Putting together the psoriasis puzzle: an update on developing targeted therapies

Leanne M Johnson-Huang, Michelle A Lowes, James G Krueger, Leanne M Johnson-Huang, Michelle A Lowes, James G Krueger

Abstract

Psoriasis vulgaris is a chronic, debilitating skin disease that affects millions of people worldwide. There is no mouse model that accurately reproduces all facets of the disease, but the accessibility of skin tissue from patients has facilitated the elucidation of many pathways involved in the pathogenesis of psoriasis and highlighted the importance of the immune system in the disease. The pathophysiological relevance of these findings has been supported by genetic studies that identified polymorphisms in genes associated with NFκB activation, IL-23 signaling and T helper 17 (Th17)-cell adaptive immune responses, and in genes associated with the epidermal barrier. Recently developed biologic agents that selectively target specific components of the immune system are highly effective for treating psoriasis. In particular, emerging therapeutics are focused on targeting the IL-23-Th17-cell axis, and several agents that block IL-17 signaling have shown promising results in early-phase clinical trials. This review discusses lessons learned about the pathogenesis of psoriasis from mouse-and patient-based studies, emphasizing how the outcomes of clinical trials with T-cell-targeted and cytokine-blocking therapies have clarified our understanding of the disease.

Figures

Fig. 1.
Fig. 1.
Clinical and histological features of psoriasis before and after effective treatment. (A) Clinical presentation of psoriasis showing clearly demarcated red plaques with silver scales. After 12 weeks of treatment with the TNFα inhibitor etanercept, there was marked lesion resolution. (B) Comparative hematoxylin and eosin staining of psoriatic lesional skin showed marked epidermal thickening and cellular infiltration compared with non-lesional skin. These features were reversed 12 weeks post-treatment with etanercept. (C) Increased infiltration of CD3+ T cells in lesional skin compared with non-lesional skin; this infiltration decreased with treatment (week 12). (D) Increased CD11c+ DCs in lesional skin were reduced with treatment (week 12). [Images are unpublished, from a study reported in Zaba et al. (Zaba et al., 2007a).]
Fig. 2.
Fig. 2.
Current model of the maintenance phase of psoriasis, showing the targets of approved or emerging psoriasis drugs. Myeloid DCs produce cytokines that induce IFNγ production by Th1 cells and IL-17 production by Th17 cells. IL-23 also induces production of IL-22 by Th17 and possibly Th22 cells. Th cell cytokines IFNγ, IL-17 and TNFα cooperate to induce the production of anti-microbial peptides (AMPs) and chemokines by keratinocytes, thereby enhancing immune-cell recruitment and inflammation in lesions. IL-22 is also involved in promoting epidermal hyperplasia. The IL-20 subfamily cytokines (IL-19, IL-20 and IL-24), which are mainly produced by monocytes, also contribute to epidermal hyperplasia. Drugs that are currently FDA-approved target upstream molecules in this pathway (anti-p40 antibodies and TNF inhibitors), whereas drugs in the pipeline (antibodies targeting IL-17, IL-17R or IL-22) are directed against downstream molecules.

References

    1. Abrams J. R., Lebwohl M. G., Guzzo C. A., Jegasothy B. V., Goldfarb M. T., Goffe B. S., Menter A., Lowe N. J., Krueger G., Brown M. J., et al. (1999). CTLA4Ig-mediated blockade of T-cell costimulation in patients with psoriasis vulgaris. J. Clin. Invest. 103, 1243–1252
    1. Abrams J. R., Kelley S. L., Hayes E., Kikuchi T., Brown M. J., Kang S., Lebwohl M. G., Guzzo C. A., Jegasothy B. V., Linsley P. S., et al. (2000). Blockade of T lymphocyte costimulation with cytotoxic T lymphocyte-associated antigen 4-immunoglobulin (CTLA4Ig) reverses the cellular pathology of psoriatic plaques, including the activation of keratinocytes, dendritic cells, and endothelial cells. J. Exp. Med. 192, 681–694
    1. Abuabara K., Lee H., Kimball A. B. (2011). The effect of systemic psoriasis therapies on the incidence of myocardial infarction: a cohort study. Br. J. Dermatol. 165, 1066–1073
    1. Acosta-Rodriguez E. V., Napolitani G., Lanzavecchia A., Sallusto F. (2007). Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat. Immunol. 8, 942–949
    1. Aggarwal S., Ghilardi N., Xie M. H., de Sauvage F. J., Gurney A. L. (2003). Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 278, 1910–1914
    1. Austin L. M., Ozawa M., Kikuchi T., Walters I. B., Krueger J. G. (1999). The majority of epidermal T cells in Psoriasis vulgaris lesions can produce type 1 cytokines, interferon-gamma, interleukin-2, and tumor necrosis factor-alpha, defining TC1 (cytotoxic T lymphocyte) and TH1 effector populations: a type 1 differentiation bias is also measured in circulating blood T cells in psoriatic patients. J. Invest. Dermatol. 113, 752–759
    1. Azfar R. S., Gelfand J. M. (2008). Psoriasis and metabolic disease: epidemiology and pathophysiology. Curr. Opin. Rheumatol. 20, 416–422
    1. Bataille V., Lens M., Spector T. D. (2012). The use of the twin model to investigate the genetics and epigenetics of skin diseases with genomic, transcriptomic and methylation data. J. Eur. Acad. Dermatol. Venereol. [Epub ahead of print] doi:10.1111/j.1468-3083.2011.04444.x
    1. Bettelli E., Carrier Y., Gao W., Korn T., Strom T. B., Oukka M., Weiner H. L., Kuchroo V. K. (2006). Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238
    1. Blauvelt A. (2008). T-helper 17 cells in psoriatic plaques and additional genetic links between IL-23 and psoriasis. J. Invest. Dermatol. 128, 1064–1067
    1. Boehncke W. H., Dressel D., Zollner T. M., Kaufmann R. (1996). Pulling the trigger on psoriasis. Nature 379, 777.
    1. Boniface K., Bernard F. X., Garcia M., Gurney A. L., Lecron J. C., Morel F. (2005). IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. J. Immunol. 174, 3695–3702
    1. Bos J. D., De Rie M. A. (1999). The pathogenesis of psoriasis: immunological facts and speculations. Immunol. Today 20, 40–46
    1. Bos J. D., Hulsebosch H. J., Krieg S. R., Bakker P. M., Cormane R. H. (1983). Immunocompetent cells in psoriasis. In situ immunophenotyping by monoclonal antibodies. Arch. Dermatol. Res. 275, 181–189
    1. Boy M. G., Wang C., Wilkinson B. E., Chow V. F., Clucas A. T., Krueger J. G., Gaweco A. S., Zwillich S. H., Changelian P. S., Chan G. (2009). Double-blind, placebo-controlled, dose-escalation study to evaluate the pharmacologic effect of CP-690,550 in patients with psoriasis. J. Invest. Dermatol. 129, 2299–2302
    1. Boyman O., Hefti H. P., Conrad C., Nickoloff B. J., Suter M., Nestle F. O. (2004). Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-alpha. J. Exp. Med. 199, 731–736
    1. Cai Y., Shen X., Ding C., Qi C., Li K., Li X., Jala V. R., Zhang H. G., Wang T., Zheng J., et al. (2011). Pivotal role of dermal IL-17-producing gammadelta T cells in skin inflammation. Immunity 35, 596–610
    1. Capon F., Munro M., Barker J., Trembath R. (2002). Searching for the major histocompatibility complex psoriasis susceptibility gene. J. Invest. Dermatol. 118, 745–751
    1. Capon F., Di Meglio P., Szaub J., Prescott N. J., Dunster C., Baumber L., Timms K., Gutin A., Abkevic V., Burden A. D., et al. (2007). Sequence variants in the genes for the interleukin-23 receptor (IL23R) and its ligand (IL12B) confer protection against psoriasis. Hum. Genet. 122, 201–206
    1. Capon F., Burden A. D., Trembath R. C., Barker J. N. (2012). Psoriasis and other complex trait dermatoses: from Loci to functional pathways. J. Invest. Dermatol. 132, 915–922
    1. Carey W., Glazer S., Gottlieb A. B., Lebwohl M., Leonardi C., Menter A., Papp K., Rundle A. C., Toth D. (2006). Relapse, rebound, and psoriasis adverse events: an advisory group report. J. Am. Acad. Dermatol. 54, S171–S181
    1. Cargill M., Schrodi S. J., Chang M., Garcia V. E., Brandon R., Callis K. P., Matsunami N., Ardlie K. G., Civello D., Catanese J. J., et al. (2007). A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am. J. Hum. Genet. 80, 273–290
    1. Chamian F., Lowes M. A., Lin S. L., Lee E., Kikuchi T., Gilleaudeau P., Sullivan-Whalen M., Cardinale I., Khatcherian A., Novitskaya I., et al. (2005). Alefacept reduces infiltrating T cells, activated dendritic cells, and inflammatory genes in psoriasis vulgaris. Proc. Natl. Acad. Sci. USA 102, 2075–2080
    1. Chamian F., Lin S. L., Lee E., Kikuchi T., Gilleaudeau P., Sullivan-Whalen M., Cardinale I., Khatcherian A., Novitskaya I., Wittkowski K. M., et al. (2007). Alefacept (anti-CD2) causes a selective reduction in circulating effector memory T cells (Tem) and relative preservation of central memory T cells (Tcm) in psoriasis. J. Transl. Med. 5, 27.
    1. Chen H., Poon A., Yeung C., Helms C., Pons J., Bowcock A. M., Kwok P. Y., Liao W. (2011). A genetic risk score combining ten psoriasis risk loci improves disease prediction. PLoS ONE 6, e19454.
    1. Chen Z., Tato C. M., Muul L., Laurence A., O’Shea J. J. (2007). Distinct regulation of interleukin-17 in human T helper lymphocytes. Arthritis Rheum. 56, 2936–2946
    1. Cheng J., Kuai D., Zhang L., Yang X., Qiu B. (2012). Psoriasis increased the risk of diabetes: a meta-analysis. Arch. Dermatol. Res. 304, 119–125
    1. Chiricozzi A., Guttman-Yassky E., Suarez-Farinas M., Nograles K. E., Tian S., Cardinale I., Chimenti S., Krueger J. G. (2011). Integrative responses to IL-17 and TNF-alpha in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis. J. Invest. Dermatol. 131, 677–687
    1. Christophers E. (2001). Psoriasis-epidemiology and clinical spectrum. Clin. Exp. Dermatol. 26, 314–320
    1. Conrad C., Boyman O., Tonel G., Tun-Kyi A., Laggner U., de Fougerolles A., Kotelianski V., Gardner H., Nestle F. O. (2007). Alpha1beta1 integrin is crucial for accumulation of epidermal T cells and the development of psoriasis. Nat. Med. 13, 836–842
    1. Cook P. W., Piepkorn M., Clegg C. H., Plowman G. D., DeMay J. M., Brown J. R., Pittelkow M. R. (1997). Transgenic expression of the human amphiregulin gene induces a psoriasis-like phenotype. J. Clin. Invest. 100, 2286–2294
    1. Davidovici B. B., Sattar N., Prinz J. C., Puig L., Emery P., Barker J. N., van de Kerkhof P., Stahle M., Nestle F. O., Girolomoni G., et al. (2010). Psoriasis and systemic inflammatory diseases: potential mechanistic links between skin disease and co-morbid conditions. J. Invest. Dermatol. 130, 1785–1796
    1. Di Meglio P., Di Cesare A., Laggner U., Chu C. C., Napolitano L., Villanova F., Tosi I., Capon F., Trembath R. C., Peris K., et al. (2011). The IL23R R381Q gene variant protects against immune-mediated diseases by impairing IL-23-induced Th17 effector response in humans. PLoS ONE 6, e17160.
    1. Ellis C. N., Krueger G. G. (2001). Treatment of chronic plaque psoriasis by selective targeting of memory effector T lymphocytes. N. Engl. J. Med. 345, 248–255
    1. Ellis C. N., Gorsulowsky D. C., Hamilton T. A., Billings J. K., Brown M. D., Headington J. T., Cooper K. D., Baadsgaard O., Duell E. A., Annesley T. M., et al. (1986). Cyclosporine improves psoriasis in a double-blind study. JAMA 256, 3110–3116
    1. Eyerich S., Eyerich K., Pennino D., Carbone T., Nasorri F., Pallotta S., Cianfarani F., Odorisio T., Traidl-Hoffmann C., Behrendt H., et al. (2009). Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J. Clin. Invest. 119, 3573–3585
    1. Ferenczi K., Burack L., Pope M., Krueger J. G., Austin L. M. (2000). CD69, HLA-DR and the IL-2R identify persistently activated T cells in psoriasis vulgaris lesional skin: blood and skin comparisons by flow cytometry. J. Autoimmun. 14, 63–78
    1. Galloway J. B., Hyrich K. L., Mercer L. K., Dixon W. G., Fu B., Ustianowski A. P., Watson K. D., Lunt M., Symmons D. P. (2011). Anti-TNF therapy is associated with an increased risk of serious infections in patients with rheumatoid arthritis especially in the first 6 months of treatment: updated results from the British Society for Rheumatology Biologics Register with special emphasis on risks in the elderly. Rheumatology (Oxford) 50, 124–131
    1. Ganguly D., Chamilos G., Lande R., Gregorio J., Meller S., Facchinetti V., Homey B., Barrat F. J., Zal T., Gilliet M. (2009). Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J. Exp. Med. 206, 1983–1994
    1. Gelfand J. M., Neimann A. L., Shin D. B., Wang X., Margolis D. J., Troxel A. B. (2006). Risk of myocardial infarction in patients with psoriasis. JAMA 296, 1735–1741
    1. Ghoreschi K., Laurence A., Yang X. P., Tato C. M., McGeachy M. J., Konkel J. E., Ramos H. L., Wei L., Davidson T. S., Bouladoux N., et al. (2010). Generation of pathogenic T(H)17 cells in the absence of TGF-beta signalling. Nature 467, 967–971
    1. Gniadecki R., Kragballe K., Dam T. N., Skov L. (2011). Comparison of drug survival rates for adalimumab, etanercept and infliximab in patients with psoriasis vulgaris. Br. J. Dermatol. 164, 1091–1096
    1. Gordon K. B., Papp K. A., Hamilton T. K., Walicke P. A., Dummer W., Li N., Bresnahan B. W., Menter A. (2003). Efalizumab for patients with moderate to severe plaque psoriasis: a randomized controlled trial. JAMA 290, 3073–3080
    1. Gordon K. B., Langley R. G., Leonardi C., Toth D., Menter M. A., Kang S., Heffernan M., Miller B., Hamlin R., Lim L., et al. (2006). Clinical response to adalimumab treatment in patients with moderate to severe psoriasis: double-blind, randomized controlled trial and open-label extension study. J. Am. Acad. Dermatol. 55, 598–606
    1. Gordon K. B., Langley R. G., Gottlieb A. B., Papp K. A., Krueger G. G., Strober B. E., Williams D. A., Gu Y., Valdes J. M. (2012). A phase III, randomized, controlled trial of the fully human IL-12/23 mAb briakinumab in moderate-to-severe psoriasis. J. Invest. Dermatol. 132, 304–314
    1. Gottlieb A. B., Evans R., Li S., Dooley L. T., Guzzo C. A., Baker D., Bala M., Marano C. W., Menter A. (2004). Infliximab induction therapy for patients with severe plaque-type psoriasis: a randomized, double-blind, placebo-controlled trial. J. Am. Acad. Dermatol. 51, 534–542
    1. Gottlieb A. B., Leonardi C., Kerdel F., Mehlis S., Olds M., Williams D. A. (2011). Efficacy and safety of briakinumab vs. etanercept and placebo in patients with moderate to severe chronic plaque psoriasis. Br. J. Dermatol. 165, 652–660
    1. Gottlieb S. L., Gilleaudeau P., Johnson R., Estes L., Woodworth T. G., Gottlieb A. B., Krueger J. G. (1995). Response of psoriasis to a lymphocyte-selective toxin (DAB389IL-2) suggests a primary immune, but not keratinocyte, pathogenic basis. Nat. Med. 1, 442–447
    1. Gray E. E., Suzuki K., Cyster J. G. (2011). Cutting edge: Identification of a motile IL-17-producing gammadelta T cell population in the dermis. J. Immunol. 186, 6091–6095
    1. Griffiths C. E., Barker J. N. (2007). Pathogenesis and clinical features of psoriasis. Lancet 370, 263–271
    1. Griffiths C. E., Strober B. E., van de Kerkhof P., Ho V., Fidelus-Gort R., Yeilding N., Guzzo C., Xia Y., Zhou B., Li S., et al. (2010). Comparison of ustekinumab and etanercept for moderate-to-severe psoriasis. N. Engl. J. Med. 362, 118–128
    1. Gudjonsson J. E., Ding J., Li X., Nair R. P., Tejasvi T., Qin Z. S., Ghosh D., Aphale A., Gumucio D. L., Voorhees J. J., et al. (2009). Global gene expression analysis reveals evidence for decreased lipid biosynthesis and increased innate immunity in uninvolved psoriatic skin. J. Invest. Dermatol. 129, 2795–2804
    1. Guttman-Yassky E., Lowes M. A., Fuentes-Duculan J., Zaba L. C., Cardinale I., Nograles K. E., Khatcherian A., Novitskaya I., Carucci J. A., Bergman R., et al. (2008). Low expression of the IL-23/Th17 pathway in atopic dermatitis compared to psoriasis. J. Immunol. 181, 7420–7427
    1. Haider A., Lowes M., Suárez-Fariñas M., Zaba L., Cardinale I., Khatcherian A., Novitskaya I., Wittkowski K. M., Krueger J. (2008). Identification of cellular pathways of “type 1,” Th17 T cells, and TNF- and inducible nitric oxide synthase-producing dendritic cells in autoimmune inflammation through pharmacogenomic study of cyclosporine A in psoriasis. J. Immunol. 180, 1913–1920
    1. Herrinton L. J., Liu L., Weng X., Lewis J. D., Hutfless S., Allison J. E. (2011). Role of thiopurine and anti-TNF therapy in lymphoma in inflammatory bowel disease. Am. J. Gastroenterol. 106, 2146–2153
    1. Hueber W., Patel D. D., Dryja T., Wright A. M., Koroleva I., Bruin G., Antoni C., Draelos Z., Gold M. H., Durez P., et al. (2010). Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci. Transl. Med. 2, 52ra72
    1. Jegasothy B. V., Ackerman C. D., Todo S., Fung J. J., Abu-Elmagd K., Starzl T. E. (1992). Tacrolimus (FK 506) – a new therapeutic agent for severe recalcitrant psoriasis. Arch. Dermatol. 128, 781–785
    1. Johnson-Huang L. M., Suarez-Farinas M., Sullivan-Whalen M., Gilleaudeau P., Krueger J. G., Lowes M. A. (2010). Effective narrow-band UVB radiation therapy suppresses the IL-23/IL-17 axis in normalized psoriasis plaques. J. Invest. Dermatol. 130, 2654–2663
    1. June C. H., Ledbetter J. A., Linsley P. S., Thompson C. B. (1990). Role of the CD28 receptor in T-cell activation. Immunol. Today 11, 211–216
    1. Kolls J. K., Linden A. (2004). Interleukin-17 family members and inflammation. Immunity 21, 467–476
    1. Kopp T., Lenz P., Bello-Fernandez C., Kastelein R. A., Kupper T. S., Stingl G. (2003). IL-23 production by cosecretion of endogenous p19 and transgenic p40 in keratin 14/p40 transgenic mice: evidence for enhanced cutaneous immunity. J. Immunol. 170, 5438–5444
    1. Krueger G. G., Papp K. A., Stough D. B., Loven K. H., Gulliver W. P., Ellis C. N. (2002). A randomized, double-blind, placebo-controlled phase III study evaluating efficacy and tolerability of 2 courses of alefacept in patients with chronic plaque psoriasis. J. Am. Acad. Dermatol. 47, 821–833
    1. Krueger J., Brodmerkel C., Li K., Suarez-Farinas M. (2010). The molecular profile of psoriatic skin in responders to ustekinumab or etanercept after 12 weeks of treatment: Results from the ACCEPT trial. J. Am. Acad. Dermatol. 62, AB13
    1. Krueger J. G., Fretzin S., Suarez-Farinas M., Haslett P. A., Phipps K. M., Cameron G. S., McColm J., Katcherian A., Cueto I., White T., et al. (2012). IL-17A is essential for cell activation and inflammatory gene circuits in subjects with psoriasis. J. Allergy Clin. Immunol. [Epub ahead of print] doi:1016/j.jaci.2012.04.024.
    1. Kryczek I., Bruce A. T., Gudjonsson J. E., Johnston A., Aphale A., Vatan L., Szeliga W., Wang Y., Liu Y., Welling T. H., et al. (2008). Induction of IL-17+ T cell trafficking and development by IFN-gamma: mechanism and pathological relevance in psoriasis. J. Immunol. 181, 4733–4741
    1. Kwon H. H., Na S. J., Jo S. J., Youn J. I. (2012). Epidemiology and clinical features of pediatric psoriasis in tertiary referral psoriasis clinic. J. Dermatol. 39, 260–264
    1. Lakatos P. L., Miheller P. (2010). Is there an increased risk of lymphoma and malignancies under anti-TNF therapy in IBD? Curr. Drug Targets 11, 179–186
    1. Lande R., Gregorio J., Facchinetti V., Chatterjee B., Wang Y., Homey B., Cao W., Wang Y., Su B., Nestle F. O., et al. (2007). Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449, 564–569
    1. Langley R. G., Krueger G. G., Griffiths C. E. (2005). Psoriasis: epidemiology, clinical features, and quality of life. Ann. Rheum. Dis. 64 Suppl. 2, ii18–23; discussion ii24–15.
    1. Lebwohl M., Christophers E., Langley R., Ortonne J. P., Roberts J., Griffiths C. E. (2003). An international, randomized, double-blind, placebo-controlled phase 3 trial of intramuscular alefacept in patients with chronic plaque psoriasis. Arch. Dermatol. 139, 719–727
    1. Lee E., Trepicchio W. L., Oestreicher J. L., Pittman D., Wang F., Chamian F., Dhodapkar M., Krueger J. G. (2004). Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J. Exp. Med. 199, 125–130
    1. Leonardi C. L., Powers J. L., Matheson R. T., Goffe B. S., Zitnik R., Wang A., Gottlieb A. B. (2003). Etanercept as monotherapy in patients with psoriasis. N. Engl. J. Med. 349, 2014–2022
    1. Leonardi C. L., Kimball A. B., Papp K. A., Yeilding N., Guzzo C., Wang Y., Li S., Dooley L. T., Gordon K. B. (2008). Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet 371, 1665–1674
    1. Li A. G., Wang D., Feng X. H., Wang X. J. (2004). Latent TGFbeta1 overexpression in keratinocytes results in a severe psoriasis-like skin disorder. EMBO J. 23, 1770–1781
    1. Liang S. C., Tan X. Y., Luxenberg D. P., Karim R., Dunussi-Joannopoulos K., Collins M., Fouser L. A. (2006). Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203, 2271–2279
    1. Lowes M., Bowcock A. M., Krueger J. (2007). Pathogenesis and therapy of psoriasis. Nature 445, 866–873
    1. Lowes M. A., Turton J. A., Krueger J. G., Barnetson R. S. (2005a). Psoriasis vulgaris flare during efalizumab therapy does not preclude future use: a case series. BMC Dermatol. 5, 9.
    1. Lowes M. A., Chamian F., Abello M. V., Fuentes-Duculan J., Lin S. L., Nussbaum R., Novitskaya I., Carbonaro H., Cardinale I., Kikuchi T., et al. (2005b). Increase in TNF-alpha and inducible nitric oxide synthase-expressing dendritic cells in psoriasis and reduction with efalizumab (anti-CD11a). Proc. Natl. Acad. Sci. USA 102, 19057–19062
    1. Lowes M. A., Kikuchi T., Fuentes-Duculan J., Cardinale I., Zaba L. C., Haider A. S., Bowman E. P., Krueger J. G. (2008). Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. J. Invest. Dermatol. 128, 1207–1211
    1. Manel N., Unutmaz D., Littman D. R. (2008). The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat. Immunol. 9, 641–649
    1. Mangan P. R., Harrington L. E., O’Quinn D. B., Helms W. S., Bullard D. C., Elson C. O., Hatton R. D., Wahl S. M., Schoeb T. R., Weaver C. T. (2006). Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441, 231–234
    1. Mariette X., Tubach F., Bagheri H., Bardet M., Berthelot J. M., Gaudin P., Heresbach D., Martin A., Schaeverbeke T., Salmon D., et al. (2010). Lymphoma in patients treated with anti-TNF: results of the 3-year prospective French RATIO registry. Ann. Rheum. Dis. 69, 400–408
    1. Marrakchi S., Guigue P., Renshaw B. R., Puel A., Pei X. Y., Fraitag S., Zribi J., Bal E., Cluzeau C., Chrabieh M., et al. (2011). Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N. Engl. J. Med. 365, 620–628
    1. McGeachy M. J., Bak-Jensen K. S., Chen Y., Tato C. M., Blumenschein W., McClanahan T., Cua D. J. (2007). TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat. Immunol. 8, 1390–1397
    1. Mehta N. N., Azfar R. S., Shin D. B., Neimann A. L., Troxel A. B., Gelfand J. M. (2010). Patients with severe psoriasis are at increased risk of cardiovascular mortality: cohort study using the General Practice Research Database. Eur. Heart J. 31, 1000–1006
    1. Mehta N. N., Yu Y., Saboury B., Foroughi N., Krishnamoorthy P., Raper A., Baer A., Antigua J., Van Voorhees A. S., Torigian D. A., et al. (2011). Systemic and vascular inflammation in patients with moderate to severe psoriasis as measured by [18F]-fluorodeoxyglucose positron emission tomography-computed tomography (FDG-PET/CT): a pilot study. Arch. Dermatol. 147, 1031–1039
    1. Menter A., Feldman S. R., Weinstein G. D., Papp K., Evans R., Guzzo C., Li S., Dooley L. T., Arnold C., Gottlieb A. B. (2007). A randomized comparison of continuous vs. intermittent infliximab maintenance regimens over 1 year in the treatment of moderate-to-severe plaque psoriasis. J. Am. Acad. Dermatol. 56, e31–e15
    1. Menter A., Tyring S. K., Gordon K., Kimball A. B., Leonardi C. L., Langley R. G., Strober B. E., Kaul M., Gu Y., Okun M., et al. (2008). Adalimumab therapy for moderate to severe psoriasis: A randomized, controlled phase III trial. J. Am. Acad. Dermatol. 58, 106–115
    1. Nair R. P., Stuart P., Henseler T., Jenisch S., Chia N. V., Westphal E., Schork N. J., Kim J., Lim H. W., Christophers E., et al. (2000). Localization of psoriasis-susceptibility locus PSORS1 to a 60-kb interval telomeric to HLA-C. Am. J. Hum. Genet. 66, 1833–1844
    1. Nair R. P., Stuart P. E., Nistor I., Hiremagalore R., Chia N. V., Jenisch S., Weichenthal M., Abecasis G. R., Lim H. W., Christophers E., et al. (2006). Sequence and haplotype analysis supports HLA-C as the psoriasis susceptibility 1 gene. Am. J. Hum. Genet. 78, 827–851
    1. Nair R. P., Ruether A., Stuart P. E., Jenisch S., Tejasvi T., Hiremagalore R., Schreiber S., Kabelitz D., Lim H. W., Voorhees J. J., et al. (2008). Polymorphisms of the IL12B and IL23R genes are associated with psoriasis. J. Invest. Dermatol. 128, 1653–1661
    1. Nair R. P., Duffin K. C., Helms C., Ding J., Stuart P. E., Goldgar D., Gudjonsson J. E., Li Y., Tejasvi T., Feng B. J., et al. (2009). Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat. Genet. 41, 199–204
    1. Nestle F. O., Conrad C., Tun-Kyi A., Homey B., Gombert M., Boyman O., Burg G., Liu Y. J., Gilliet M. (2005). Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J. Exp. Med. 202, 135–143
    1. Nestle F. O., Kaplan D. H., Barker J. (2009). Psoriasis. N. Engl. J. Med. 361, 496–509
    1. Nijsten T., Stern R. S. (2012). How epidemiology has contributed to a better understanding of skin disease. J. Invest. Dermatol. 132, 994–1002
    1. Nograles K. E., Zaba L. C., Guttman-Yassky E., Fuentes-Duculan J., Suarez-Farinas M., Cardinale I., Khatcherian A., Gonzalez J., Pierson K. C., White T. R., et al. (2008). Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways. Br. J. Dermatol. 159, 1092–1102
    1. Nograles K. E., Zaba L. C., Shemer A., Fuentes-Duculan J., Cardinale I., Kikuchi T., Ramon M., Bergman R., Krueger J. G., Guttman-Yassky E. (2009). IL-22-producing “T22” T cells account for upregulated IL-22 in atopic dermatitis despite reduced IL-17-producing TH17 T cells. J. Allergy Clin. Immunol. 123, 1244–1252.e2
    1. Oh C. J., Das K. M., Gottlieb A. B. (2000). Treatment with anti-tumor necrosis factor alpha (TNF-alpha) monoclonal antibody dramatically decreases the clinical activity of psoriasis lesions. J. Am. Acad. Dermatol. 42, 829–830
    1. Onoufriadis A., Simpson M. A., Pink A. E., Di Meglio P., Smith C. H., Pullabhatla V., Knight J., Spain S. L., Nestle F. O., Burden A. D., et al. (2011). Mutations in IL36RN/IL1F5 are associated with the severe episodic inflammatory skin disease known as generalized pustular psoriasis. Am. J. Hum. Genet. 89, 432–437
    1. Ortonne J. P., Lebwohl M., Griffiths C. E. M. (2003). Alefacept-induced decreases in circulating blood lymphocyte counts correlate with clinical response in patients with chronic plaque psoriasis. Eur. J. Dermatol. 13, 117–123
    1. Papp K. A., Tyring S., Lahfa M., Prinz J., Griffiths C. E., Nakanishi A. M., Zitnik R., van de Kerkhof P. C., Melvin L. (2005). A global phase III randomized controlled trial of etanercept in psoriasis: safety, efficacy, and effect of dose reduction. Br. J. Dermatol. 152, 1304–1312
    1. Papp K. A., Langley R. G., Lebwohl M., Krueger G. G., Szapary P., Yeilding N., Guzzo C., Hsu M. C., Wang Y., Li S., et al. (2008). Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet 371, 1675–1684
    1. Reich K., Nestle F. O., Papp K., Ortonne J. P., Evans R., Guzzo C., Li S., Dooley L. T., Griffiths C. E. (2005). Infliximab induction and maintenance therapy for moderate-to-severe psoriasis: a phase III, multicentre, double-blind trial. Lancet 366, 1367–1374
    1. Rizzo H. L., Kagami S., Phillips K. G., Kurtz S. E., Jacques S. L., Blauvelt A. (2011). IL-23-mediated psoriasis-like epidermal hyperplasia is dependent on IL-17A. J. Immunol. 186, 1495–1502
    1. Roberson E. D., Bowcock A. M. (2010). Psoriasis genetics: breaking the barrier. Trends Genet. 26, 415–423
    1. Ruth K. J., Neaton J. D. (1991). Evaluation of two biological markers of tobacco exposure. MRFIT Research Group. Prev. Med. 20, 574–589
    1. Ryan C., Leonardi C. L., Krueger J. G., Kimball A. B., Strober B. E., Gordon K. B., Langley R. G., de Lemos J. A., Daoud Y., Blankenship D., et al. (2011). Association between biologic therapies for chronic plaque psoriasis and cardiovascular events: a meta-analysis of randomized controlled trials. JAMA 306, 864–871
    1. Sa S. M., Valdez P. A., Wu J., Jung K., Zhong F., Hall L., Kasman I., Winer J., Modrusan Z., Danilenko D. M., et al. (2007). The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis. J. Immunol. 178, 2229–2240
    1. Sano S., Chan K. S., Carbajal S., Clifford J., Peavey M., Kiguchi K., Itami S., Nickoloff B. J., DiGiovanni J. (2005). Stat3 links activated keratinocytes and immunocytes required for development of psoriasis in a novel transgenic mouse model. Nat. Med. 11, 43–49
    1. Santarlasci V., Maggi L., Capone M., Frosali F., Querci V., De Palma R., Liotta F., Cosmi L., Maggi E., Romagnani S., et al. (2009). TGF-beta indirectly favors the development of human Th17 cells by inhibiting Th1 cells. Eur. J. Immunol. 39, 207–215
    1. Saurat J. H., Stingl G., Dubertret L., Papp K., Langley R. G., Ortonne J. P., Unnebrink K., Kaul M., Camez A. (2008). Efficacy and safety results from the randomized controlled comparative study of adalimumab vs. methotrexate vs. placebo in patients with psoriasis (CHAMPION). Br. J. Dermatol. 158, 558–566
    1. Schafer P. H., Parton A., Gandhi A. K., Capone L., Adams M., Wu L., Bartlett J. B., Loveland M. A., Gilhar A., Cheung Y. F., et al. (2010). Apremilast, a cAMP phosphodiesterase-4 inhibitor, demonstrates anti-inflammatory activity in vitro and in a model of psoriasis. Br. J. Pharmacol. 159, 842–855
    1. Shen F., Hu Z., Goswami J., Gaffen S. L. (2006). Identification of common transcriptional regulatory elements in interleukin-17 target genes. J. Biol. Chem. 281, 24138–24148
    1. Sofen H., Smith S., Matheson R., Leonardi C., Calderon C., Bouman-Thio E., Brodmerkel C., Li K., Marciniak S., Petty K., et al. (2011). Results of a single ascending dose study to assess the safety and tolerability of CNTO 1959 following intravenous or subcutaneous administration in healthy subjects and in subjects with moderate to severe psoriasis. FC-21. Psoriasis: from Gene to Clinic 6th International Congress, 1–3 December 2011. Br. J. Dermatol. 165, e1–e46
    1. Sterry W., Bagot M., Ferrandiz C., Kragballe K., Papp K., Stingl G. (2009). Immunosuppressive therapy in dermatology and PML. J. Dtsch. Dermatol. Ges. 7, 5.
    1. Strober B. E., Crowley J. J., Yamauchi P. S., Olds M., Williams D. A. (2011). Efficacy and safety results from a phase III, randomized controlled trial comparing the safety and efficacy of briakinumab with etanercept and placebo in patients with moderate to severe chronic plaque psoriasis. Br. J. Dermatol. 165, 661–668
    1. Suarez-Farinas M., Lowes M. A., Zaba L. C., Krueger J. G. (2010a). Evaluation of the psoriasis transcriptome across different studies by gene set enrichment analysis (GSEA). PLoS ONE 5, e10247.
    1. Suarez-Farinas M., Shah K. R., Haider A. S., Krueger J. G., Lowes M. A. (2010b). Personalized medicine in psoriasis: developing a genomic classifier to predict histological response to Alefacept. BMC Dermatol. 10, 1.
    1. Sumaria N., Roediger B., Ng L. G., Qin J., Pinto R., Cavanagh L. L., Shklovskaya E., Fazekas de St Groth B., Triccas J. A., Weninger W. (2011). Cutaneous immunosurveillance by self-renewing dermal gammadelta T cells. J. Exp. Med. 208, 505–518
    1. Swindell W. R., Johnston A., Carbajal S., Han G., Wohn C., Lu J., Xing X., Nair R. P., Voorhees J. J., Elder J. T., et al. (2011). Genome-wide expression profiling of five mouse models identifies similarities and differences with human psoriasis. PLoS ONE 6, e18266.
    1. Tonel G., Conrad C., Laggner U., Di Meglio P., Grys K., McClanahan T. K., Blumenschein W. M., Qin J. Z., Xin H., Oldham E., et al. (2010). Cutting edge: a critical functional role for IL-23 in psoriasis. J. Immunol. 185, 5688–5691
    1. Trembath R. C., Clough R. L., Rosbotham J. L., Jones A. B., Camp R. D., Frodsham A., Browne J., Barber R., Terwilliger J., Lathrop G. M., et al. (1997). Identification of a major susceptibility locus on chromosome 6p and evidence for further disease loci revealed by a two stage genome-wide search in psoriasis. Hum. Mol. Genet. 6, 813–820
    1. Trifari S., Kaplan C. D., Tran E. H., Crellin N. K., Spits H. (2009). Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells. Nat. Immunol. 10, 864–871
    1. Tyring S., Gottlieb A., Papp K., Gordon K., Leonardi C., Wang A., Lalla D., Woolley M., Jahreis A., Zitnik R., et al. (2006). Etanercept and clinical outcomes, fatigue, and depression in psoriasis: double-blind placebo-controlled randomised phase III trial. Lancet 367, 29–35
    1. Van Belle A. B., de Heusch M., Lemaire M. M., Hendrickx E., Warnier G., Dunussi-Joannopoulos K., Fouser L. A., Renauld J. C., Dumoutier L. (2012). IL-22 is required for imiquimod-induced psoriasiform skin inflammation in mice. J. Immunol. 188, 462–469
    1. van der Fits L., Mourits S., Voerman J. S., Kant M., Boon L., Laman J. D., Cornelissen F., Mus A. M., Florencia E., Prens E. P., et al. (2009). Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J. Immunol. 182, 5836–5845
    1. Villadsen L. S., Schuurman J., Beurskens F., Dam T. N., Dagnaes-Hansen F., Skov L., Rygaard J., Voorhorst-Ogink M. M., Gerritsen A. F., van Dijk M. A., et al. (2003). Resolution of psoriasis upon blockade of IL-15 biological activity in a xenograft mouse model. J. Clin. Invest. 112, 1571–1580
    1. Volpe E., Servant N., Zollinger R., Bogiatzi S. I., Hupe P., Barillot E., Soumelis V. (2008). A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat. Immunol. 9, 650–657
    1. Wilson N. J., Boniface K., Chan J. R., McKenzie B. S., Blumenschein W. M., Mattson J. D., Basham B., Smith K., Chen T., Morel F., et al. (2007). Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat. Immunol. 8, 950–957
    1. Wolfram J. A., Diaconu D., Hatala D. A., Rastegar J., Knutsen D. A., Lowther A., Askew D., Gilliam A. C., McCormick T. S., Ward N. L. (2009). Keratinocyte but not endothelial cell-specific overexpression of Tie2 leads to the development of psoriasis. Am. J. Pathol. 174, 1443–1458
    1. Wrone-Smith T., Nickoloff B. J. (1996). Dermal injection of immunocytes induces psoriasis. J. Clin. Invest. 98, 1878–1887
    1. Yang L., Anderson D. E., Baecher-Allan C., Hastings W. D., Bettelli E., Oukka M., Kuchroo V. K., Hafler D. A. (2008). IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature 454, 350–352
    1. Yao Y., Richman L., Morehouse C., de los Reyes M., Higgs B. W., Boutrin A., White B., Coyle A., Krueger J., Kiener P. A., et al. (2008). Type I interferon: potential therapeutic target for psoriasis? PLoS ONE 3, e2737.
    1. Zaba L. C., Cardinale I., Gilleaudeau P., Sullivan-Whalen M., Suárez-Fariñas M., Fuentes-Duculan J., Novitskaya I., Khatcherian A., Bluth M. J., Lowes M., et al. (2007a). Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J. Exp. Med. 204, 3183–3194
    1. Zaba L. C., Fuentes-Duculan J., Steinman R. M., Krueger J. G., Lowes M. A. (2007b). Normal human dermis contains distinct populations of CD11c+BDCA-1+ dendritic cells and CD163+FXIIIA+ macrophages. J. Clin. Invest. 117, 2517–2525
    1. Zaba L. C., Suarez-Farinas M., Fuentes-Duculan J., Nograles K. E., Guttman-Yassky E., Cardinale I., Lowes M. A., Krueger J. G. (2009a). Effective treatment of psoriasis with etanercept is linked to suppression of IL-17 signaling, not immediate response TNF genes. J. Allergy Clin. Immunol. 124, 1022–1010 e395
    1. Zaba L. C., Fuentes-Duculan J., Eungdamrong N. J., Abello M. V., Novitskaya I., Pierson K. C., Gonzalez J., Krueger J. G., Lowes M. A. (2009b). Psoriasis is characterized by accumulation of immunostimulatory and Th1/Th17 cell-polarizing myeloid dendritic cells. J. Invest. Dermatol. 129, 79–88
    1. Zaba L. C., Fuentes-Duculan J., Eungdamrong N. J., Johnson-Huang L. M., Nograles K. E., White T. R., Pierson K. C., Lentini T., Suarez-Farinas M., Lowes M. A., et al. (2010). Identification of TNF-related apoptosis-inducing ligand and other molecules that distinguish inflammatory from resident dendritic cells in patients with psoriasis. J. Allergy Clin. Immunol. 125, 1261–1268.e9
    1. Zachariae H. (2003). Prevalence of joint disease in patients with psoriasis: implications for therapy. Am. J. Clin. Dermatol. 4, 441–447
    1. Zheng Y., Danilenko D. M., Valdez P., Kasman I., Eastham-Anderson J., Wu J., Ouyang W. (2007). Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445, 648–651
    1. Zhou L., Ivanov I. I., Spolski R., Min R., Shenderov K., Egawa T., Levy D. E., Leonard W. J., Littman D. R. (2007). IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol. 8, 967–974
    1. Zhou X., Krueger J. G., Kao M. C., Lee E., Du F., Menter A., Wong W. H., Bowcock A. M. (2003). Novel mechanisms of T-cell and dendritic cell activation revealed by profiling of psoriasis on the 63,100-element oligonucleotide array. Physiol. Genomics 13, 69–78

Source: PubMed

3
Abonneren