Effects of gene mutation and disease progression on representative neural circuits in familial Alzheimer's disease

Meina Quan, Tan Zhao, Yi Tang, Ping Luo, Wei Wang, Qi Qin, Tingting Li, Qigeng Wang, Jiliang Fang, Jianping Jia, Meina Quan, Tan Zhao, Yi Tang, Ping Luo, Wei Wang, Qi Qin, Tingting Li, Qigeng Wang, Jiliang Fang, Jianping Jia

Abstract

Background: Although structural and functional changes of the striatum and hippocampus are present in familial Alzheimer's disease, little is known about the effects of specific gene mutation or disease progression on their related neural circuits. This study was to evaluate the effects of known pathogenic gene mutation and disease progression on the striatum- and hippocampus-related neural circuits, including frontostriatal and hippocampus-posterior cingulate cortex (PCC) pathways.

Methods: A total of 102 healthy mutation non-carriers, 40 presymptomatic mutation carriers (PMC), and 30 symptomatic mutation carriers (SMC) of amyloid precursor protein (APP), presenilin 1 (PS1), or presenilin 2 gene, with T1 structural MRI, diffusion tensor imaging, and resting-state functional MRI were included. Representative neural circuits and their key nodes were obtained, including bilateral caudate-rostral middle frontal gyrus (rMFG), putamen-rMFG, and hippocampus-PCC. Volumes, diffusion indices, and functional connectivity of circuits were compared between groups and correlated with neuropsychological and clinical measures.

Results: In PMC, APP gene mutation carriers showed impaired diffusion indices of caudate-rMFG and putamen-rMFG circuits; PS1 gene mutation carriers showed increased fiber numbers of putamen-rMFG circuit. SMC showed increased diffusivity of the left hippocampus-PCC circuit and volume reduction of all regions as compared with PMC. Imaging measures especially axial diffusivity of the representative circuits were correlated with neuropsychological measures.

Conclusions: APP and PS1 gene mutations affect frontostriatal circuits in a different manner in familial Alzheimer's disease; disease progression primarily affects the structure of hippocampus-PCC circuit. The structural connectivity of both frontostriatal and hippocampus-PCC circuits is associated with general cognitive function. Such findings may provide further information about the imaging biomarkers for early identification and prognosis of familial Alzheimer's disease, and pave the way for early diagnosis, gene- or circuit-targeted treatment, and even prevention.

Keywords: Diffusion tensor imaging; Familial Alzheimer’s disease; Gene mutation; Neural circuits; Resting-state functional MRI.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
The ROIs of a representative subject in structural space. The subcortical ROIs (a) include the bilateral caudate (yellow), putamen (green), and hippocampus (blue); the cortical ROIs (b) include rMFG (red) and PCC (brown)
Fig. 2
Fig. 2
Overall group comparison of the ROI volume. a) left caudate, b) right caudate, c) left putamen, d) right putamen, e) left hippocampus, f) right hippocampus, g) left rMFG, h) right rMFG, i) left PCC, j) right PCC. Relative volume of each subject is calculated as the percentage of absolute volume in intracranial volume. The bars indicate mean (SD). rMFG: rostrol middle frontal gyrus; PCC: posterior cingulate cortex; Hippo: hippocampus; L: left; R: right. #0.0167 < P < 0.05, *0.01 < P < 0.0167, **0.001 < P < 0.01, ***P < 0.001
Fig. 3
Fig. 3
The ROIs and tracts of a representative subject in diffusion space. The tracts (pink) include the bilateral caudate-rMFG (a), putamen-rMFG (b), and hippocampus-PCC (c). The ROIs are in the same color with those in Fig. 1
Fig. 4
Fig. 4
Overall group comparison of the structural and functional connectivity of neural circuits. a) fiber numbers of left caudate-rMFG tract, b) MD of right caudate-rMFG tract, c) AxD of right caudate-rMFG tract, d) RD of right caudate-rMFG tract, e) AxD of left hippo-PCC tract, f) FC of left caudate-rMFG tract. MD: mean diffusivity; AxD: axial diffusivity; RD: radial diffusivity; FC: functional connectivity. The bars indicate mean (SD). #0.0167 < P < 0.05, *0.01 < P < 0.0167, **0.001 < P < 0.01
Fig. 5
Fig. 5
Effects of gene mutation on the imaging measures of neural circuits. a) relative volume of right putamen, b) fiber numbers of left putamen-rMFG tract, c) fiber numbers of left caudate-rMFG tract, d) FA of left caudate-rMFG tract, e) RD of left caudate-rMFG tract, f) MD of right caudate-rMFG tract, g) RD of right caudate-rMFG tract, h) FC of left caudate-rMFG tract. PS1 and APP mutation subjects without symptoms were compared with the control group, respectively. PS2 mutation subjects were listed for reference though not compared with the control group due to the small sample size. The bars indicate mean (SD). # 0.025 < P < 0.05, * 0.01 < P < 0.025
Fig. 6
Fig. 6
Comparison of ROI volume among different stages of mutation carriers. a) left caudate, b) right caudate, c) left putamen, d) right putamen, e) left hippocampus, f) right hippocampus, g) left rMFG, h) right rMFG, i) left PCC, j) right PCC. Pre-MCI represents presymptomatic stage (original PMC group). The bars indicate mean (SD). # 0.0167 < P < 0.05, * 0.01 < P < 0.0167, ** 0.001 < P < 0.01, ***P < 0.001
Fig. 7
Fig. 7
Group comparisons done

References

    1. Collaborators GBDD. Global, regional, and national burden of Alzheimer's disease and other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;181:88–106.
    1. Jia Longfei, Quan Meina, Fu Yue, Zhao Tan, Li Yan, Wei Cuibai, Tang Yi, Qin Qi, Wang Fen, Qiao Yuchen, Shi Shengliang, Wang Yan-Jiang, Du Yifeng, Zhang Jiewen, Zhang Junjian, Luo Benyan, Qu Qiumin, Zhou Chunkui, Gauthier Serge, Jia Jianping. Dementia in China: epidemiology, clinical management, and research advances. The Lancet Neurology. 2020;19(1):81–92. doi: 10.1016/S1474-4422(19)30290-X.
    1. Knopman DS. Lowering of amyloid-beta by beta-secretase inhibitors - some informative failures. N Engl J Med. 2019;38015:1476–1478. doi: 10.1056/NEJMe1903193.
    1. Canter RG, Penney J, Tsai LH. The road to restoring neural circuits for the treatment of Alzheimer's disease. Nature. 2016;5397628:187–196. doi: 10.1038/nature20412.
    1. Laxton AW, Tang-Wai DF, McAndrews MP, Zumsteg D, Wennberg R, Keren R, Wherrett J, Naglie G, Hamani C, Smith GS, et al. A phase I trial of deep brain stimulation of memory circuits in Alzheimer's disease. Ann Neurol. 2010;684:521–534. doi: 10.1002/ana.22089.
    1. Kuhn J, Hardenacke K, Shubina E, Lenartz D, Visser-Vandewalle V, Zilles K, Sturm V, Freund HJ. Deep brain stimulation of the nucleus basalis of Meynert in early stage of Alzheimer's dementia. Brain Stimul. 2015;84:838–839. doi: 10.1016/j.brs.2015.04.002.
    1. Deeb W, Salvato B, Almeida L, Foote KD, Amaral R, Germann J, Rosenberg PB, Tang-Wai DF, Wolk DA, Burke AD, et al. Fornix-region deep brain stimulation-induced memory flashbacks in Alzheimer's disease. N Engl J Med. 2019;3818:783–785. doi: 10.1056/NEJMc1905240.
    1. Goldman JS, Hahn SE, Catania JW, LaRusse-Eckert S, Butson MB, Rumbaugh M, Strecker MN, Roberts JS, Burke W, Mayeux R, et al. Genetic counseling and testing for Alzheimer disease: joint practice guidelines of the American College of Medical Genetics and the National Society of Genetic Counselors. Genet Med. 2011;136:597–605. doi: 10.1097/GIM.0b013e31821d69b8.
    1. Jia L, Fu Y, Shen L, Zhang H, Zhu M, Qiu Q, Wang Q, Yan X, Kong C, Hao J, et al. PSEN1, PSEN2 and APP mutations in 404 Chinese pedigrees with familial Alzheimer's disease. Alzheimers Dement. 2019; 10.1002/alz.12005.
    1. Reiman EM, Langbaum JB, Tariot PN, Lopera F, Bateman RJ, Morris JC, Sperling RA, Aisen PS, Roses AD, Welsh-Bohmer KA, et al. CAP--advancing the evaluation of preclinical Alzheimer disease treatments. Nat Rev Neurol. 2016;121:56–61. doi: 10.1038/nrneurol.2015.177.
    1. Tariot PN, Lopera F, Langbaum JB, Thomas RG, Hendrix S, Schneider LS, Rios-Romenets S, Giraldo M, Acosta N, Tobon C, et al. The Alzheimer's Prevention Initiative Autosomal-Dominant Alzheimer's Disease Trial: A study of crenezumab versus placebo in preclinical PSEN1 E280A mutation carriers to evaluate efficacy and safety in the treatment of autosomal-dominant Alzheimer's disease, including a placebo-treated noncarrier cohort. Alzheimers Dement (N Y) 2018;4:150–160.
    1. Klunk WE, Price JC, Mathis CA, Tsopelas ND, Lopresti BJ, Ziolko SK, Bi W, Hoge JA, Cohen AD, Ikonomovic MD, et al. Amyloid deposition begins in the striatum of presenilin-1 mutation carriers from two unrelated pedigrees. J Neurosci. 2007;2723:6174–6184. doi: 10.1523/JNEUROSCI.0730-07.2007.
    1. Villemagne VL, Ataka S, Mizuno T, Brooks WS, Wada Y, Kondo M, Jones G, Watanabe Y, Mulligan R, Nakagawa M, et al. High striatal amyloid beta-peptide deposition across different autosomal Alzheimer disease mutation types. Arch Neurol. 2009;6612:1537–1544.
    1. Cohen AD, McDade E, Christian B, Price J, Mathis C, Klunk W, Handen BL. Early striatal amyloid deposition distinguishes Down syndrome and autosomal dominant Alzheimer's disease from late-onset amyloid deposition. Alzheimers Dement. 2018;146:743–750. doi: 10.1016/j.jalz.2018.01.002.
    1. Gordon BA, Blazey TM, Su Y, Hari-Raj A, Dincer A, Flores S, Christensen J, McDade E, Wang G, Xiong C, et al. Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer's disease: a longitudinal study. Lancet Neurol. 2018;173:241–250. doi: 10.1016/S1474-4422(18)30028-0.
    1. Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ, Xie X, Blazey TM, et al. Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N Engl J Med. 2012;3679:795–804. doi: 10.1056/NEJMoa1202753.
    1. Hanseeuw BJ, Lopera F, Sperling RA, Norton DJ, Guzman-Velez E, Baena A, Pardilla-Delgado E, Schultz AP, Gatchel J, Jin D, et al. Striatal amyloid is associated with tauopathy and memory decline in familial Alzheimer's disease. Alzheimers Res Ther. 2019;111:17. doi: 10.1186/s13195-019-0468-1.
    1. Benzinger TL, Blazey T, Jack CR, Jr, Koeppe RA, Su Y, Xiong C, Raichle ME, Snyder AZ, Ances BM, Bateman RJ, et al. Regional variability of imaging biomarkers in autosomal dominant Alzheimer's disease. Proc Natl Acad Sci U S A. 2013;11047:E4502–E4509. doi: 10.1073/pnas.1317918110.
    1. Lee GJ, Lu PH, Medina LD, Rodriguez-Agudelo Y, Melchor S, Coppola G, Braskie MN, Hua X, Apostolova LG, Leow AD, et al. Regional brain volume differences in symptomatic and presymptomatic carriers of familial Alzheimer's disease mutations. J Neurol Neurosurg Psychiatry. 2013;842:154–162. doi: 10.1136/jnnp-2011-302087.
    1. Ryan NS, Keihaninejad S, Shakespeare TJ, Lehmann M, Crutch SJ, Malone IB, Thornton JS, Mancini L, Hyare H, Yousry T, et al. Magnetic resonance imaging evidence for presymptomatic change in thalamus and caudate in familial Alzheimer’s disease. Brain. 2013;136Pt 5:1399–1414. doi: 10.1093/brain/awt065.
    1. Wang G, Coble D, McDade EM, Hassenstab J, Fagan AM, Benzinger TLS, Bateman RJ, Morris JC, Xiong C, Dominantly Inherited Alzheimer N Staging biomarkers in preclinical autosomal dominant Alzheimer's disease by estimated years to symptom onset. Alzheimers Dement. 2019;154:506–514. doi: 10.1016/j.jalz.2018.12.008.
    1. Jack CR, Jr, Barkhof F, Bernstein MA, Cantillon M, Cole PE, Decarli C, Dubois B, Duchesne S, Fox NC, Frisoni GB, et al. Steps to standardization and validation of hippocampal volumetry as a biomarker in clinical trials and diagnostic criterion for Alzheimer's disease. Alzheimers Dement. 2011;74:474–485. doi: 10.1016/j.jalz.2011.04.007.
    1. Fortea J, Sala-Llonch R, Bartres-Faz D, Bosch B, Llado A, Bargallo N, Molinuevo JL, Sanchez-Valle R. Increased cortical thickness and caudate volume precede atrophy in PSEN1 mutation carriers. J Alzheimers Dis. 2010;223:909–922. doi: 10.3233/JAD-2010-100678.
    1. Quiroz YT, Budson AE, Celone K, Ruiz A, Newmark R, Castrillon G, Lopera F, Stern CE. Hippocampal hyperactivation in presymptomatic familial Alzheimer's disease. Ann Neurol. 2010;686:865–875. doi: 10.1002/ana.22105.
    1. Braskie MN, Medina LD, Rodriguez-Agudelo Y, Geschwind DH, Macias-Islas MA, Thompson PM, Cummings JL, Bookheimer SY, Ringman JM. Memory performance and fMRI signal in presymptomatic familial Alzheimer's disease. Hum Brain Mapp. 2013;3412:3308–3319. doi: 10.1002/hbm.22141.
    1. McDade E, Kim A, James J, Sheu LK, Kuan DC, Minhas D, Gianaros PJ, Ikonomovic S, Lopez O, Snitz B, et al. Cerebral perfusion alterations and cerebral amyloid in autosomal dominant Alzheimer disease. Neurology. 2014;838:710–717. doi: 10.1212/WNL.0000000000000721.
    1. Lanciego JL, Luquin N, Obeso JA. Functional neuroanatomy of the basal ganglia. Cold Spring Harb Perspect Med. 2012;212:a009621.
    1. Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357–381. doi: 10.1146/annurev.ne.09.030186.002041.
    1. Parent A, Hazrati LN. Functional anatomy of the basal ganglia. I. the cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev. 1995;201:91–127. doi: 10.1016/0165-0173(94)00007-C.
    1. Draganski B, Kherif F, Kloppel S, Cook PA, Alexander DC, Parker GJ, Deichmann R, Ashburner J, Frackowiak RS. Evidence for segregated and integrative connectivity patterns in the human basal ganglia. J Neurosci. 2008;2828:7143–7152. doi: 10.1523/JNEUROSCI.1486-08.2008.
    1. Quan M, Lee SH, Kubicki M, Kikinis Z, Rathi Y, Seidman LJ, Mesholam-Gately RI, Goldstein JM, McCarley RW, Shenton ME, et al. White matter tract abnormalities between rostral middle frontal gyrus, inferior frontal gyrus and striatum in first-episode schizophrenia. Schizophr Res. 2013;1451–3:1–10. doi: 10.1016/j.schres.2012.11.028.
    1. Vaghi MM, Vertes PE, Kitzbichler MG, Apergis-Schoute AM, van der Flier FE, Fineberg NA, Sule A, Zaman R, Voon V, Kundu P, et al. Specific frontostriatal circuits for impaired cognitive flexibility and goal-directed planning in obsessive-compulsive disorder: evidence from resting-state functional connectivity. Biol Psychiatry. 2017;818:708–717. doi: 10.1016/j.biopsych.2016.08.009.
    1. Salmi J, Nyberg L, Laine M. Working memory training mostly engages general-purpose large-scale networks for learning. Neurosci Biobehav Rev. 2018;93:108–122. doi: 10.1016/j.neubiorev.2018.03.019.
    1. Papma JM, Smits M, de Groot M, Mattace Raso FU, van der Lugt A, Vrooman HA, Niessen WJ, Koudstaal PJ, van Swieten JC, van der Veen FM, et al. The effect of hippocampal function, volume and connectivity on posterior cingulate cortex functioning during episodic memory fMRI in mild cognitive impairment. Eur Radiol. 2017;279:3716–3724. doi: 10.1007/s00330-017-4768-1.
    1. Grothe MJ, Heinsen H, Amaro E, Jr, Grinberg LT, Teipel SJ. Cognitive correlates of basal forebrain atrophy and associated cortical Hypometabolism in mild cognitive impairment. Cereb Cortex. 2016;266:2411–2426. doi: 10.1093/cercor/bhv062.
    1. Guzman-Velez E, Jaimes S, Aguirre-Acevedo DC, Norton DJ, Papp KV, Amariglio R, Rentz D, Baena A, Henao E, Tirado V, et al. A three-factor structure of cognitive functioning among unimpaired carriers and non-carriers of autosomal-dominant Alzheimer's disease. J Alzheimers Dis. 2018;651:107–115. doi: 10.3233/JAD-180078.
    1. Ihara R, Iwata A, Suzuki K, Ikeuchi T, Kuwano R, Iwatsubo T, Japanese Alzheimer's Disease Neuroimaging I Clinical and cognitive characteristics of preclinical Alzheimer's disease in the Japanese Alzheimer's Disease Neuroimaging Initiative cohort. Alzheimers Dement (N Y) 2018;4:645–651.
    1. Scahill RI, Ridgway GR, Bartlett JW, Barnes J, Ryan NS, Mead S, Beck J, Clarkson MJ, Crutch SJ, Schott JM, et al. Genetic influences on atrophy patterns in familial Alzheimer's disease: a comparison of APP and PSEN1 mutations. J Alzheimers Dis. 2013;351:199–212. doi: 10.3233/JAD-121255.
    1. Tentolouris-Piperas V, Ryan NS, Thomas DL, Kinnunen KM. Brain imaging evidence of early involvement of subcortical regions in familial and sporadic Alzheimer's disease. Brain Res. 2017;1655:23–32. doi: 10.1016/j.brainres.2016.11.011.
    1. Chiesa PA, Cavedo E, Lista S, Thompson PM, Hampel H, Alzheimer precision medicine I Revolution of resting-state functional neuroimaging genetics in Alzheimer's disease. Trends Neurosci. 2017;408:469–480. doi: 10.1016/j.tins.2017.06.002.
    1. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;333:341–355. doi: 10.1016/S0896-6273(02)00569-X.
    1. Kikinis Z, Fallon JH, Niznikiewicz M, Nestor P, Davidson C, Bobrow L, Pelavin PE, Fischl B, Yendiki A, McCarley RW, et al. Gray matter volume reduction in rostral middle frontal gyrus in patients with chronic schizophrenia. Schizophr Res. 2010;1232–3:153–159. doi: 10.1016/j.schres.2010.07.027.
    1. Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW. Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage. 2007;341:144–155. doi: 10.1016/j.neuroimage.2006.09.018.
    1. Greve DN, Fischl B. Accurate and robust brain image alignment using boundary-based registration. Neuroimage. 2009;481:63–72. doi: 10.1016/j.neuroimage.2009.06.060.
    1. Ashburner J. SPM: a history. Neuroimage. 2012;622:791–800. doi: 10.1016/j.neuroimage.2011.10.025.
    1. Xu K, Liu Y, Zhan Y, Ren J, Jiang T. BRANT: a versatile and extendable resting-state fMRI toolkit. Front Neuroinform. 2018;12:52. doi: 10.3389/fninf.2018.00052.
    1. Quiroz YT, Schultz AP, Chen K, Protas HD, Brickhouse M, Fleisher AS, Langbaum JB, Thiyyagura P, Fagan AM, Shah AR, et al. Brain imaging and blood biomarker abnormalities in children with autosomal dominant Alzheimer disease: a cross-sectional study. JAMA Neurol. 2015;728:912–919. doi: 10.1001/jamaneurol.2015.1099.
    1. Tang Y, Xing Y, Zhu Z, He Y, Li F, Yang J, Liu Q, Li F, Teipel SJ, Zhao G, et al. The effects of 7-week cognitive training in patients with vascular cognitive impairment, no dementia (the cog-VACCINE study): a randomized controlled trial. Alzheimers Dement. 2019;155:605–614. doi: 10.1016/j.jalz.2019.01.009.
    1. Lim HK, Nebes R, Snitz B, Cohen A, Mathis C, Price J, Weissfeld L, Klunk W, Aizenstein HJ. Regional amyloid burden and intrinsic connectivity networks in cognitively normal elderly subjects. Brain. 2014;137Pt 12:3327–3338. doi: 10.1093/brain/awu271.
    1. Fleisher AS, Chen K, Quiroz YT, Jakimovich LJ, Gutierrez Gomez M, Langois CM, Langbaum JB, Roontiva A, Thiyyagura P, Lee W, et al. Associations between biomarkers and age in the presenilin 1 E280A autosomal dominant Alzheimer disease kindred: a cross-sectional study. JAMA Neurol. 2015;723:316–324. doi: 10.1001/jamaneurol.2014.3314.
    1. Sala-Llonch R, Llado A, Fortea J, Bosch B, Antonell A, Balasa M, Bargallo N, Bartres-Faz D, Molinuevo JL, Sanchez-Valle R. Evolving brain structural changes in PSEN1 mutation carriers. Neurobiol Aging. 2015;363:1261–1270. doi: 10.1016/j.neurobiolaging.2014.12.022.
    1. Araque Caballero MA, Suarez-Calvet M, Duering M, Franzmeier N, Benzinger T, Fagan AM, Bateman RJ, Jack CR, Levin J, Dichgans M, et al. White matter diffusion alterations precede symptom onset in autosomal dominant Alzheimer's disease. Brain. 2018;14110:3065–3080. doi: 10.1093/brain/awy229.
    1. Zheng K, Wang H, Li J, Yan B, Liu J, Xi Y, Zhang X, Yin H, Tan Q, Lu H, et al. Structural networks analysis for depression combined with graph theory and the properties of fiber tracts via diffusion tensor imaging. Neurosci Lett. 2019;694:34–40. doi: 10.1016/j.neulet.2018.11.025.
    1. Kuchtova B, Wurst Z, Mrzilkova J, Ibrahim I, Tintera J, Bartos A, Musil V, Kieslich K, Zach P. Compensatory shift of subcallosal area and paraterminal gyrus white matter parameters on DTI in patients with Alzheimer disease. Curr Alzheimer Res. 2018;156:590–599. doi: 10.2174/1567205015666171227155510.
    1. Jones DT, Knopman DS, Gunter JL, Graff-Radford J, Vemuri P, Boeve BF, Petersen RC, Weiner MW, Jack CR, Jr, Alzheimer's Disease Neuroimaging I Cascading network failure across the Alzheimer's disease spectrum. Brain. 2016;139Pt 2:547–562. doi: 10.1093/brain/awv338.
    1. Grothe MJ, Teipel SJ, Alzheimer's Disease neuroimaging I spatial patterns of atrophy, hypometabolism, and amyloid deposition in Alzheimer's disease correspond to dissociable functional brain networks. Hum Brain Mapp. 2016;371:35–53. doi: 10.1002/hbm.23018.
    1. Myers N, Pasquini L, Gottler J, Grimmer T, Koch K, Ortner M, Neitzel J, Muhlau M, Forster S, Kurz A, et al. Within-patient correspondence of amyloid-beta and intrinsic network connectivity in Alzheimer's disease. Brain. 2014;137Pt 7:2052–2064. doi: 10.1093/brain/awu103.
    1. Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC, Harvey D, Jack CR, Jr, Jagust W, Morris JC, et al. Recent publications from the Alzheimer's disease neuroimaging initiative: reviewing progress toward improved AD clinical trials. Alzheimers Dement. 2017;134:e1–e85. doi: 10.1016/j.jalz.2016.11.007.
    1. Ringman JM, O'Neill J, Geschwind D, Medina L, Apostolova LG, Rodriguez Y, Schaffer B, Varpetian A, Tseng B, Ortiz F, et al. Diffusion tensor imaging in preclinical and presymptomatic carriers of familial Alzheimer's disease mutations. Brain. 2007;130Pt 7:1767–1776. doi: 10.1093/brain/awm102.
    1. Song SK, Sun SW, Ju WK, Lin SJ, Cross AH, Neufeld AH. Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage. 2003;203:1714–1722. doi: 10.1016/j.neuroimage.2003.07.005.
    1. Iacono D, Markesbery WR, Gross M, Pletnikova O, Rudow G, Zandi P, Troncoso JC. The Nun study: clinically silent AD, neuronal hypertrophy, and linguistic skills in early life. Neurology. 2009;739:665–673. doi: 10.1212/WNL.0b013e3181b01077.
    1. Cai S, Peng Y, Chong T, Zhang Y, von Deneen KM, Huang L, Alzheimer's Disease Neuroimaging I Differentiated effective connectivity patterns of the executive control network in progressive MCI: a potential biomarker for predicting AD. Curr Alzheimer Res. 2017;149:937–950.
    1. Karch CM, Goate AM. Alzheimer's disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry. 2015;771:43–51. doi: 10.1016/j.biopsych.2014.05.006.
    1. van der Kant R, Goldstein LS. Cellular functions of the amyloid precursor protein from development to dementia. Dev Cell. 2015;324:502–515. doi: 10.1016/j.devcel.2015.01.022.
    1. Hung COY, Livesey FJ. Altered gamma-secretase processing of APP disrupts lysosome and autophagosome function in monogenic Alzheimer's disease. Cell Rep. 2018;2513:3647–3660. doi: 10.1016/j.celrep.2018.11.095.
    1. Duggan SP, McCarthy JV. Beyond gamma-secretase activity: the multifunctional nature of presenilins in cell signalling pathways. Cell Signal. 2016;281:1–11. doi: 10.1016/j.cellsig.2015.10.006.
    1. Ridha BH, Barnes J, Bartlett JW, Godbolt A, Pepple T, Rossor MN, Fox NC. Tracking atrophy progression in familial Alzheimer's disease: a serial MRI study. Lancet Neurol. 2006;510:828–834. doi: 10.1016/S1474-4422(06)70550-6.
    1. Jacobs HIL, Hedden T, Schultz AP, Sepulcre J, Perea RD, Amariglio RE, Papp KV, Rentz DM, Sperling RA, Johnson KA. Structural tract alterations predict downstream tau accumulation in amyloid-positive older individuals. Nat Neurosci. 2018;213:424–431. doi: 10.1038/s41593-018-0070-z.
    1. Lee SH, Coutu JP, Wilkens P, Yendiki A, Rosas HD, Salat DH, Alzheimer's disease Neuroimaging I Tract-based analysis of white matter degeneration in Alzheimer's disease. Neuroscience. 2015;301:79–89. doi: 10.1016/j.neuroscience.2015.05.049.
    1. Zhou Y, Dougherty JH, Jr, Hubner KF, Bai B, Cannon RL, Hutson RK. Abnormal connectivity in the posterior cingulate and hippocampus in early Alzheimer's disease and mild cognitive impairment. Alzheimers Dement. 2008;44:265–270. doi: 10.1016/j.jalz.2008.04.006.
    1. Sala-Llonch R, Fortea J, Bartres-Faz D, Bosch B, Llado A, Pena-Gomez C, Antonell A, Castellanos-Pinedo F, Bargallo N, Molinuevo JL, et al. Evolving brain functional abnormalities in PSEN1 mutation carriers: a resting and visual encoding fMRI study. J Alzheimers Dis. 2013;361:165–175. doi: 10.3233/JAD-130062.
    1. Reiman EM, Quiroz YT, Fleisher AS, Chen K, Velez-Pardo C, Jimenez-Del-Rio M, Fagan AM, Shah AR, Alvarez S, Arbelaez A, et al. Brain imaging and fluid biomarker analysis in young adults at genetic risk for autosomal dominant Alzheimer's disease in the presenilin 1 E280A kindred: a case-control study. Lancet Neurol. 2012;1112:1048–1056. doi: 10.1016/S1474-4422(12)70228-4.
    1. Chang C, Metzger CD, Glover GH, Duyn JH, Heinze HJ, Walter M. Association between heart rate variability and fluctuations in resting-state functional connectivity. Neuroimage. 2013;68:93–104. doi: 10.1016/j.neuroimage.2012.11.038.

Source: PubMed

3
Abonneren