., Saleh M.A., Leheta T.M., Elmofty M. Acral lesions of vitiligo: Why are they resistant to photochemotherapy? J. Eur. Acad. Dermatol. Venereol. 2012;26:1097–1104. doi: 10.1111/j.1468-3083.2011.04215.x.
    1. Rani S., Chauhan R., Parsad D., Kumar R. Effect of Dickkopf1 on the senescence of melanocytes: In vitro study. Arch. Dermatol. Res. 2018;310:343–350. doi: 10.1007/s00403-018-1820-1.
    1. Rani S., Bhardwaj S., Srivastava N., Sharma V.L., Parsad D., Kumar R. Senescence in the lesional fibroblasts of non-segmental vitiligo patients. Arch. Dermatol. Res. 2017;309:123–132. doi: 10.1007/s00403-016-1713-0.
    1. Kovacs D., Bastonini E., Ottaviani M., Cota C., Migliano E., Dell’Anna M.L., Picardo M. Vitiligo Skin: Exploring the Dermal Compartment. J. Investig. Dermatol. 2018;138:394–404. doi: 10.1016/j.jid.2017.06.033.
    1. Gan E.Y., Eleftheriadou V., Esmat S., Hamzavi I., Passeron T., Böhm M., Anbar T., Goh B.K., Lan C.E., Lui H., et al. Repigmentation in vitiligo: Position paper of the Vitiligo Global Issues Consensus Conference. Pigment Cell Melanoma Res. 2017;30:28–40. doi: 10.1111/pcmr.12561.
    1. Bishnoi A., Parsad D. Commentary on effect of procedural-related variables on melanocyte-keratinocyte suspension transplantation in nonsegmental stable vitiligo. Dermatol. Surg. 2017;43:236–237. doi: 10.1097/DSS.0000000000000892.
    1. Falabella R., Barona M.I. Update on skin repigmentation therapies in vitiligo. Pigment Cell Melanoma Res. 2009;22:42–65. doi: 10.1111/j.1755-148X.2008.00528.x.
    1. Bishnoi A., Parsad D. Repigmentation patterns in vitiligo: Where do we stand? Br. J. Dermatol. 2016;175:460–461. doi: 10.1111/bjd.14890.
    1. Kumar R., Parsad D., Kanwar A.J., Kaul D. Altered levels of Ets-1 transcription factor and matrix metalloproteinases in melanocytes from patients with vitiligo. Br. J. Dermatol. 2011;165:285–291. doi: 10.1111/j.1365-2133.2011.10324.x.
    1. El Mofty M., Esmat S., Hunter N., Mashaly H.M., Dorgham D., Shaker O., Ibrahim S. Effect of different types of therapeutic trauma on vitiligo lesions. Dermatol. Ther. 2017;30 doi: 10.1111/dth.12447.
    1. Wu C.S., Lan C.C.E., Chiou M.H., Yu H.S. Basic fibroblast growth factor promotes melanocyte migration via increased expression of p125FAK on melanocytes. Acta. Derm. Venereol. 2006;86:498–502. doi: 10.2340/00015555-0161.
    1. Choi Y.M., Diehl J., Levins P.C. Promising alternative clinical uses of prostaglandin F2α analogs: Beyond the eyelashes. J. Am. Acad. Dermatol. 2015;72:712–716. doi: 10.1016/j.jaad.2014.10.012.
    1. Anbar T.S., El-Ammawi T.S., Abdel-Rahman A.T., Hanna M.R. The effect of latanoprost on vitiligo: A preliminary comparative study. Int. J. Dermatol. 2015;54:587–593. doi: 10.1111/ijd.12631.
    1. Parsad D., Pandhi R., Dogra S., Kumar B. Topical prostaglandin analog (PGE2) in vitiligo—A preliminary study. Int. J. Dermatol. 2002;41:942–945. doi: 10.1046/j.1365-4362.2002.01612.x.
    1. Sharma S., Parsad D., Bhattacharjee R., Muthu S.K. A prospective right-left comparative study to evaluate the efficacy and tolerability of combination of NB-UVB and topical bimatoprost 0.03% eye drops versus NB-UVB given alone in patients of vitiligo vulgaris. J. Eur. Acad. Dermatol. Venereol. 2018 doi: 10.1111/jdv.14882.
    1. Regazzetti C., Joly F., Marty C., Rivier M., Mehul B., Reiniche P., Mounier C., Rival Y., Piwnica D., Cavalié M., et al. Transcriptional analysis of vitiligo skin reveals the alteration of WNT pathway: A promising target for repigmenting vitiligo patients. J. Investig. Dermatol. 2015;135:3105–3114. doi: 10.1038/jid.2015.335.
    1. Birlea S.A., Costin G.E., Roop D.R., Norris D.A. Trends in Regenerative Medicine: Repigmentation in Vitiligo Through Melanocyte Stem Cell Mobilization. Med. Res. Rev. 2017;37:907–935. doi: 10.1002/med.21426.
    1. Lee K.Y., Jeon S.Y., Hong J.W., Choi K.W., Lee C.Y., Choi S.J., Kim J.H., Song K.H., Kim K.H. Endothelin-1 enhances the proliferation of normal human melanocytes in a paradoxical manner from the TNF-α-inhibited condition, but tacrolimus promotes exclusively the cellular migration without proliferation: A proposed action mechanism for combination. J. Eur. Acad. Dermatol. Venereol. 2013;27:609–616. doi: 10.1111/j.1468-3083.2012.04498.x.
    1. Akdeniz N., Yavuz I.H., Gunes Bilgili S., Ozaydin Yavuz G., Calka O. Comparison of efficacy of narrow band UVB therapies with UVB alone, in combination with calcipotriol, and with betamethasoneand calcipotriol in vitiligo. J. Dermatol. Treat. 2014;25:196–199. doi: 10.3109/09546634.2013.777381.
    1. Bhatnagar A., Kanwar A.J., Parsad D., De D. Comparison of systemic PUVA and NB-UVB in the treatment of vitiligo: An open prospective study. J. Eur. Acad. Dermatol. Venereol. 2007;21:638–642. doi: 10.1111/j.1468-3083.2006.02035.x.
    1. Lee J., Chu H., Lee H., Kim M., Kim D.S., Oh S.H. A Retrospective Study of Methylprednisolone Mini-Pulse Therapy Combined with Narrow-Band UVB in Non-Segmental Vitiligo. Dermatology. 2016;232:224–229. doi: 10.1159/000439563.
    1. Li R., Qiao M., Wang X., Zhao X., Sun Q. Effect of narrow band ultraviolet B phototherapy as monotherapy or combination therapy for vitiligo: A meta-analysis. Photodermatol. Photoimmunol. Photomed. 2017;33:22–31. doi: 10.1111/phpp.12277.
    1. Bhatnagar A., Kanwar A.J., Parsad D., De D. Psoralen and ultraviolet A and narrow-band ultraviolet B in inducing stability in vitiligo, assessed by vitiligo disease activity score: An open prospective comparative study. J. Eur. Acad. Dermatol. Venereol. 2007;21:1381–1385. doi: 10.1111/j.1468-3083.2007.02283.x.
    1. El Mofty M., Essmat S., Youssef R., Sobeih S., Mahgoub D., Ossama S., Saad A., El Tawdy A., Mashaly H.M., Saney I., et al. The role of systemic steroids and phototherapy in the treatment of stable vitiligo: A randomized controlled trial. Dermatol. Ther. 2016;29:406–412. doi: 10.1111/dth.12384.
    1. Kanwar A.J., Dogra S., Parsad D., Kumar B. Narrow-band UVB for the treatment of vitiligo: An emerging effective and well-tolerated therapy. Int. J. Dermatol. 2005;44:57–60. doi: 10.1111/j.1365-4632.2004.02329.x.
    1. Moftah N.H., El-Barbary R.A.H., Ismail M.A., Ali N.A.M. Effect of narrow band-ultraviolet B on CD4+CD25highFoxP3+T-lymphocytes in the peripheral blood of vitiligo patients. Photodermatol. Photoimmunol. Photomed. 2014;30:254–261. doi: 10.1111/phpp.12104.
    1. Choi C.P., Kim Y.I., Lee J.W., Lee M.H. The effect of narrowband ultraviolet B on the expression of matrix metalloproteinase-1, transforming growth factor-beta1 and type I collagen in human skin fibroblasts. Clin. Exp. Dermatol. 2007;32:180–185. doi: 10.1111/j.1365-2230.2006.02309.x.
    1. Lan C.C.E., Wu C.S., Chen G.S., Yu H.S. FK506 (tacrolimus) and endothelin combined treatment induces mobility of melanoblasts: New insights into follicular vitiligo repigmentation induced by topical tacrolimus on sun-exposed skin. Br. J. Dermatol. 2011;164:490–496. doi: 10.1111/j.1365-2133.2010.10113.x.

Source: PubMed

3
Abonneren