Intracranial Pressure Monitoring-Review and Avenues for Development

Maya Harary, Rianne G F Dolmans, William B Gormley, Maya Harary, Rianne G F Dolmans, William B Gormley

Abstract

Intracranial pressure (ICP) monitoring is a staple of neurocritical care. The most commonly used current methods of monitoring in the acute setting include fluid-based systems, implantable transducers and Doppler ultrasonography. It is well established that management of elevated ICP is critical for clinical outcomes. However, numerous studies show that current methods of ICP monitoring cannot reliably define the limit of the brain's intrinsic compensatory capacity to manage increases in pressure, which would allow for proactive ICP management. Current work in the field hopes to address this gap by harnessing live-streaming ICP pressure-wave data and a multimodal integration with other physiologic measures. Additionally, there is continued development of non-invasive ICP monitoring methods for use in specific clinical scenarios.

Keywords: cerebral compliance; intracranial pressure monitoring; neurocritical care.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The Monro–Kellie model for the contents of the intracranial compartment. ‘Brain tissue’ includes neurons, glia, extracellular fluid and cerebral microvasculature. ‘Venous’ and ‘Arterial blood’ represents the intracranial blood volume in macro-vasculature and cerebral venous sinuses. ‘CSF’ includes ventricular and cisternal CSF.
Figure 2
Figure 2
Pressure–volume curve for ICP. The pressure–volume curve has four ‘zones’: (1) baseline intracranial volume with good compensatory reserve and high compliance (blue); (2) gradual depletion of compensatory reserve as intracranial volume increases (yellow); (3) poor compensatory reserve and increased risk of cerebral ischemia and herniation (red); and (4) critically high ICP causing collapse of cerebral microvasculature and disturbed cerebrovascular reactivity (grey).
Figure 3
Figure 3
Cerebral autoregulation capacity.
Figure 4
Figure 4
Sites for invasive ICP monitoring. These sites represent actual and potential spaces in the intracranial cavity in which ICP can be measured. Intraventricular monitoring with EVDs is the most commonly accessed site in clinical practice, followed by intraparenchymal probes. Reproduced with permission [32].
Figure 5
Figure 5
ICP pressure waves. (A) ICP fluctuations in response to the respiratory cycle (W2) and the arterial cycle (W1); (B) close-up of ICP waveform due to the systemic arterial cycle. Components are P1 (Percussion wave = representative of arterial pulsation), P2 (Tidal wave = a proxy for intracranial compliance) and P3 (Dicrotic wave = pressure transmission of aortic valve closure). A raised P2 wave is an indicator of raised ICP and reduced intracranial compliance (*); (C) Lundberg A (plateau) and B waves; adapted from Hall et al. [55].

References

    1. Monro A. Observations on the Structure and Functions of the Nervous System. Creech and Johnson; Edinbourgh, UK: 1783.
    1. Kellie G. Appearances observed in the dissection of two individuals; death from cold and congestion of the brain. Trans. Med.-Chir. Soc. Edinbrugh. 1824;1:84.
    1. Cushing H. The Third Circulation in Studies in Intracranial Physiology and Surgery. Oxford University Press; London, UK: 1926.
    1. Greenberg M., editor. Handbook of Neurosurgery. 8th ed. Thieme; New York, NY, USA: 2016. Neuromonitoring; pp. 856–881.
    1. Leffert L.R., Schwamm L.H. Neuraxial anesthesia in parturients with intracranial pathology: A comprehensive review and reassessment of risk. Anesthesiology. 2013;119:703–718. doi: 10.1097/ALN.0b013e31829374c2.
    1. Morton R., Ellenbogen R. Principles of Neurological Surgery. 3rd ed. Saunders/Elsevier; Philadelphia, PA, USA: 2012. Intracranial hypertension; pp. 311–323.
    1. Donnelly J., Budohoski K.P., Smielewski P., Czosnyka M. Regulation of the cerebral circulation: Bedside assessment and clinical implications. Crit. Care. 2016;20:129. doi: 10.1186/s13054-016-1293-6.
    1. Cavus E., Bein B., Dörges V., Stadlbauer K.-H., Wenzel V., Steinfath M., Hanss R., Scholz J. Brain tissue oxygen pressure and cerebral metabolism in an animal model of cardiac arrest and cardiopulmonary resuscitation. Resuscitation. 2006;71:97–106. doi: 10.1016/j.resuscitation.2006.03.007.
    1. Bowton D.L., Bertels N.H., Prough D.S., Stump D.A. Cerebral blood flow is reduced in patients with sepsis syndrome. Crit. Care Med. 1989;17:399–403. doi: 10.1097/00003246-198905000-00004.
    1. Lundberg N. Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr. Scand. Suppl. 1960;36:1–193. doi: 10.1097/00005072-196207000-00018.
    1. Czosnyka M. Monitoring and interpretation of intracranial pressure. J. Neurol. Neurosur. Psychiatry. 2004;75:813–821. doi: 10.1136/jnnp.2003.033126.
    1. Kukreti V., Mohseni-Bod H., Drake J. Management of raised intracranial pressure in children with traumatic brain injury. J. Pediatric Neurosci. 2014;9:207–215.
    1. Gilland O. Normal cerebrospinal-fluid pressure. N. Engl. J. Med. 1969;280:904–905. doi: 10.3171/jns.1974.40.5.0587.
    1. Gilland O., Tourtellotte W.W., O'Tauma L., Henderson W.G. Normal cerebrospinal fluid pressure. J. Neurosurg. 1974;40:587–593. doi: 10.3171/jns.1974.40.5.0587.
    1. Smith M. Monitoring intracranial pressure in traumatic brain injury. Anesth. Analg. 2008;106:240–248. doi: 10.1213/01.ane.0000297296.52006.8e.
    1. Carney N., Totten A.M., O'Reilly C., Ullman J.S., Hawryluk G.W.J., Bell M.J., Bratton S.L., Chesnut R., Harris O.A., Kissoon N., et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurg. 2017;80:6–15. doi: 10.1227/NEU.0000000000001432.
    1. Treggiari M.M., Schutz N., Yanez N.D., Romand J.-A. Role of intracranial pressure values and patterns in predicting outcome in traumatic brain injury: A systematic review. Neurocriti. Care. 2007;6:104–112. doi: 10.1007/s12028-007-0012-1.
    1. Czosnyka M., Citerio G. Brain compliance: The old story with a new ‘et cetera’. Intens. Care Med. 2012;38:925–927. doi: 10.1007/s00134-012-2572-6.
    1. Meng L., Gelb A.W. Regulation of cerebral autoregulation by carbon dioxide. Anesthesiology. 2015;122:196–205. doi: 10.1097/ALN.0000000000000506.
    1. Kinoshita K. Traumatic brain injury: Pathophysiology for neurocritical care. J. Intens. Care. 2016;4:29. doi: 10.1186/s40560-016-0138-3.
    1. Srinivasan V.M., O’Neill B.R., Jho D., Whiting D.M., Oh M.Y. The history of external ventricular drainage. J. Neurosurg. 2014;120:228–236. doi: 10.3171/2013.6.JNS121577.
    1. Aschoff A., Kremer P., Hashemi B., Kunze S. The scientific history of hydrocephalus and its treatment. Neurosurg. Rev. 1999;22:67–93. doi: 10.1007/s101430050035.
    1. Adson A.W., Lillie W.I. The relationship of intracranial pressure, choked disc, and intraocular tension. Trans. Am. Acad. Opthalmol. 1927:138–145.
    1. Padayachy L.C., Figaji A.A., Bullock M.R. Intracranial pressure monitoring for traumatic brain injury in the modern era. Childs Nerv. Syst. 2010;26:441–452. doi: 10.1007/s00381-009-1034-0.
    1. Binz D.D., Toussaint L.G., Friedman J.A. Hemorrhagic complications of ventriculostomy placement: A meta-analysis. Neurocrit. Care. 2009;10:253–256. doi: 10.1007/s12028-009-9193-0.
    1. Bauer D.F., Razdan S.N., Bartolucci A.A., Markert J.M. Meta-analysis of hemorrhagic complications from ventriculostomy placement by neurosurgeons. Neurosurgery. 2011;69:255–260. doi: 10.1227/NEU.0b013e31821a45ba.
    1. Kawoos U., McCarron R.M., Auker C.R., Chavko M. Advances in intracranial pressure monitoring and its significance in managing traumatic brain injury. Int. J. Mol. Sci. 2015;16:28979–28997. doi: 10.3390/ijms161226146.
    1. Vries J.K., Becker D.P., Young H.F. A subarachnoid screw for monitoring intracranial pressure Technical note. J. Neurosurg. 1973;39:416–419. doi: 10.3171/jns.1973.39.3.0416.
    1. Bekar A., Doğan S., Abaş F., Caner B., Korfali G., Kocaeli H., Yilmazlar S., Korfali E. Risk factors and complications of intracranial pressure monitoring with a fiberoptic device. J. Clin. Neurosci. 2009;16:236–240. doi: 10.1016/j.jocn.2008.02.008.
    1. Zhang X., Medow J.E., Iskandar B.J., Wang F., Shokoueinejad M., Koueik J., Webster J.G. Invasive and noninvasive means of measuring intracranial pressure: A review. Physiol. Meas. 2017;38:143–182. doi: 10.1088/1361-6579/aa7256.
    1. Raboel P.H., Bartek J., Andresen M., Bellander B.M., Romner B. Intracranial pressure monitoring: Invasive versus non-invasive methods-a review. Critical Care Res. Pract. 2012;2012:950393. doi: 10.1155/2012/950393.
    1. Lyons M.K., Meyer F.B. Cerebrospinal fluid physiology and the management of increased intracranial pressure. Mayo Clin. Proc. 1990;65:684–707. doi: 10.1016/S0025-6196(12)65131-3.
    1. Gerber L.M., Chiu Y.L., Carney N., Hartl R., Ghajar J. Marked reduction in mortality in patients with severe traumatic brain injury. J. Neurosurg. 2013;119:1583–1590. doi: 10.3171/2013.8.JNS13276.
    1. Alali A.S., Fowler R.A., Mainprize T.G., Scales D.C., Kiss A., de Mestral C., Ray J.G., Nathens A.B. Intracranial pressure monitoring in severe traumatic brain injury: Results from the american college of surgeons trauma quality improvement program. J. Neurotraum. 2013;30:1737–1746. doi: 10.1089/neu.2012.2802.
    1. Stein S.C., Georgoff P., Meghan S., Mirza K.L., El Falaky O.M. Relationship of aggressive monitoring and treatment to improved outcomes in severe traumatic brain injury. J. Neurosurg. 2010;112:1105–1112. doi: 10.3171/2009.8.JNS09738.
    1. Farahvar A., Gerber L.M., Chiu Y.L., Carney N., Hartl R., Ghajar J. Increased mortality in patients with severe traumatic brain injury treated without intracranial pressure monitoring. J. Neurosurg. 2012;117:729–734. doi: 10.3171/2012.7.JNS111816.
    1. Dawes A.J., Sacks G.D., Cryer H.G., Gruen J.P., Preston C., Gorospe D., Cohen M., McArthur D.L., Russell M.M., Maggard-Gibbons M., et al. Intracranial pressure monitoring and inpatient mortality in severe traumatic brain injury: A propensity score-matched analysis. J. Trauma Acute Care. 2015;78:492–501. doi: 10.1097/TA.0000000000000559. discussion 501–492.
    1. You W., Feng J., Tang Q., Cao J., Wang L., Lei J., Mao Q., Gao G., Jiang J. Intraventricular intracranial pressure monitoring improves the outcome of older adults with severe traumatic brain injury: An observational, prospective study. BMC Anesthesiol. 2016;16:35. doi: 10.1186/s12871-016-0199-9.
    1. Shen L., Wang Z., Su Z., Qiu S., Xu J., Zhou Y., Yan A., Yin R., Lu B., Nie X., et al. Effects of intracranial pressure monitoring on mortality in patients with severe traumatic brain injury: A meta-analysis. PLoS ONE. 2016;11:e0168901. doi: 10.1371/journal.pone.0168901.
    1. Talving P., Karamanos E., Teixeira P.G., Skiada D., Lam L., Belzberg H., Inaba K., Demetriades D. Intracranial pressure monitoring in severe head injury: Compliance with brain trauma foundation guidelines and effect on outcomes: A prospective study. J. Neurosurg. 2013;119:1248–1254. doi: 10.3171/2013.7.JNS122255.
    1. Lane P.L., Skoretz T.G., Doig G., Girotti M.J. Intracranial pressure monitoring and outcomes after traumatic brain injury. Can. J. Surg. 2000;43:442–448.
    1. Tang A., Pandit V., Fennell V., Jones T., Joseph B., O'Keeffe T., Friese R.S., Rhee P. Intracranial pressure monitor in patients with traumatic brain injury. J. Surg. Res. 2015;194:565–570. doi: 10.1016/j.jss.2014.11.017.
    1. Aiolfi A., Benjamin E., Khor D., Inaba K., Lam L., Demetriades D. Brain trauma foundation guidelines for intracranial pressure monitoring: Compliance and effect on outcome. World J. Surg. 2017;41:1543–1549. doi: 10.1007/s00268-017-3898-6.
    1. Piccinini A., Lewis M., Benjamin E., Aiolfi A., Inaba K., Demetriades D. Intracranial pressure monitoring in severe traumatic brain injuries: A closer look at level 1 trauma centers in the united states. Injury. 2017;48:1944–1950. doi: 10.1016/j.injury.2017.04.033.
    1. Haddad S., Aldawood A.S., Alferayan A., Russell N.A., Tamim H.M., Arabi Y.M. Relationship between intracranial pressure monitoring and outcomes in severe traumatic brain injury patients. Anaesth. Intens. Care. 2011;39:1043–1050.
    1. Shafi S., Diaz-Arrastia R., Madden C., Gentilello L. Intracranial pressure monitoring in brain-injured patients is associated with worsening of survival. J. Traum. 2008;64:335–340. doi: 10.1097/TA.0b013e31815dd017.
    1. Cremer O.L., van Dijk G.W., van Wensen E., Brekelmans G.J.F., Moons K.G.M., Leenen L.P.H., Kalkman C.J. Effect of intracranial pressure monitoring and targeted intensive care on functional outcome after severe head injury. Crit. Care Med. 2005;33:2207–2213. doi: 10.1097/01.CCM.0000181300.99078.B5.
    1. Chesnut R.M., Temkin N., Carney N., Dikmen S., Rondina C., Videtta W., Petroni G., Lujan S., Pridgeon J., Barber J., et al. A trial of intracranial-pressure monitoring in traumatic brain injury. N. Engl. J. Med. 2012;367:2471–2481. doi: 10.1056/NEJMoa1207363.
    1. Alotaibi N.M., Wang J.Z., Pasarikovski C.R., Guha D., Al-Mufti F., Mamdani M., Saposnik G., Schweizer T.A., Macdonald R.L. Management of raised intracranial pressure in aneurysmal subarachnoid hemorrhage: Time for a consensus? Neurosurg. Focus. 2017;43:13. doi: 10.3171/2017.7.FOCUS17426.
    1. Löfgren J., von Essen C., Zwetnow N.N. The pressure–volume curve of the cerebrospinal fluid space in dogs. Acta Neurol. Scand. 1973;49:557–574. doi: 10.1111/j.1600-0404.1973.tb01330.x.
    1. Avezaat C.J., van Eijndhoven J.H. Clinical observations on the relationship between cerebrospinal fluid pulse pressure and intracranial pressure. Acta Neurochir. 1986;79:13–29. doi: 10.1007/BF01403461.
    1. Portnoy H.D., Chopp M., Branch C., Shannon M.B. Cerebrospinal fluid pulse waveform as an indicator of cerebral autoregulation. J. Neurosurg. 1982;56:666–678. doi: 10.3171/jns.1982.56.5.0666.
    1. Sundstrøm T., Grände P.-O., Juul N., Kock-Jensen C., Romner B., Wester K. Management of Severe Traumatic Brain Injury: Evidence, Tricks, and Pitfalls. Springer Science & Business Media; New York, NY, USA: 2012. p. 392.
    1. Kasprowicz M., Lalou D.A., Czosnyka M., Garnett M., Czosnyka Z. Intracranial pressure, its components and cerebrospinal fluid pressure–volume compensation. Acta Neurol. Scand. 2016;134:168–180. doi: 10.1111/ane.12541.
    1. Hall A., O’Kane R. The best marker for guiding the clinical management of patients with raised intracranial pressure—the rap index or the mean pulse amplitude? Acta Neurochir. 2016;158:1997–2009. doi: 10.1007/s00701-016-2932-z.
    1. Spiegelberg A., Preuß M., Kurtcuoglu V. B-waves revisited. Interdiscip. Neurosurg. 2016;6:13–17. doi: 10.1016/j.inat.2016.03.004.
    1. Lemaire J.J., Khalil T., Cervenansky F., Gindre G., Boire J.Y., Bazin J.E., Irthum B., Chazal J. Slow pressure waves in the cranial enclosure. Acta Neurochir. 2002;144:243–254. doi: 10.1007/s007010200032.
    1. Calviello L., Donnelly J., Cardim D., Robba C., Zeiler F.A., Smielewski P., Czosnyka M. Compensatory-reserve-weighted intracranial pressure and its association with outcome after traumatic brain injury. Neurocrit. Care. 2017;27:1–9. doi: 10.1007/s12028-017-0475-7.
    1. Howells T., Lewen A., Skold M.K., Ronne-Engstrom E., Enblad P. An evaluation of three measures of intracranial compliance in traumatic brain injury patients. Intens. Care Med. 2012;38:1061–1068. doi: 10.1007/s00134-012-2571-7.
    1. Mariak Z., Swiercz M., Krejza J., Lewko J., Lyson T. Intracranial pressure processing with artificial neural networks: Classification of signal properties. Acta Neurochir. 2000;142:407–411. doi: 10.1007/s007010050450.
    1. Swiercz M., Mariak Z., Krejza J., Lewko J., Szydlik P. Intracranial pressure processing with artificial neural networks: Prediction of icp trends. Acta Neurochir. 2000;142:401–406. doi: 10.1007/s007010050449.
    1. Azimi P., Mohammadi H.R., Benzel E.C., Shahzadi S., Azhari S., Montazeri A. Artificial neural networks in neurosurgery. J. Neurol. Neurosur. Psychiatry. 2015;86:251–256. doi: 10.1136/jnnp-2014-307807.
    1. Pincus S.M., Gladstone I.M., Ehrenkranz R.A. A regularity statistic for medical data analysis. J. Clin. Monit. 1991;7:335–345. doi: 10.1007/BF01619355.
    1. Lopes R., Betrouni N. Fractal and multifractal analysis: A review. Med. Image Anal. 2009;13:634–649. doi: 10.1016/j.media.2009.05.003.
    1. Scalzo F., Hamilton R., Asgari S., Kim S., Hu X. Intracranial hypertension prediction using extremely randomized decision trees. Med. Eng. Phys. 2012;34:1058–1065. doi: 10.1016/j.medengphy.2011.11.010.
    1. Di Ieva A., Schmitz E.M., Cusimano M.D. Analysis of intracranial pressure: Past, present, and future. Neuroscientist. 2013;19:592–603. doi: 10.1177/1073858412474845.
    1. Quachtran B., Hamilton R., Scalzo F. Detection of Intracranial Hypertension using Deep Learning; Proceedings of the Detection of Intracranial Hypertension Using Deep Learning; Cancun, Mexico. 4–8 December 2016; pp. 2491–2496.
    1. Guiza F., Depreitere B., Piper I., Citerio G., Jorens P.G., Maas A., Schuhmann M.U., Lo T.M., Donald R., Jones P., et al. Early detection of increased intracranial pressure episodes in traumatic brain injury: External validation in an adult and in a pediatric cohort. Crit. Care Med. 2017;45:316–320. doi: 10.1097/CCM.0000000000002080.
    1. Guiza F., Depreitere B., Piper I., Van den Berghe G., Meyfroidt G. Novel methods to predict increased intracranial pressure during intensive care and long-term neurologic outcome after traumatic brain injury: Development and validation in a multicenter dataset. Crit. Care Med. 2013;41:554–564. doi: 10.1097/CCM.0b013e3182742d0a.
    1. Piper I., Citerio G., Chambers I., Contant C., Enblad P., Fiddes H., Howells T., Kiening K., Nilsson P., Yau Y.H., et al. The brainit group: Concept and core dataset definition. Acta Neurochir. 2003;145:615–628. doi: 10.1007/s00701-003-0066-6.
    1. Adams H., Donnelly J., Czosnyka M., Kolias A.G., Helmy A., Menon D.K., Smielewski P., Hutchinson P.J. Temporal profile of intracranial pressure and cerebrovascular reactivity in severe traumatic brain injury and association with fatal outcome: An observational study. PLoS Med. 2017;14:e1002353. doi: 10.1371/journal.pmed.1002353.
    1. Lazaridis C., DeSantis S.M., Smielewski P., Menon D.K., Hutchinson P., Pickard J.D., Czosnyka M. Patient-specific thresholds of intracranial pressure in severe traumatic brain injury. J. Neurosurg. 2014;120:893–900. doi: 10.3171/2014.1.JNS131292.
    1. Czosnyka M., Smielewski P., Kirkpatrick P., Laing R.J., Menon D., Pickard J.D. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1997;41:11–17. doi: 10.1097/00006123-199707000-00005.
    1. Needham E., McFadyen C., Newcombe V., Synnot A.J., Czosnyka M., Menon D. Cerebral perfusion pressure targets individualized to pressure-reactivity index in moderate to severe traumatic brain injury: A systematic review. J. Neurotraum. 2017;34:963–970. doi: 10.1089/neu.2016.4450.
    1. Zeiler F.A., Donnelly J., Calviello L., Smielewski P., Menon D.K., Czosnyka M. Pressure autoregulation measurement techniques in adult traumatic brain injury, part ii: A scoping review of continuous methods. J. Neurotraum. 2017;34:3224–3237. doi: 10.1089/neu.2017.5086.
    1. Vespa P.M., O'Phelan K., McArthur D., Miller C., Eliseo M., Hirt D., Glenn T., Hovda D.A. Pericontusional brain tissue exhibits persistent elevation of lactate/pyruvate ratio independent of cerebral perfusion pressure. Crit. Care Med. 2007;35:1153–1160. doi: 10.1097/01.CCM.0000259466.66310.4F.
    1. Menon D.K., Coles J.P., Gupta A.K., Fryer T.D., Smielewski P., Chatfield D.A., Aigbirhio F., Skepper J.N., Minhas P.S., Hutchinson P.J., et al. Diffusion limited oxygen delivery following head injury. Crit. Care med. 2004;32:1384–1390. doi: 10.1097/01.CCM.0000127777.16609.08.
    1. Okonkwo D.O., Shutter L.A., Moore C., Temkin N.R., Puccio A.M., Madden C.J., Andaluz N., Chesnut R.M., Bullock M.R., Grant G.A., et al. Brain oxygen optimization in severe traumatic brain injury phase-ii: A phase ii randomized trial. Crit. Care Med. 2017;45:1907–1914. doi: 10.1097/CCM.0000000000002619.
    1. Davies D.J., Su Z., Clancy M.T., Lucas S.J.E., Dehghani H., Logan A., Belli A. Near-infrared spectroscopy in the monitoring of adult traumatic brain injury: A review. J. Neurotraum. 2015;32:933–941. doi: 10.1089/neu.2014.3748.
    1. Weerakkody R.A., Czosnyka M., Zweifel C., Castellani G., Smielewski P., Brady K., Pickard J.D., Czosnyka Z. Near infrared spectroscopy as possible non-invasive monitor of slow vasogenic icp waves. Acta Neurochir. Suppl. 2012;114:181–185.
    1. Budohoski K.P., Zweifel C., Kasprowicz M., Sorrentino E., Diedler J., Brady K.M., Smielewski P., Menon D.K., Pickard J.D., Kirkpatrick P.J., et al. What comes first? The dynamics of cerebral oxygenation and blood flow in response to changes in arterial pressure and intracranial pressure after head injury. Br. J. Anaesth. 2012;108:89–99. doi: 10.1093/bja/aer324.
    1. Klingelhöfer J., Dander D., Holzgraefe M., Bischoff C., Conrad B. Cerebral vasospasm evaluated by transcranial doppler ultrasonography at different intracranial pressures. J. Neurosurg. 1991;75:752–758. doi: 10.3171/jns.1991.75.5.0752.
    1. Homburg A.M., Jakobsen M., Enevoldsen E. Transcranial doppler recordings in raised intracranial pressure. Acta Neurol. Scand. 1993;87:488–493. doi: 10.1111/j.1600-0404.1993.tb04142.x.
    1. Bellner J., Romner B., Reinstrup P., Kristiansson K.-A., Ryding E., Brandt L. Transcranial doppler sonography pulsatility index (pi) reflects intracranial pressure (icp) Surg. Neurol. 2004;62:45–51. doi: 10.1016/j.surneu.2003.12.007.
    1. Cardim D., Robba C., Donnelly J., Bohdanowicz M., Schmidt B., Damian M., Varsos G.V., Liu X., Cabeleira M., Frigieri G., et al. Prospective study on noninvasive assessment of intracranial pressure in traumatic brain-injured patients: Comparison of four methods. J. Neurotraum. 2016;33:792–802. doi: 10.1089/neu.2015.4134.
    1. Schmidt B., Klingelhofer J., Md J., Schwarze J.J., Sander D., Wittich I. Noninvasive prediction of intracranial pressure curves using transcranial doppler ultrasonography and blood pressure curves. Stroke. 1997;28:2465–2472. doi: 10.1161/01.STR.28.12.2465.
    1. Rasulo F.A., Bertuetti R., Robba C., Lusenti F., Cantoni A., Bernini M., Girardini A., Calza S., Piva S., Fagoni N., et al. The accuracy of transcranial doppler in excluding intracranial hypertension following acute brain injury: A multicenter prospective pilot study. Crit. Care. 2017:21. doi: 10.1186/s13054-017-1632-2.
    1. O'Brien N.F., Maa T., Reuter-Rice K. Noninvasive screening for intracranial hypertension in children with acute, severe traumatic brain injury. J. Neurosurg. Pediatrics. 2015;16:420–425. doi: 10.3171/2015.3.PEDS14521.
    1. Willie C.K., Colino F.L., Bailey D.M., Tzeng Y.C., Binsted G., Jones L.W., Haykowsky M.J., Bellapart J., Ogoh S., Smith K.J., et al. Utility of transcranial doppler ultrasound for the integrative assessment of cerebrovascular function. J. Neurosci. Meth. 2011;196:221–237. doi: 10.1016/j.jneumeth.2011.01.011.
    1. Hansen H.C., Helmke K. The subarachnoid space surrounding the optic nerves. An ultrasound study of the optic nerve sheath. SRA. 1996;18:323–328.
    1. Maissan I.M., Dirven P.J.A.C., Haitsma I.K., Hoeks S.E., Gommers D., Stolker R.J. Ultrasonographic measured optic nerve sheath diameter as an accurate and quick monitor for changes in intracranial pressure. J. Neurosurg. 2015;123:743–747. doi: 10.3171/2014.10.JNS141197.
    1. Dubourg J., Javouhey E., Geeraerts T., Messerer M., Kassai B. Ultrasonography of optic nerve sheath diameter for detection of raised intracranial pressure: A systematic review and meta-analysis. Intens. Care Med. 2011;37:1059–1068. doi: 10.1007/s00134-011-2224-2.
    1. Hansen H.C., Helmke K. Validation of the optic nerve sheath response to changing cerebrospinal fluid pressure: Ultrasound findings during intrathecal infusion tests. J. Neurosurg. 1997;87:34–40. doi: 10.3171/jns.1997.87.1.0034.
    1. Jeon J.P., Lee S.U., Kim S.-E., Kang S.H., Yang J.S., Choi H.J., Cho Y.J., Ban S.P., Byoun H.S., Kim Y.S. Correlation of optic nerve sheath diameter with directly measured intracranial pressure in korean adults using bedside ultrasonography. PLoS ONE. 2017;12:e0183170. doi: 10.1371/journal.pone.0183170.
    1. Ohle R., McIsaac S.M., Woo M.Y., Perry J.J. Sonography of the optic nerve sheath diameter for detection of raised intracranial pressure compared to computed tomography: A systematic review and meta-analysis. J. Ultras. Med. 2015;34:1285–1294. doi: 10.7863/ultra.34.7.1285.
    1. Rajajee V., Vanaman M., Fletcher J.J., Jacobs T.L. Optic nerve ultrasound for the detection of raised intracranial pressure. Neurocrit. Care. 2011;15:506–515. doi: 10.1007/s12028-011-9606-8.
    1. Ballantyne S.A., O’Neill G., Hamilton R., Hollman A.S. Observer variation in the sonographic measurement of optic nerve sheath diameter in normal adults. Eur. J. Ultrasound. 2002;15:145–149. doi: 10.1016/S0929-8266(02)00036-8.
    1. Rajajee V., Fletcher J., Rochlen L., Jacobs T. Comparison of accuracy of optic nerve ultrasound for the detection of intracranial hypertension in the setting of acutely fluctuating vs stable intracranial pressure: Post-hoc analysis of data from a prospective, blinded single center study. Crit. Care. 2012;16:79. doi: 10.1186/CC11336.
    1. Swanson J.W., Aleman T.S., Xu W., Ying G.-S., Pan W., Liu G.T., Lang S.-S., Heuer G.G., Storm P.B., Bartlett S.P., et al. Evaluation of optical coherence tomography to detect elevated intracranial pressure in children. JAMA Ophthalmol. 2017;135:320. doi: 10.1001/jamaophthalmol.2017.0025.
    1. Claassen J., Carhuapoma J.R., Kreiter K.T., Du E.Y., Connolly E.S., Mayer S.A. Global cerebral edema after subarachnoid hemorrhage: Frequency, predictors, and impact on outcome. Stroke. 2002;33:1225–1232. doi: 10.1161/01.STR.0000015624.29071.1F.
    1. Alperin N.J., Lee S.H., Loth F., Raksin P.B., Lichtor T. Mr-intracranial pressure (icp): A method to measure intracranial elastance and pressure noninvasively by means of mr imaging: Baboon and human study. Radiology. 2000;217:877–885. doi: 10.1148/radiology.217.3.r00dc42877.
    1. Pappu S., Lerma J., Khraishi T. Brain ct to assess intracranial pressure in patients with traumatic brain injury: Ct to rule out elevated icp in tbi. J. Neuroimaging. 2016;26:37–40. doi: 10.1111/jon.12289.
    1. Miller M.T., Pasquale M., Kurek S., White J., Martin P., Bannon K., Wasser T., Li M. Initial head computed tomographic scan characteristics have a linear relationship with initial intracranial pressure after trauma. J. Trauma. 2004;56:967–972. doi: 10.1097/01.TA.0000123699.16465.8B.
    1. Antes S., Tschan C.A., Heckelmann M., Breuskin D., Oertel J. Telemetric intracranial pressure monitoring with the raumedic neurovent p-tel. World Neurosurg. 2016;91:133–148. doi: 10.1016/j.wneu.2016.03.096.
    1. Behfar M.H., Abada E., Sydanheimo L., Goldman K., Fleischman A.J., Gupta N., Ukkonen L., Roy S. Inductive passive sensor for intraparenchymal and intraventricular monitoring of intracranial pressure; Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Orlando, FL, USA. 16–20 Augest 2016; pp. 1950–1954.
    1. Barber J.M., Pringle C.J., Raffalli-Ebezant H., Pathmanaban O., Ramirez R., Kamaly-Asl I.D. Telemetric intra-cranial pressure monitoring: Clinical and financial considerations. Br. J. Neurosurg. 2017;31:300–306. doi: 10.1080/02688697.2016.1229752.
    1. Freimann F.B., Schulz M., Haberl H., Thomale U.-W. Feasibility of telemetric icp-guided valve adjustments for complex shunt therapy. Child. Nerv. Syst. 2014;30:689–697. doi: 10.1007/s00381-013-2324-0.
    1. Frischholz M., Sarmento L., Wenzel M., Aquilina K., Edwards R., Coakham H.B. Telemetric Implantable Pressure Sensor for Short- and Long-Term Monitoring of Intracranial Pressure; Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Lyon, France. 22–26 Augest 2007; p. 514.
    1. Antes S., Stadie A., Müller S., Linsler S., Breuskin D., Oertel J. Intracranial pressure-guided shunt valve adjustments with the miethke sensor reservoir. World Neurosurg. 2018;109:642–650. doi: 10.1016/j.wneu.2017.10.044.
    1. Hara M., Kadowaki C., Konishi Y., Ogashiwa M., Numoto M., Takeuchi K. A new method for measuring cerebrospinal fluid flow in shunts. J. Neurosurg. 1983;58:557–561. doi: 10.3171/jns.1983.58.4.0557.

Source: PubMed

3
Abonneren