Patterns in the longitudinal oropharyngeal microbiome evolution related to ventilator-associated pneumonia

Rami Sommerstein, Tobias M Merz, Sabine Berger, Julia G Kraemer, Jonas Marschall, Markus Hilty, Rami Sommerstein, Tobias M Merz, Sabine Berger, Julia G Kraemer, Jonas Marschall, Markus Hilty

Abstract

Background: The aim of the study was to evaluate the composition and the temporal evolution of the oropharyngeal microbiome in antibiotic-naïve patients requiring mechanical ventilation and to gain new insights into the pathogenesis of ventilator-associated pneumonia (VAP).

Methods: Prospective, observational single-center nested case-control study. Patients with acute critical illness and anticipated duration of mechanical ventilation > 4 days were eligible. We took oropharyngeal swabs (and if available, tracheal secretions) daily, starting at the day of intubation. The microbiota was characterized by 16S rRNA high-throughput sequencing and compared between patients developing VAP versus controls.

Results: Five patients developed VAP. In three patient the causative pathogens were Enterobacteriaceae and in two Haemophilus influenzae. Locally weighted polynomial regression suggested that the within diversity (=alpha) was lower in Enterobacteriaceae VAP patients between days two to five of mechanical ventilation when compared to controls. Detection of Enterobacteriaceae in the oropharynx occurred on day two of follow-up and consisted of a single operational taxonomic unit in 2/3 patients with enterobacterial VAP.

Conclusions: In acutely-ill patients who developed enterobacterial VAP the causative pathogen gained access to the oropharynx early after starting mechanical ventilation and outgrew the commensal members of the microbiome. Whether a specific pattern of the oropharyngeal microbiome between days three to five of mechanical ventilation may predict VAP enterobacterial VAP has to be evaluated in further studies.

Keywords: Infection prevention; Intensive care; Nosocomial pneumonia; Oropharyngeal and tracheal microbiome; Ventilator-associated pneumonia.

Conflict of interest statement

Competing interestsThe authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flowchart. The process of subject screening, inclusion, and selection for microbiome evaluation is shown in the flow chart. Subjects were selected to fulfill possible VAP criteria according to clinical criteria (new infiltrate plus two of the following three: temperature greater than 38 °C, leukocyte count greater than 12 G/L or lower than 4 G/L, or purulent respiratory secretions)
Fig. 2
Fig. 2
Timeline. For each study patient who underwent microbiome evaluation, a timeline indicates the moment of intubation, study start, endpoint (VAP or extubation), and if performed tracheostomy. Intermittent extubations and reintubations

Fig. 3

Heatmap of oropharyngeal and tracheobronchial…

Fig. 3

Heatmap of oropharyngeal and tracheobronchial samples. Relative abundances of bacterial communities of the…

Fig. 3
Heatmap of oropharyngeal and tracheobronchial samples. Relative abundances of bacterial communities of the subjects are shown. The left main column are oropharyngeal samples, the middle tracheobronchial and the right shows the relative dissimilarity between the two corresponding samples. Each subcolumn for oropharyngeal (oro) and tracheobronchial (tbs) samples represents family-level taxonomic assignment of the sample’s 16S rRNA gene sequences. The color indicates proportional abundance of the sequences assigned to each bacterial family within the sample. The rows represent individual time points of sampling for the subjects. IO and IT represent the initial oropharyngeal and tracheobronchial samples, respectively. Missing samples are indicated with grey fill

Fig. 4

Early access of VAP causative…

Fig. 4

Early access of VAP causative Enterobacteriaceae to the oropharynx. Relative abundance of causative…

Fig. 4
Early access of VAP causative Enterobacteriaceae to the oropharynx. Relative abundance of causative (red) and any other (green) Enterobacteriaceae operational taxonomic units is shown for ten individual study subjects. Results of paired oropharyngeal (upper panels) and tracheobronchial (lower panels) samples are shown. Enterobacteriaceae VAP patients are subjects 3, 16 & 20. The x-axis denotes days post intubation

Fig. 5

Decrease of oropharyngeal longitudinal alpha…

Fig. 5

Decrease of oropharyngeal longitudinal alpha diversity in enterobacterial VAP. Longitudinal changes in alpha…

Fig. 5
Decrease of oropharyngeal longitudinal alpha diversity in enterobacterial VAP. Longitudinal changes in alpha diversity of the oropharyngeal samples of the individual patients (dots) and by VAP diagnosis. Lines are based on a local polynomial regression fitting (loess function in R, grey bands indicate 95% CI). a Richness, b Shannon diversity index. Note: Summary lines for H. influenzae VAP patients were omitted due to low number of cases (n = 2)
Fig. 3
Fig. 3
Heatmap of oropharyngeal and tracheobronchial samples. Relative abundances of bacterial communities of the subjects are shown. The left main column are oropharyngeal samples, the middle tracheobronchial and the right shows the relative dissimilarity between the two corresponding samples. Each subcolumn for oropharyngeal (oro) and tracheobronchial (tbs) samples represents family-level taxonomic assignment of the sample’s 16S rRNA gene sequences. The color indicates proportional abundance of the sequences assigned to each bacterial family within the sample. The rows represent individual time points of sampling for the subjects. IO and IT represent the initial oropharyngeal and tracheobronchial samples, respectively. Missing samples are indicated with grey fill
Fig. 4
Fig. 4
Early access of VAP causative Enterobacteriaceae to the oropharynx. Relative abundance of causative (red) and any other (green) Enterobacteriaceae operational taxonomic units is shown for ten individual study subjects. Results of paired oropharyngeal (upper panels) and tracheobronchial (lower panels) samples are shown. Enterobacteriaceae VAP patients are subjects 3, 16 & 20. The x-axis denotes days post intubation
Fig. 5
Fig. 5
Decrease of oropharyngeal longitudinal alpha diversity in enterobacterial VAP. Longitudinal changes in alpha diversity of the oropharyngeal samples of the individual patients (dots) and by VAP diagnosis. Lines are based on a local polynomial regression fitting (loess function in R, grey bands indicate 95% CI). a Richness, b Shannon diversity index. Note: Summary lines for H. influenzae VAP patients were omitted due to low number of cases (n = 2)

References

    1. Guillamet CV, Kollef MH. Update on ventilator-associated pneumonia. Curr Opin Crit Care. 2015;21(5):430–438. doi: 10.1097/MCC.0000000000000231.
    1. Bekaert M, Timsit JF, Vansteelandt S, Depuydt P, Vesin A, Garrouste-Orgeas M, et al. Attributable mortality of ventilator-associated pneumonia: a reappraisal using causal analysis. Am J Respir Crit Care Med. 2011;184(10):1133–1139. doi: 10.1164/rccm.201105-0867OC.
    1. Melsen WG, Rovers MM, Koeman M, Bonten MJ. Estimating the attributable mortality of ventilator-associated pneumonia from randomized prevention studies. Crit Care Med. 2011;39(12):2736–2742. doi: 10.1097/CCM.0b013e3182281f33.
    1. Chastre J, Fagon JY. Ventilator-associated pneumonia. Am J Respir Crit Care Med. 2002;165(7):867–903. doi: 10.1164/ajrccm.165.7.2105078.
    1. Cook DJ, Walter SD, Cook RJ, Griffith LE, Guyatt GH, Leasa D, et al. Incidence of and risk factors for ventilator-associated pneumonia in critically ill patients. Ann Intern Med. 1998;129(6):433–440. doi: 10.7326/0003-4819-129-6-199809150-00002.
    1. Bouadma L, Wolff M, Lucet JC. Ventilator-associated pneumonia and its prevention. Curr Opin Infect Dis. 2012;25(4):395–404. doi: 10.1097/QCO.0b013e328355a835.
    1. Roquilly A, Marret E, Abraham E, Asehnoune K. Pneumonia prevention to decrease mortality in intensive care unit: a systematic review and meta-analysis. Clin Infect Dis. 2015;60(1):64–75. doi: 10.1093/cid/ciu740.
    1. Brusselaers N, Labeau S, Vogelaers D, Blot S. Value of lower respiratory tract surveillance cultures to predict bacterial pathogens in ventilator-associated pneumonia: systematic review and diagnostic test accuracy meta-analysis. Intensive Care Med. 2013;39(3):365–375. doi: 10.1007/s00134-012-2759-x.
    1. Visscher S, Kruisheer EM, Schurink CA, Lucas PJ, Bonten MJ. Predicting pathogens causing ventilator-associated pneumonia using a Bayesian network model. J Antimicrob Chemother. 2008;62(1):184–188. doi: 10.1093/jac/dkn141.
    1. Group NHW. Peterson J, Garges S, Giovanni M, McInnes P, Wang L, et al. The NIH human microbiome project. Genome Res. 2009;19(12):2317–2323. doi: 10.1101/gr.096651.109.
    1. Huang YJ, Charlson ES, Collman RG, Colombini-Hatch S, Martinez FD, Senior RM. The role of the lung microbiome in health and disease. A National Heart, Lung, and Blood Institute workshop report. Am J Respir Crit Care Med. 2013;187(12):1382–1387. doi: 10.1164/rccm.201303-0488WS.
    1. Cui L, Morris A, Huang L, Beck JM, Twigg HL, 3rd, von Mutius E, et al. The microbiome and the lung. Ann Am Thorac Soc. 2014;11(Suppl 4):S227–S232. doi: 10.1513/AnnalsATS.201402-052PL.
    1. O'Dwyer DN, Dickson RP, Moore BB. The lung microbiome, immunity, and the pathogenesis of chronic lung disease. J Immunol. 2016;196(12):4839–4847. doi: 10.4049/jimmunol.1600279.
    1. Dickson RP, Erb-Downward JR, Huffnagle GB. The role of the bacterial microbiome in lung disease. Expert Rev Respir Med. 2013;7(3):245–257. doi: 10.1586/ers.13.24.
    1. Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, et al. Disordered microbial communities in asthmatic airways. PLoS One. 2010;5(1):e8578. doi: 10.1371/journal.pone.0008578.
    1. Garzoni C, Brugger SD, Qi W, Wasmer S, Cusini A, Dumont P, et al. Microbial communities in the respiratory tract of patients with interstitial lung disease. Thorax. 2013;68(12):1150–1156. doi: 10.1136/thoraxjnl-2012-202917.
    1. Gao Z, Kang Y, Yu J, Ren L. Human pharyngeal microbiome may play a protective role in respiratory tract infections. Genomics Proteomics Bioinformatics. 2014;12(3):144–150. doi: 10.1016/j.gpb.2014.06.001.
    1. Chaban B, Albert A, Links MG, Gardy J, Tang P, Hill JE. Characterization of the upper respiratory tract microbiomes of patients with pandemic H1N1 influenza. PLoS One. 2013;8(7):e69559. doi: 10.1371/journal.pone.0069559.
    1. Wagner BD, Grunwald GK, Zerbe GO, Mikulich-Gilbertson SK, Robertson CE, Zemanick ET, et al. On the use of diversity measures in longitudinal sequencing studies of microbial communities. Front Microbiol. 2018;9:1037. doi: 10.3389/fmicb.2018.01037.
    1. Acosta N, Heirali A, Somayaji R, Surette MG, Workentine ML, Sibley CD, et al. Sputum microbiota is predictive of long-term clinical outcomes in young adults with cystic fibrosis. Thorax. 2018;73(11):1016–1025. doi: 10.1136/thoraxjnl-2018-211510.
    1. Leitao Filho Fernando Sergio, Alotaibi Nawaf M., Ngan David, Tam Sheena, Yang Julia, Hollander Zsuzsanna, Chen Virginia, FitzGerald J. Mark, Nislow Corey, Leung Janice M., Man S. F. Paul, Sin Don D. Sputum Microbiome Is Associated with 1-Year Mortality after Chronic Obstructive Pulmonary Disease Hospitalizations. American Journal of Respiratory and Critical Care Medicine. 2019;199(10):1205–1213. doi: 10.1164/rccm.201806-1135OC.
    1. Mika M, Nita I, Morf L, Qi W, Beyeler S, Bernasconi E, et al. Microbial and host immune factors as drivers of COPD. ERJ Open Res. 2018;4(3):00015–02018. doi: 10.1183/23120541.00015-2018.
    1. Zakharkina T, Martin-Loeches I, Matamoros S, Povoa P, Torres A, Kastelijn JB, et al. The dynamics of the pulmonary microbiome during mechanical ventilation in the intensive care unit and the association with occurrence of pneumonia. Thorax. 2017;72(9):803–810. doi: 10.1136/thoraxjnl-2016-209158.
    1. Kelly BJ, Imai I, Bittinger K, Laughlin A, Fuchs BD, Bushman FD, et al. Composition and dynamics of the respiratory tract microbiome in intubated patients. Microbiome. 2016;4:7. doi: 10.1186/s40168-016-0151-8.
    1. Kraemer JG, Ramette A, Aebi S, Oppliger A, Hilty M. Influence of pig farming on the human's nasal microbiota: the key role of the airborne microbial communities. Appl Environ Microbiol. 2018;84(6):e02470–e02417. doi: 10.1128/AEM.02470-17.
    1. Jorgensen SB, Soraas A, Sundsfjord A, Liestol K, Leegaard TM, Jenum PA. Fecal carriage of extended spectrum beta-lactamase producing Escherichia coli and Klebsiella pneumoniae after urinary tract infection - a three year prospective cohort study. PLoS One. 2017;12(3):e0173510. doi: 10.1371/journal.pone.0173510.
    1. Slater M, Rivett DW, Williams L, Martin M, Harrison T, Sayers I, et al. The impact of azithromycin therapy on the airway microbiota in asthma. Thorax. 2014;69(7):673–674. doi: 10.1136/thoraxjnl-2013-204517.
    1. Rogers GB, Bruce KD, Martin ML, Burr LD, Serisier DJ. The effect of long-term macrolide treatment on respiratory microbiota composition in non-cystic fibrosis bronchiectasis: an analysis from the randomised, double-blind, placebo-controlled BLESS trial. Lancet Respir Med. 2014;2(12):988–996. doi: 10.1016/S2213-2600(14)70213-9.
    1. Segal LN, Clemente JC, Wu BG, Wikoff WR, Gao Z, Li Y, et al. Randomised, double-blind, placebo-controlled trial with azithromycin selects for anti-inflammatory microbial metabolites in the emphysematous lung. Thorax. 2017;72(1):13–22. doi: 10.1136/thoraxjnl-2016-208599.
    1. Berdal JE, Bjornholt J, Blomfeldt A, Smith-Erichsen N, Bukholm G. Patterns and dynamics of airway colonisation in mechanically-ventilated patients. Clin Microbiol Infect. 2007;13(5):476–480. doi: 10.1111/j.1469-0691.2006.01678.x.
    1. Yin Y, Hountras P, Wunderink RG. The microbiome in mechanically ventilated patients. Curr Opin Infect Dis. 2017;30(2):208–213. doi: 10.1097/QCO.0000000000000352.
    1. Lu W, Yu J, Ai Q, Liu D, Song C, Li L. Increased constituent ratios of Klebsiella sp., Acinetobacter sp., and Streptococcus sp. and a decrease in microflora diversity may be indicators of ventilator-associated pneumonia: a prospective study in the respiratory tracts of neonates. PLoS One. 2014;9(2):e87504. doi: 10.1371/journal.pone.0087504.
    1. Lamarche D, Johnstone J, Zytaruk N, Clarke F, Hand L, Loukov D, et al. Microbial dysbiosis and mortality during mechanical ventilation: a prospective observational study. Respir Res. 2018;19(1):245. doi: 10.1186/s12931-018-0950-5.

Source: PubMed

3
Abonneren