A review of vagus nerve stimulation as a therapeutic intervention

Rhaya L Johnson, Christopher G Wilson, Rhaya L Johnson, Christopher G Wilson

Abstract

In this review, we provide an overview of the US Food and Drug Administration (FDA)-approved clinical uses of vagus nerve stimulation (VNS) as well as information about the ongoing studies and preclinical research to expand the use of VNS to additional applications. VNS is currently FDA approved for therapeutic use in patients aged >12 years with drug-resistant epilepsy and depression. Recent studies of VNS in in vivo systems have shown that it has anti-inflammatory properties which has led to more preclinical research aimed at expanding VNS treatment across a wider range of inflammatory disorders. Although the signaling pathway and mechanism by which VNS affects inflammation remain unknown, VNS has shown promising results in treating chronic inflammatory disorders such as sepsis, lung injury, rheumatoid arthritis (RA), and diabetes. It is also being used to control pain in fibromyalgia and migraines. This new preclinical research shows that VNS bears the promise of being applied to a wider range of therapeutic applications.

Keywords: autonomic circuits; inflammation; pediatrics; peripheral nerve stimulation; vagus nerve stimulation.

Conflict of interest statement

Disclosure The authors report no conflicts of interest in this work.

Figures

Figure 1
Figure 1
Overview of vagal circuitry linking the central and peripheral nervous system. Notes: Visceral afferents converge on the NTS in the brain stem, the first point of integration between the peripheral autonomic nervous system and the central nervous system. Visceral afferents project from the dorsal motor nucleus of the vagus and are key to exerting autonomic control in the periphery. Abbreviations: NA, nucleus ambiguus; NTS, nucleus tractus solitarii; pBC, preBötzinger complex.
Figure 2
Figure 2
Putative pathways involved in vagus nerve stimulation. Notes: Stimulation of the vagus activates ascending pathways that alter neural circuits in the brain stem, midbrain, and cortex. Regions that are impacted by vagus nerve stimulation based on past research are included in this diagram. Abbreviations: NTS, nucleus tractus solitarii; DMX, dorsal motor nucleus of the vagus; LC, locus coeruleus; THAL, thalamus; HypoTHAL, hypothalamus; RTN, retrotrapezoid nucleus; BC, Bötzinger complex; pBC, preBötzinger complex; VRG, ventral respiratory group.
Figure 3
Figure 3
Flow diagram showing the inflammatory neural circuit. Notes: Inflammatory markers including IL-1b, IL-6, TNFa, IL-10, HMGB1, IL-11, and IL-13 alter peripheral inflammatory tone, which stimulates NFkB, resulting in increased inflammatory signaling to the CNS via the brain stem. This results in output that generates an inflammatory signal. VNS can be used to alter the input/output of this autonomic control circuitry. Abbreviations: IL, interleukin; TNF, tumor necrosis factor; NFkB, nuclear factor kB; CNS, central nervous system; VNS, vagus nerve stimulation.

References

    1. Bonaz B, Picq C, Sinniger V, Mayol JF, Clarençon D. Vagus nerve stimulation: from epilepsy to the cholinergic anti-inflammatory pathway. Neurogastroenterol Motil. 2013;25(3):208–221.
    1. Tracey KJ. The inflammatory reflex. Nature. 2002;420(6917):853–859.
    1. Borovikova LV, Ivanova S, Zhang M, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405(6785):458–462.
    1. Matteoli G, Gomez-Pinilla PJ, Nemethova A, et al. A distinct vagal anti-inflammatory pathway modulates intestinal muscularis resident macrophages independent of the spleen. Gut. 2014;63(6):938–948.
    1. Rosas-Ballina M, Olofsson PS, Ochani M, et al. Acetylcholine- synthesizing T cells relay neural signals in a vagus nerve circuit. Science. 2011;334(6052):98–101.
    1. Rosas-Ballina M, Ochani M, Parrish WR, et al. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc Natl Acad Sci U S A. 2008;105(31):11008–11013.
    1. Berthoud HR, Neuhuber WL. Functional and chemical anatomy of the afferent vagal system. Auton Neurosci. 2000;85(1–3):1–17.
    1. Yu ZJ, Weller RA, Sandidge K, Weller EB. Vagus nerve stimulation: can it be used in adolescents or children with treatment-resistant depression? Curr Psychiatry Rep. 2008;10(2):116–122.
    1. Browning KN, Travagli RA. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol. 2014;4(4):1339–1368.
    1. Vivas AC, Baaj AA, Benbadis SR, Vale FL. The health care burden of patients with epilepsy in the United States: an analysis of a nationwide database over 15 years. Neurosurg Focus. 2012;32(3):E1.
    1. Lanska DJ. J.L. Corning and vagal nerve stimulation for seizures in the 1880s. Neurology. 2002;58(3):452–459.
    1. Couch JD, Gilman AM, Doyle WK. Long-term expectations of vagus nerve stimulation: a look at battery replacement and revision surgery. Neurosurgery. 2016;78(1):42–46.
    1. Spuck S, Nowak G, Renneberg A, Tronnier V, Sperner J. Right-sided vagus nerve stimulation in humans: an effective therapy? Epilepsy Res. 2008;82(2–3):232–234.
    1. Navas M, Navarrete EG, Pascual JM, et al. Treatment of refractory epilepsy in adult patients with right-sided vagus nerve stimulation. Epilepsy Res. 2010;90(1–2):1–7.
    1. McGregor A, Wheless J, Baumgartner J, Bettis D. Right-sided vagus nerve stimulation as a treatment for refractory epilepsy in humans. Epilepsia. 2005;46(1):91–96.
    1. Groves DA, Brown VJ. Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects. Neurosci Biobehav Rev. 2005;29(3):493–500.
    1. Manuals – Product Information / Manuals – Healthcare Professionals, on VNS Therapy for Epilepsy | Cyberonics US [webpage on the Internet] [Accessed December 15, 2015]. Available from:
    1. Chakravarthy K, Chaudhry H, Williams K, Christo PJ. Review of the uses of vagal nerve stimulation in chronic pain management. Curr Pain Headache Rep. 2015;19(12):54.
    1. Elliott RE, Rodgers SD, Bassani L, et al. Vagus nerve stimulation for children with treatment-resistant epilepsy: a consecutive series of 141 cases. J Neurosurg Pediatr. 2011;7(5):491–500.
    1. Morris GL, Mueller WM. Long-term treatment with vagus nerve stimulation in patients with refractory epilepsy. The Vagus Nerve Stimulation Study Group E01-E05. Neurology. 1999;53(8):1731–1735.
    1. Krahl SE, Clark KB. Vagus nerve stimulation for epilepsy: a review of central mechanisms. Surg Neurol Int. 2012;3(Suppl 4):S255–S259.
    1. MacDonald SC, Bateman BT, McElrath TF, Hernández-Díaz S. Mortality and morbidity during delivery hospitalization among pregnant women with epilepsy in the United States. JAMA Neurol. 2015;72(9):981–988.
    1. Patel SI, Pennell PB. Management of epilepsy during pregnancy: an update. Ther Adv Neurol Disord. 2016;9(2):118–129.
    1. Houser MV, Hennessy MD, Howard BC. Vagal nerve stimulator use during pregnancy for treatment of refractory seizure disorder. Obstet Gynecol. 2010;115(2 Pt 2):417–419.
    1. Salerno G, Passamonti C, Cecchi A, Zamponi N. Vagus nerve stimulation during pregnancy: an instructive case. Childs Nerv Syst. 2016;32(1):209–211.
    1. Zack MM. National and state estimates of the numbers of adults and children with active epilepsy – United States, 2015. MMWR Morb Mortal Wkly Rep. 2017;66:821–825.
    1. Cianchetti C, Messina P, Pupillo E, et al. The perceived burden of epilepsy: Impact on the quality of life of children and adolescents and their families. Seizure. 2015;24:93–101.
    1. Terra VC, de Paola L, Silvado CE. Are children affected by epileptic neuropsychiatric comorbidities? Epilepsy Behav. 2014;38:8–12.
    1. He W, Wang X-Y, Zhou L, et al. Transcutaneous auricular vagus nerve stimulation for pediatric epilepsy: study protocol for a randomized controlled trial. Trials. 2015;16:371.
    1. Hallböök T, Lundgren J, Stjernqvist K, Blennow G, Strömblad L-G, Rosén I. Vagus nerve stimulation in 15 children with therapy resistant epilepsy; its impact on cognition, quality of life, behaviour and mood. Seizure. 2005;14(7):504–513.
    1. Smyth MD, Tubbs RS, Bebin EM, Grabb PA, Blount JP. Complications of chronic vagus nerve stimulation for epilepsy in children. J Neurosurg. 2003;99(3):500–503.
    1. Farwell JR, Lee YJ, Hirtz DG, Sulzbacher SI, Ellenberg JH, Nelson KB. Phenobarbital for febrile seizures – effects on intelligence and on seizure recurrence. N Engl J Med. 1990;322(6):364–369.
    1. Lagae L. Cognitive side effects of anti-epileptic drugs. The relevance in childhood epilepsy. Seizure. 2006;15(4):235–241.
    1. Fernandez L, Gedela S, Tamber M, Sogawa Y. Vagus nerve stimulation in children less than 3 years with medically intractable epilepsy. Epilepsy Res. 2015;112:37–42.
    1. Levy ML, Levy KM, Hoff D, et al. Vagus nerve stimulation therapy in patients with autism spectrum disorder and intractable epilepsy: results from the vagus nerve stimulation therapy patient outcome registry. J Neurosurg Pediatr. 2010;5(6):595–602.
    1. Greenberg PE, Fournier A-A, Sisitsky T, Pike CT, Kessler RC. The economic burden of adults with major depressive disorder in the United States (2005 and 2010) J Clin Psychiatry. 2015;76(2):155–162.
    1. Bajbouj M, Merkl A, Schlaepfer TE, et al. Two-year outcome of vagus nerve stimulation in treatment-resistant depression. J Clin Psychopharmacol. 2010;30(3):273–281.
    1. American Psychiatric Association . Diagnostic and Statistical Manual of Mental Disorders. Washington, DC: American Psychiatric Association; 1980.
    1. Andrews G, Brugha T, Thase ME, Duffy FF, Rucci P, Slade T. Dimensionality and the category of major depressive episode. Int J Methods Psychiatr Res. 2007;16(Suppl 1):S41–S51.
    1. Zimmerman M, Chelminski I, Posternak M. A review of studies of the Hamilton depression rating scale in healthy controls: implications for the definition of remission in treatment studies of depression. J Nerv Ment Dis. 2004;192(9):595–601.
    1. Nahas Z, Marangell LB, Husain MM, et al. Two-year outcome of vagus nerve stimulation (VNS) for treatment of major depressive episodes. J Clin Psychiatry. 2005;66(9):1097–1104.
    1. Rush AJ, Kraemer HC, Sackeim HA, et al. Report by the ACNP Task Force on response and remission in major depressive disorder. Neuropsychopharmacology. 2006;31(9):1841–1853.
    1. Weisskopf E, Fumeaux CJF, Bickle Graz M, et al. Bon usage des antidépresseurs ISRS durant la grossesse - le défi de l’évaluation de la balance bénéfice-risque. [SSRI antidepressant use during pregnancy and the assessment of the risk-benefit ratio] Rev Médicale Suisse. 2016;12(510):561–566. French.
    1. Preti A, Cardascia L, Zen T, et al. Obstetric complications in patients with depression – a population-based case-control study. J Affect Disord. 2000;61(1–2):101–106.
    1. Husain MM, Stegman D, Trevino K. Pregnancy and delivery while receiving vagus nerve stimulation for the treatment of major depression: a case report. Ann Gen Psychiatry. 2005;4:16.
    1. Judkins A, Johnson RL, Murray ST, Yellon SM, Wilson CG. Vagus nerve stimulation in pregnant rats and effects on inflammatory markers in the brain stem of neonates. Pediatr Res. 2018;83(2):514–519.
    1. Botteron KN, Geller B. Refractory depression in children and adolescents. Depress Anxiety. 1997;5(4):212–223.
    1. Antidepressant Medications for Children and Adolescents: Information for Parents and Caregivers. [Accessed January 6, 2016]. Available from: .
    1. Slade E, Tamber PS, Vincent J-L. The Surviving Sepsis Campaign: raising awareness to reduce mortality. Crit Care Lond Engl. 2003;7(1):1–2.
    1. Kessler W, Diedrich S, Menges P, et al. The role of the vagus nerve: modulation of the inflammatory reaction in murine polymicrobial sepsis. Mediators Inflamm. 2012;2012:467620.
    1. Huang J, Wang Y, Jiang D, Zhou J, Huang X. The sympathetic-vagal balance against endotoxemia. J Neural Transm (Vienna) 2010;117(6):729–735.
    1. Johnson RL, Murray ST, Camacho DK, Wilson CG. Vagal nerve stimulation attenuates IL-6 and TNFa expression in respiratory regions of the developing rat brain stem. Respir Physiol Neurobiol. 2016;229:1–4.
    1. Barbanti P, Grazzi L, Egeo G, Padovan AM, Liebler E, Bussone G. Noninvasive vagus nerve stimulation for acute treatment of high-frequency and chronic migraine: an open-label study. J Headache Pain. 2015;16:61.
    1. Patel YA, Saxena T, Bellamkonda RV, Butera RJ. Kilohertz frequency nerve block enhances anti-inflammatory effects of vagus nerve stimulation. Sci Rep. 2017;7:39810.
    1. Patel YA, Saxena T, Bellamkonda RV, Butera RJ. Corrigendum: kilohertz frequency nerve block enhances anti-inflammatory effects of vagus nerve stimulation. Sci Rep. 2017;7:46848.
    1. Lange G, Janal MN, Maniker A, et al. Safety and efficacy of vagus nerve stimulation in fibromyalgia: a phase I/II proof of concept trial. Pain Med. 2011;12(9):1406–1413.
    1. Randich A, Gebhart GF. Vagal afferent modulation of nociception. Brain Res Brain Res Rev. 1992;17(2):77–99.
    1. Silberstein SD, Mechtler LL, Kudrow DB, et al. Non-invasive vagus nerve stimulation for the acute treatment of cluster headache: findings from the randomized, double-blind, sham-controlled ACT1 study. Headache. 2016;56(8):1317–1332.
    1. FastStats [webpage on the Internet] Obesity and overweight. [Accessed January 7, 2016]. Available from: .
    1. Burneo JG, Faught E, Knowlton R, Morawetz R, Kuzniecky R. Weight loss associated with vagus nerve stimulation. Neurology. 2002;59(3):463–464.
    1. Bodenlos JS, Kose S, Borckardt JJ, et al. Vagus nerve stimulation acutely alters food craving in adults with depression. Appetite. 2007;48(2):145–153.
    1. Val-Laillet D, Biraben A, Randuineau G, Malbert CH. Chronic vagus nerve stimulation decreased weight gain, food consumption and sweet craving in adult obese minipigs. Appetite. 2010;55(2):245–252.
    1. Raybould HE, Tache Y. Cholecystokinin inhibits gastric motility and emptying via a capsaicin-sensitive vagal pathway in rats. Am J Physiol. 1988;255(2):G242–G246.
    1. Ikramuddin S, Blackstone RP, Brancatisano A, et al. Effect of reversible intermittent intra-abdominal vagal nerve blockade on morbid obesity: the ReCharge randomized clinical trial. JAMA. 2014;312(9):915–922.
    1. Boron WF, Boulpaep EL. Medical Physiology, 2e Updated Edition: With STUDENT CONSULT Online Access. Atlanta, GA: Elsevier Health Sciences; 2012.
    1. Das UN. Vagal nerve stimulation in prevention and management of coronary heart disease. World J Cardiol. 2011;3(4):105–110.
    1. Sloan RP, McCreath H, Tracey KJ, Sidney S, Liu K, Seeman T. RR interval variability is inversely related to inflammatory markers: the CARDIA study. Mol Med Camb Mass. 2007;13(3–4):178–184.
    1. Zhang Y, Popovic ZB, Bibevski S, et al. Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model. Circ Heart Fail. 2009;2(6):692–699.
    1. Zhao M, He X, Bi X-Y, Yu X-J, Gil Wier W, Zang W-J. Vagal stimulation triggers peripheral vascular protection through the cholinergic anti-inflammatory pathway in a rat model of myocardial ischemia/reperfusion. Basic Res Cardiol. 2013;108(3):345.
    1. Chapleau MW, Rotella DL, Reho JJ, Rahmouni K, Stauss HM. Chronic vagal nerve stimulation prevents high-salt diet-induced endothelial dysfunction and aortic stiffening in stroke-prone spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol. 2016;311(1):H276–H285.
    1. dos Santos CC, Shan Y, Akram A, Slutsky AS, Haitsma JJ. Neuroimmune regulation of ventilator-induced lung injury. Am J Respir Crit Care Med. 2011;183(4):471–482.
    1. Levy G, Fishman JE, Xu D, et al. Vagal nerve stimulation modulates gut injury and lung permeability in trauma-hemorrhagic shock. J Trauma Acute Care Surg. 2012;73(2):338–342. discussion 342.
    1. Tarras SL, Diebel LN, Liberati DM, Ginnebaugh K. Pharmacologic stimulation of the nicotinic anti-inflammatory pathway modulates gut and lung injury after hypoxia-reoxygenation injury. Surgery. 2013;154(4):841–847. discussion 847–848.
    1. Reys LG, Ortiz-Pomales YT, Lopez N, et al. Uncovering the neuroenteric-pulmonary axis: vagal nerve stimulation prevents acute lung injury following hemorrhagic shock. Life Sci. 2013;92(13):783–792.
    1. Bansal V, Ryu SY, Lopez N, et al. Vagal stimulation modulates inflammation through a ghrelin mediated mechanism in traumatic brain injury. Inflammation. 2012;35(1):214–220.
    1. Pal GK, Adithan C, Ananthanarayanan PH, et al. Sympathovagal imbalance contributes to prehypertension status and cardiovascular risks attributed by insulin resistance, inflammation, dyslipidemia and oxidative stress in first degree relatives of type 2 diabetics. PLoS One. 2013;8(11):e78072.
    1. Woie K, Reed RK. Alloxan diabetes abolishes the increased negativity of interstitial fluid pressure in rat trachea induced by vagal nerve stimulation. Acta Physiol Scand. 1997;161(1):113–119.
    1. Meyers EE, Kronemberger A, Lira V, Rahmouni K, Stauss HM. Contrasting effects of afferent and efferent vagal nerve stimulation on insulin secretion and blood glucose regulation. Physiol Rep. 2016;4(4):e12718.
    1. Patel YA, Butera RJ. Differential fiber-specific block of nerve conduction in mammalian peripheral nerves using kilohertz electrical stimulation. J Neurophysiol. 2015;113(10):3923–3929.
    1. Feldmann M, Brennan FM, Maini RN. Role of cytokines in rheumatoid arthritis. Annu Rev Immunol. 1996;14:397–440.
    1. Tetta C, Camussi G, Modena V, Di Vittorio C, Baglioni C. Tumour necrosis factor in serum and synovial fluid of patients with active and severe rheumatoid arthritis. Ann Rheum Dis. 1990;49(9):665–667.
    1. Westman M, Engström M, Catrina AI, Lampa J. Cell specific synovial expression of nicotinic alpha 7 acetylcholine receptor in rheumatoid arthritis and psoriatic arthritis. Scand J Immunol. 2009;70(2):136–140.
    1. Das UN. Can vagus nerve stimulation halt or ameliorate rheumatoid arthritis and lupus? Lipids Health Dis. 2011;10:19.
    1. [webpage on the Internet] Safety and Efficacy Vagal Nerve Stimulation in Patients with Rheumatoid Arthritis – Tabular View. 2012. [Accessed January 7, 2016]. Available from: .
    1. Kirchberger K, Hummel C, Stefan H. Postoperative multichannel magnetoencephalography in patients with recurrent seizures after epilepsy surgery. Acta Neurol Scand. 1998;98(1):1–7.

Source: PubMed

3
Abonneren