Uncalibrated pulse power analysis fails to reliably measure cardiac output in patients undergoing coronary artery bypass surgery

Ole Broch, Jochen Renner, Jan Höcker, Matthias Gruenewald, Patrick Meybohm, Jan Schöttler, Markus Steinfath, Berthold Bein, Ole Broch, Jochen Renner, Jan Höcker, Matthias Gruenewald, Patrick Meybohm, Jan Schöttler, Markus Steinfath, Berthold Bein

Abstract

Introduction: Uncalibrated arterial pulse power analysis has been recently introduced for continuous monitoring of cardiac index (CI). The aim of the present study was to compare the accuracy of arterial pulse power analysis with intermittent transpulmonary thermodilution (TPTD) before and after cardiopulmonary bypass (CPB).

Methods: Forty-two patients scheduled for elective coronary surgery were studied after induction of anaesthesia, before and after CPB respectively. Each patient was monitored with the pulse contour cardiac output (PiCCO) system, a central venous line and the recently introduced LiDCO monitoring system. Haemodynamic variables included measurement of CI derived by transpulmonary thermodilution (CITPTD) or CI derived by pulse power analysis (CIPP), before and after calibration (CIPPnon-cal., CIPPcal.). Percentage changes of CI (ΔCITPTD, ΔCIPPnon-cal./PPcal.) were calculated to analyse directional changes.

Results: Before CPB there was no significant correlation between CIPPnon-cal. and CITPTD (r2 = 0.04, P = 0.08) with a percentage error (PE) of 86%. Higher mean arterial pressure (MAP) values were significantly correlated with higher CIPPnon-cal. (r2 = 0.26, P < 0.0001). After CPB, CIPPcal. revealed a significant correlation compared with CITPTD (r2 = 0.77, P < 0.0001) with PE of 28%. Changes in CIPPcal. (ΔCIPPcal.) showed a correlation with changes in CITPTD (ΔCITPTD) only after CPB (r2 = 0.52, P = 0.005).

Conclusions: Uncalibrated pulse power analysis was significantly influenced by MAP and was not able to reliably measure CI compared with TPTD. Calibration improved accuracy, but pulse power analysis was still not consistently interchangeable with TPTD. Only calibrated pulse power analysis was able to reliably track haemodynamic changes and trends.

Figures

Figure 1
Figure 1
Study design. T1: data collection after induction of anaesthesia until calibration (CIPPnon-cal.). T2: after calibration until cardiopulmonary bypass (CIPPcal.). T3: after cardiopulmonary bypass until calibration (CIPPnon-cal.). T4: after calibration until discharge to the intensive care unit (CIPPcal.).
Figure 2
Figure 2
Correlation of cardiac indices before (T1, T2) and after (T3, T4) cardiopulmonary bypass.
Figure 3
Figure 3
Correlation between cardiac index (CI) and mean arterial pressure (MAP) before (T1 to 2) and after (T3 to 4) cardiopulmonary bypass.

References

    1. Grocott MP, Mythen MG, Gan TJ. Perioperative fluid management and clinical outcomes in adults. Anesth Analg. 2005;100:1093–1106. doi: 10.1213/.
    1. Jans O, Tollund C, Bundgaard-Nielsen M, Selmer C, Warberg J, Secher NH. Goal-directed fluid therapy: stroke volume optimisation and cardiac dimensions in supine healthy humans. Acta Anaesthesiol Scand. 2008;52:536–540. doi: 10.1111/j.1399-6576.2008.01585.x.
    1. Pearse R, Dawson D, Fawcett J, Rhodes A, Grounds RM, Bennett ED. Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial (ISRCTN38797445) Crit Care. 2005;9:R687–693. doi: 10.1186/cc3887.
    1. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–1377. doi: 10.1056/NEJMoa010307.
    1. Breukers RM, Sepehrkhouy S, Spiegelenberg SR, Groeneveld AB. Cardiac output measured by a new arterial pressure waveform analysis method without calibration compared with thermodilution after cardiac surgery. J Cardiothorac Vasc Anesth. 2007;21:632–635. doi: 10.1053/j.jvca.2007.01.001.
    1. Friesecke S, Heinrich A, Abel P, Felix SB. Comparison of pulmonary artery and aortic transpulmonary thermodilution for monitoring of cardiac output in patients with severe heart failure: validation of a novel method. Crit Care Med. 2009;37:119–123. doi: 10.1097/CCM.0b013e31819290d5.
    1. Reinke RT, Higgins CB. Pulmonary infarction complicating the use of Swan-Ganz catheters. Br J Radiol. 1975;48:885–888. doi: 10.1259/0007-1285-48-575-885.
    1. Connors AF Jr, Speroff T, Dawson NV, Thomas C, Harrell FE Jr, Wagner D, Desbiens N, Goldman L, Wu AW, Califf RM, Fulkerson WJ Jr, Vidaillet H, Broste S, Bellamy P, Lynn J, Knaus WA. The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA. 1996;276:889–897. doi: 10.1001/jama.276.11.889.
    1. Richard C, Warszawski J, Anguel N, Deye N, Combes A, Barnoud D, Boulain T, Lefort Y, Fartoukh M, Baud F, Boyer A, Brochard L, Teboul JL. Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2003;290:2713–2720. doi: 10.1001/jama.290.20.2713.
    1. Sander M, von Heymann C, Foer A, von Dossow V, Grosse J, Dushe S, Konertz WF, Spies CD. Pulse contour analysis after normothermic cardiopulmonary bypass in cardiac surgery patients. Crit Care. 2005;9:R729–734. doi: 10.1186/cc3903.
    1. Ritter S, Rudiger A, Maggiorini M. Transpulmonary thermodilution-derived cardiac function index identifies cardiac dysfunction in acute heart failure and septic patients: an observational study. Crit Care. 2009;13:R133. doi: 10.1186/cc7994.
    1. Hillis LD, Firth BG, Winniford MD. Comparison of thermodilution and indocyanine green dye in low cardiac output or left-sided regurgitation. Am J Cardiol. 1986;57:1201–1202. doi: 10.1016/0002-9149(86)90704-6.
    1. Sakka SG, Reinhart K, Meier-Hellmann A. Comparison of pulmonary artery and arterial thermodilution cardiac output in critically ill patients. Intensive Care Med. 1999;25:843–846. doi: 10.1007/s001340050962.
    1. Breukers RM, Groeneveld AB, de Wilde RB, Jansen JR. Transpulmonary versus continuous thermodilution cardiac output after valvular and coronary artery surgery. Interact Cardiovasc Thorac Surg. 2009;9:4–8. doi: 10.1510/icvts.2009.204545.
    1. Sander M, Spies CD, Grubitzsch H, Foer A, Muller M, von Heymann C. Comparison of uncalibrated arterial waveform analysis in cardiac surgery patients with thermodilution cardiac output measurements. Crit Care. 2006;10:R164. doi: 10.1186/cc5103.
    1. Hamilton TT, Huber LM, Jessen ME. PulseCO: a less-invasive method to monitor cardiac output from arterial pressure after cardiac surgery. Ann Thorac Surg. 2002;74:S1408–1412. doi: 10.1016/S0003-4975(02)04059-6.
    1. Belloni L, Pisano A, Natale A, Piccirillo MR, Piazza L, Ismeno G, De Martino G. Assessment of fluid-responsiveness parameters for off-pump coronary artery bypass surgery: a comparison among LiDCO, transesophageal echochardiography, and pulmonary artery catheter. J Cardiothorac Vasc Anesth. 2008;22:243–248. doi: 10.1053/j.jvca.2007.07.007.
    1. Bein B, Meybohm P, Cavus E, Renner J, Tonner PH, Steinfath M, Scholz J, Doerges V. The reliability of pulse contour-derived cardiac output during hemorrhage and after vasopressor administration. Anesth Analg. 2007;105:107–113. doi: 10.1213/01.ane.0000268140.02147.ed.
    1. Yamashita K, Nishiyama T, Yokoyama T, Abe H, Manabe M. Effects of vasodilation on cardiac output measured by PulseCO. J Clin Monit Comput. 2007;21:335–339. doi: 10.1007/s10877-007-9093-9.
    1. Critchley LA, Lee A, Ho AM. A critical review of the ability of continuous cardiac output monitors to measure trends in cardiac output. Anesth Analg. 2010;111:1180–1192. doi: 10.1213/ANE.0b013e3181f08a5b.
    1. Critchley LA, Critchley JA. A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput. 1999;15:85–91. doi: 10.1023/A:1009982611386.
    1. Halvorsen PS, Espinoza A, Lundblad R, Cvancarova M, Hol PK, Fosse E, Tonnessen TI. Agreement between PiCCO pulse-contour analysis, pulmonal artery thermodilution and transthoracic thermodilution during off-pump coronary artery by-pass surgery. Acta Anaesthesiol Scand. 2006;50:1050–1057. doi: 10.1111/j.1399-6576.2006.01118.x.
    1. Yamashita K, Nishiyama T, Yokoyama T, Abe H, Manabe M. The effects of vasodilation on cardiac output measured by PiCCO. J Cardiothorac Vasc Anesth. 2008;22:688–692. doi: 10.1053/j.jvca.2008.04.007.
    1. Squara P, Cecconi M, Rhodes A, Singer M, Chiche JD. Tracking changes in cardiac output: methodological considerations for the validation of monitoring devices. Intensive Care Med. 2009;35:1801–1808. doi: 10.1007/s00134-009-1570-9.
    1. Cooper ES, Muir WW. Continuous cardiac output monitoring via arterial pressure waveform analysis following severe hemorrhagic shock in dogs. Crit Care Med. 2007;35:1724–1729. doi: 10.1097/01.CCM.0000266590.25109.F2.
    1. Boulain T, Achard JM, Teboul JL, Richard C, Perrotin D, Ginies G. Changes in BP induced by passive leg raising predict response to fluid loading in critically ill patients. Chest. 2002;121:1245–1252. doi: 10.1378/chest.121.4.1245.
    1. Sagawa K, Lie RK, Schaefer J. Translation of Otto Frank's paper "Die Grundform des Arteriellen Pulses" Zeitschrift fur Biologie 37: 483-526 (1899) J Mol Cell Cardiol. 1990;22:253–277. doi: 10.1016/0022-2828(90)91459-K.
    1. Mayer J, Boldt J, Schollhorn T, Rohm KD, Mengistu AM, Suttner S. Semi-invasive monitoring of cardiac output by a new device using arterial pressure waveform analysis: a comparison with intermittent pulmonary artery thermodilution in patients undergoing cardiac surgery. Br J Anaesth. 2007;98:176–182. doi: 10.1093/bja/ael341.
    1. Winer N, Sowers JR, Weber MA. Gender differences in vascular compliance in young, healthy subjects assessed by pulse contour analysis. J Clin Hypertens (Greenwich) 2001;3:145–152. doi: 10.1111/j.1524-6175.2001.00704.x.
    1. Covic A, Haydar AA, Bhamra-Ariza P, Gusbeth-Tatomir P, Goldsmith DJ. Aortic pulse wave velocity and arterial wave reflections predict the extent and severity of coronary artery disease in chronic kidney disease patients. J Nephrol. 2005;18:388–396.
    1. Eleftheriadis S, Galatoudis Z, Didilis V, Bougioukas I, Schon J, Heinze H, Berger KU, Heringlake M. Variations in arterial blood pressure are associated with parallel changes in FlowTrac/Vigileo-derived cardiac output measurements: a prospective comparison study. Crit Care. 2009;13:R179. doi: 10.1186/cc8161.
    1. Manecke GR Jr. Cardiac output from the arterial catheter: deceptively simple. J Cardiothorac Vasc Anesth. 2007;21:629–631. doi: 10.1053/j.jvca.2007.07.001.
    1. Sakka SG, Kozieras J, Thuemer O, van Hout N. Measurement of cardiac output: a comparison between transpulmonary thermodilution and uncalibrated pulse contour analysis. Br J Anaesth. 2007;99:337–342. doi: 10.1093/bja/aem177.
    1. Monnet X, Anguel N, Naudin B, Jabot J, Richard C, Teboul JL. Arterial pressure-based cardiac output in septic patients: different accuracy of pulse contour and uncalibrated pressure waveform devices. Crit Care. 2010;14:R109. doi: 10.1186/cc9058.
    1. Gruenewald M, Renner J, Meybohm P, Hocker J, Scholz J, Bein B. Reliability of continuous cardiac output measurement during intra-abdominal hypertension relies on repeated calibrations: an experimental animal study. Crit Care. 2008;12:R132. doi: 10.1186/cc7102.
    1. Linton NW, Linton RA. Is comparison of changes in cardiac output, assessed by different methods, better than only comparing cardiac output to the reference method? Br J Anaesth. 2002;89:336–337. doi: 10.1093/bja/aef530. author reply 337-339.

Source: PubMed

3
Abonneren