White Matter Damage in the Cholinergic System Contributes to Cognitive Impairment in Subcortical Vascular Cognitive Impairment, No Dementia

Qing Liu, Zude Zhu, Stefan J Teipel, Jianwei Yang, Yi Xing, Yi Tang, Jianping Jia, Qing Liu, Zude Zhu, Stefan J Teipel, Jianwei Yang, Yi Xing, Yi Tang, Jianping Jia

Abstract

Cholinergic deficiency has been implicated in the pathogenesis of vascular cognitive impairment (VCI), but the extent of involvement and underlying mechanism remain unclear. In this study, targeting the early stage of VCI, we determined regional atrophy within the basal forebrain and deficiency in cholinergic pathways in 25 patients with vascular cognitive impairment no dementia (VCIND) compared to 24 healthy elderly subjects. By applying stereotaxic cytoarchitectonic maps of the nucleus basalis of Meynert (NbM), no significant atrophy was identified in VCIND. Using probabilistic tractography analysis, our study tracked the two major white matter tracks which map to cholinergic pathways. We identified significantly lower fractional anisotropy (FA) in VCIND. Mediation analysis demonstrated that FA in the tracked pathways could fully account for the executive dysfunction, and partly mediate the memory and global cognition impairment. Our study suggests that the fibers mapped to the cholinergic pathways, but not the NbM, are significantly impaired in VCIND. MRI-based in vivo tracking of cholinergic pathways together with NbM measurement may become a valuable in vivo marker for evaluating the cholinergic system in cognitive disorders.

Keywords: cholinergic system; cognitive impairment; magnetic resonance imaging; tractography; vascular cognitive impairment no dementia.

Figures

FIGURE 1
FIGURE 1
Seeds for white matter tracking. Yellow for NbM, green for bilateral cingulum (Cing), light blue for external capsule (ExCap) and red for claustrum (Claus).
FIGURE 2
FIGURE 2
Tracked pathways and FA values. (A) 3D Reconstructed pathways (blue) for each division and the ROIs. Yellow for NbM, green for bilateral cingulum, light blue for external capsule and red for claustrum. (B) Overlapped pathways. Yellow for NbM seed, green for the pathway passing through the cingulum, light blue for the pathway passing through the external capsule, and red for the pathway passing through the claustrum. (C) Significantly higher FA values in the Control group compared with the VCIND group in all three cholinergic pathways. Cing, cingulum; ExCap, external capsule; Claus, claustrum. ∗∗∗p < 0.001.

References

    1. Baron R. M., Kenny D. A. (1986). The moderator mediator variable distinction in social psychological research – Conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 51 1173–1182. 10.1037/0022-3514.51.6.1173
    1. Beaulieu C. (2002). The basis of anisotropic water diffusion in the nervous system – a technical review. NMR Biomed. 15 435–455. 10.1002/Nbm.782
    1. Behl P., Bocti C., Swartz R. H., Gao F., Sahlas D. J., Lanctot K. L., et al. (2007). Strategic subcortical hyperintensities in cholinergic pathways and executive function decline in treated Alzheimer patients. Arch. Neurol. 64 266–272. 10.1001/archneur.64.2.266
    1. Black S., Roman G. C., Geldmacher D. S., Salloway S., Hecker J., Burns A., et al. (2003). Efficacy and tolerability of donepezil in vascular dementia: positive results of a 24-week, multicenter, international, randomized, placebo-controlled clinical trial. Stroke 34 2323–2330. 10.1161/01.STR.0000091396.95360.E1
    1. Erkinjuntti T., Kurz A., Gauthier S., Bullock R., Lilienfeld S., Damaraju C. V. (2002). Efficacy of galantamine in probable vascular dementia and Alzheimer’s disease combined with cerebrovascular disease: a randomised trial. Lancet 359 1283–1290. 10.1016/S0140-6736(02)08267-3
    1. Fazekas F., Chawluk J. B., Alavi A., Hurtig H. I., Zimmerman R. A. (1987). MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am. J. Roentgenol. 149 351–356. 10.2214/ajr.149.2.351
    1. Feng G., Chen Q., Zhu Z., Wang S. (2016). Separate brain circuits support integrative and semantic priming in the human language system. Cereb. Cortex 26 3169–3182. 10.1093/cercor/bhv148
    1. Folstein M. F., Folstein S. E., McHugh P. R. (1975). “Mini-mental state.” A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12 189–198. 10.1016/0022-3956(75)90026-6
    1. Gold B. T., Zhu Z., Brown C. A., Andersen A. H., LaDu M. J., Tai L., et al. (2014). White matter integrity is associated with cerebrospinal fluid markers of Alzheimer’s disease in normal adults. Neurobiol. Aging 35 2263–2271. 10.1016/j.neurobiolaging.2014.04.030
    1. Grothe M., Heinsen H., Teipel S. J. (2012). Atrophy of the cholinergic Basal forebrain over the adult age range and in early stages of Alzheimer’s disease. Biol. Psychiatry 71 805–813. 10.1016/j.biopsych.2011.06.019
    1. Grothe M., Zaborszky L., Atienza M., Gil-Neciga E., Rodriguez-Romero R., Teipel S. J., et al. (2010). Reduction of basal forebrain cholinergic system parallels cognitive impairment in patients at high risk of developing Alzheimer’s disease. Cereb. Cortex 20 1685–1695. 10.1093/cercor/bhp232
    1. Hanyu H., Shimizu S., Tanaka Y., Hirao K., Iwamoto T., Abe K. (2007). MR features of the substantia innominata and therapeutic implications in dementias. Neurobiol. Aging 28 548–554. 10.1016/j.neurobiolaging.2006.02.009
    1. Hong J. H., Jang S. H. (2010). Neural pathway from nucleus basalis of Meynert passing through the cingulum in the human brain. Brain Res. 1346 190–194. 10.1016/j.brainres.2010.05.088
    1. Hughes C. P., Berg L., Danziger W. L., Coben L. A., Martin R. L. (1982). A new clinical scale for the staging of dementia. Br. J. Psychiatry 140 566–572. 10.1192/bjp.140.6.566
    1. Jokinen H., Kalska H., Mantyla R., Pohjasvaara T., Ylikoski R., Hietanen M., et al. (2006). Cognitive profile of subcortical ischaemic vascular disease. J. Neurol. Neurosurg. Psychiatry 77 28–33. 10.1136/jnnp.2005.069120
    1. Jung S., Zarow C., Mack W. J., Zheng L., Vinters H. V., Ellis W. G., et al. (2012). Preservation of neurons of the nucleus basalis in subcortical ischemic vascular disease. Arch. Neurol. 69 879–886. 10.1001/archneurol.2011.2874
    1. Kalaria R. N., Maestre G. E., Arizaga R., Friedland R. P., Galasko D., Hall K., et al. (2008). Alzheimer’s disease and vascular dementia in developing countries: prevalence, management, and risk factors. Lancet Neurol. 7 812–826. 10.1016/S1474-4422(08)70169-8
    1. Keverne J. S., Low W. C., Ziabreva I., Court J. A., Oakley A. E., Kalaria R. N. (2007). Cholinergic neuronal deficits in CADASIL. Stroke 38 188–191. 10.1161/01.STR.0000251787.90695.05
    1. Kilimann I., Grothe M., Heinsen H., Alho E. J., Grinberg L., Amaro E., et al. (2014). Subregional basal forebrain atrophy in Alzheimer’s disease: a multicenter study. J. Alzheimers Dis. 40 687–700. 10.3233/JAD-132345
    1. Kim H. J., Moon W. J., Han S. H. (2013). Differential cholinergic pathway involvement in Alzheimer’s disease and subcortical ischemic vascular dementia. J. Alzheimers Dis. 35 129–136. 10.3233/JAD-122320
    1. Kim S. H., Kang H. S., Kim H. J., Moon Y., Ryu H. J., Kim M. Y., et al. (2012). The effect of ischemic cholinergic damage on cognition in patients with subcortical vascular cognitive impairment. J. Geriatr. Psychiatry Neurol. 25 122–127. 10.1177/0891988712445089
    1. Madden D. J., Bennett I. J., Burzynska A., Potter G. G., Chen N. K., Song A. W. (2012). Diffusion tensor imaging of cerebral white matter integrity in cognitive aging. Biochim. Biophys. Acta 1822 386–400. 10.1016/j.bbadis.2011.08.003
    1. McAleese K. E., Alafuzoff I., Charidimou A., De Reuck J., Grinberg L. T., Hainsworth A. H., et al. (2016). Post-mortem assessment in vascular dementia: advances and aspirations. BMC Med. 14:129 10.1186/s12916-016-0676-5
    1. Mesulam M. (2012). Cholinergic aspects of aging and Alzheimer’s disease. Biol. Psychiatry 71 760–761. 10.1016/j.biopsych.2012.02.025
    1. Mesulam M., Siddique T., Cohen B. (2003). Cholinergic denervation in a pure multi-infarct state: observations on CADASIL. Neurology 60 1183–1185. 10.1212/01.WNL.0000055927.22611.EB
    1. Mesulam M. M., Geula C. (1988). Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: observations based on the distribution of acetylcholinesterase and choline acetyltransferase. J. Comp. Neurol. 275 216–240. 10.1002/cne.902750205
    1. Salthouse T. A. (1993). Speed mediation of adult age-differences in cognition. Dev. Psychol. 29 722–738. 10.1037//0012-1649.29.4.722
    1. Scheltens P., Leys D., Barkhof F., Huglo D., Weinstein H. C., Vermersch P., et al. (1992). Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J. Neurol. Neurosurg. Psychiatry 55 967–972. 10.1136/jnnp.55.10.967
    1. Selden N. R., Gitelman D. R., Salamon-Murayama N., Parrish T. B., Mesulam M. M. (1998). Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain 121(Pt 12) 2249–2257. 10.1093/brain/121.12.2249
    1. Sen P. N., Basser P. J. (2005). A model for diffusion in white matter in the brain. Biophys. J. 89 2927–2938. 10.1529/biophysj.105.063016
    1. Smith S. M., Jenkinson M., Johansen-Berg H., Rueckert D., Nichols T. E., Mackay C. E., et al. (2006). Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31 1487–1505. 10.1016/j.neuroimage.2006.02.024
    1. Sperling R., Mormino E., Johnson K. (2014). The evolution of preclinical Alzheimer’s disease: implications for prevention trials. Neuron 84 608–622. 10.1016/j.neuron.2014.10.038
    1. Swartz R. H., Sahlas D. J., Black S. E. (2003). Strategic involvement of cholinergic pathways and executive dysfunction: does location of white matter signal hyperintensities matter? J. Stroke Cerebrovasc. Dis. 12 29–36. 10.1053/jscd.2003.5
    1. Teipel S. J., Flatz W. H., Heinsen H., Bokde A. L., Schoenberg S. O., Stockel S., et al. (2005). Measurement of basal forebrain atrophy in Alzheimer’s disease using MRI. Brain 128(Pt 11) 2626–2644. 10.1093/brain/awh589
    1. Teipel S. J., Grothe M. J., Filippi M., Fellgiebel A., Dyrba M., Frisoni G. B., et al. (2014). Fractional anisotropy changes in Alzheimer’s disease depend on the underlying fiber tract architecture: a multiparametric DTI study using joint independent component analysis. J. Alzheimers Dis. 41 69–83. 10.3233/JAD-131829
    1. Teipel S. J., Meindl T., Grinberg L., Grothe M., Cantero J. L., Reiser M. F., et al. (2011). The cholinergic system in mild cognitive impairment and Alzheimer’s disease: an in vivo MRI and DTI study. Hum. Brain Mapp. 32 1349–1362. 10.1002/hbm.21111
    1. Tohgi H., Abe T., Kimura M., Saheki M., Takahashi S. (1996). Cerebrospinal fluid acetylcholine and choline in vascular dementia of Binswanger and multiple small infarct types as compared with Alzheimer-type dementia. J. Neural Transm. (Vienna) 103 1211–1220. 10.1007/BF01271206
    1. Tomimoto H., Ohtani R., Shibata M., Nakamura N., Ihara M. (2005). Loss of cholinergic pathways in vascular dementia of the Binswanger type. Dement. Geriatr. Cogn. Disord. 19 282–288. 10.1159/000084553
    1. Wainer B., Mesulam M.-M. (1990). “Ascending cholinergic pathways in the rat brain,” in Brain Cholinergic Systems eds Steriade M., Biesold D. (Oxford: Oxford University Press; ) 65–119.
    1. Wallin A., Sjogren M., Blennow K., Davidsson P. (2003). Decreased cerebrospinal fluid acetylcholinesterase in patients with subcortical ischemic vascular dementia. Dement. Geriatr. Cogn. Disord. 16 200–207. 10.1159/000072803
    1. Wilkinson D., Doody R., Helme R., Taubman K., Mintzer J., Kertesz A., et al. (2003). Donepezil in vascular dementia: a randomized, placebo-controlled study. Neurology 61 479–486. 10.1212/01.WNL.0000078943.50032.FC
    1. Winblad B., Palmer K., Kivipelto M., Jelic V., Fratiglioni L., Wahlund L. O., et al. (2004). Mild cognitive impairment–beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J. Intern. Med. 256 240–246. 10.1111/j.1365-2796.2004.01380.x
    1. Zhang M. Y., Katzman R., Salmon D., Jin H., Cai G. J., Wang Z. Y., et al. (1990). The prevalence of dementia and Alzheimer’s disease in Shanghai, China: impact of age, gender, and education. Ann. Neurol. 27 428–437. 10.1002/ana.410270412

Source: PubMed

3
Abonneren