Beta Glucan: Supplement or Drug? From Laboratory to Clinical Trials

Vaclav Vetvicka, Luca Vannucci, Petr Sima, Josef Richter, Vaclav Vetvicka, Luca Vannucci, Petr Sima, Josef Richter

Abstract

Glucans are part of a group of biologically active natural molecules and are steadily gaining strong attention not only as an important food supplement, but also as an immunostimulant and potential drug. This paper represents an up-to-date review of glucans (β-1,3-glucans) and their role in various immune reactions and the treatment of cancer. With more than 80 clinical trials evaluating their biological effects, the question is not if glucans will move from food supplement to widely accepted drug, but how soon.

Keywords: drug; food; glucan; immunity; infection; mushrooms; supplement.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Various aspects of the both branches of immune reactions. Reaction known to be influenced by glucan are represented in white, reactions where glucan has no confirmed effects are shown in black.
Figure 2
Figure 2
ERK1/2 regulate IL-10 transcription via MSK1/2 dependent and independent mechanisms. Dectin-1 is activated by complex β-glucan containing particles that induce clustering of dectin-1 at the membrane and formation of a phagocytic synapse. This leads to Syk recruitment to the ITAM like sequence in the cytoplasmic domain of dectin-1. Syk then mediates the activation of downstream signaling including the ERK1/2 and p38α MAPK cascades. Both ERK1/2 and p38α phosphorylate and activate the protein kinases MSK1 and 2. These in turn phosphorylate CREB on the IL-10 gene promoter, which stimulates IL-10 mRNA transcription. In addition, ERK1/2 also activates an MSK and p38 independent pathway that inhibits IL-10 mRNA transcription. In addition to the ERK1/2 and p38α pathways shown dectin-1 also activates NFκB that likely also plays a role in inducing IL-10 transcription. From (Elcombe et al., 2013) [50].
Figure 3
Figure 3
Proposed mechanisms involved in glucan/zymosan uptake and signaling in human macrophages. Zymosan particles can activate Syk via Dectin-1 engagement and via adaptor protein DAP12. Upon internalization, TLR2 recognition and cathepsin B leakage occur. In the presence of M-CSF, the expression of Dectin-1 B isoform is increased. Concomitant mechanisms of NF-κB activation might be triggered. cPLA2 is activated by Dectin-1/Syk-dependent mechanisms involving MAPK-dependent Ser-505 phosphotylation and Ca2+-dependent membrane translocation. Dotted lines indicate the steps associated with phagocytic cargo processing. Ac-H3 indicates acetylated histone 3. From (Municio et al., 2013) [51].
Figure 4
Figure 4
Imprime activates innate immune functions. (A) Complement activation proteins C4a, C5a, SC5b-9 in the plasma of whole blood treated with 10 μg/mL Imprime or vehicle for 30 min at 37 °C was measured by ELISA. Data represent mean ± SEM of triplicates for each treatment condition. (B) Modulation of CD11b, CD62L, CD88 and CXCR2 expression on neutrophils and monocytes post Imprime binding in whole blood was determined by flow cytometry. (C) Chemokine, IL-8 and MCP-1, production in the plasma of whole blood treated with Imprime or vehicle for 24 h at 37°C was measured by Luminex. Data represent mean ± SEM of duplicates from 3 independent experiments. (D) ROS production in 25:1 co-cultures of neutrophils (isolated from whole blood treated with 25 μg/mL Imprime or vehicle for 2 h at 37 °C) and Raji cells treated with or without 1 μg/mL rituximab was measured by luminescence-based assay. Macrophage-mediated ADCP was measured by flow cytometry after 1:1 co-incubation of macrophages (differentiated from monocytes isolated from WB treated with 25 μg/mL Imprime or vehicle for 2 h at 37 °C) with Raji cells treated with or without 1 μg/mL rituximab. Representative results are shown here from at least 3 independent experiments performed with three different donors (from Chan et al., 2016) [53].
Figure 5
Figure 5
Changes in salivary immunoglobulins after 30 day supplementation in children with respiratory problems. G—glucan group, C—placebo group.
Figure 6
Figure 6
Effects if 30 days oral administration of glucan on calprotectin and albumin levels in saliva. G—glucan group, C—placebo group.
Figure 7
Figure 7
Total numbers of NK cells in peripheral blood of cancer patients before and after 60 day glucan supplementation. G—glucan group, C—placebo group.

References

    1. Scrimshaw N.S. Historical concepts of interactions, synergism and antagonism between nutrition and infection. J. Nutr. 2003;133:316S–321S. doi: 10.1093/jn/133.1.316S.
    1. Chandra R.K. Nutrition and immunology: From the clinic to cellular biology and back again. Proc. Nutr. Soc. 1999;58:681–683. doi: 10.1017/S0029665199000890.
    1. Mainous M.R., Deitch E.A. Nutrition and infection. Surg. Clin. N. Am. 1994;74:659–676. doi: 10.1016/S0039-6109(16)46335-8.
    1. Chandra R.K. Nutrition and Immunology. ARTS Biomedical; St John’s, NL, Canada: 1992.
    1. Plata-Salaman C.R. Cytokines and feeding. Int. J. Obes. Relat. Metab. Disord. 2001;25(Suppl. 5):S48–S52. doi: 10.1038/sj.ijo.0801911.
    1. Donabedian H. Nutritional therapy and infectious diseases: A two-edged sword. Nutr. J. 2006;5:21. doi: 10.1186/1475-2891-5-21.
    1. Wasser S.P. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol. Biotechnol. 2002;60:258–274. doi: 10.1007/s00253-002-1076-7.
    1. Vetvicka V., Vetvickova J. Natural immunomodulators and their stimulation of immune reaction: True or false? Anticancer Res. 2014;34:2275–2282.
    1. Zipfel C., Robatzek S. Pathogen-associated molecular pattern-triggered immunity: Veni, vidi...? Plant Physiol. 2010;154:551–554. doi: 10.1104/pp.110.161547.
    1. Shear M.J., Turner F.C., Perrault A., Shovelton T. Chemical treatment of tumors. V. Isolation of the hemorrhage-producing fraction from Serratia marcescens (Bacillus prodigiosus) culture filtrate. J. Natl. Cancer Inst. 1943;4:81–97. doi: 10.1093/jnci/4.1.81.
    1. Rathgeb P., Sylven B. Fractionation studies on the tumor-necrotizing agent from Serratia marcescens (Shear’s polysaccharide) J. Natl. Cancer Inst. 1954;14:1099–1108.
    1. Yang J., Tu J., Liu H., Wen L., Jiang Y., Yang B. Identification of an immunostimulatory polysaccharide in banana. Food Chem. 2019;277:46–53. doi: 10.1016/j.foodchem.2018.10.043.
    1. Iwanaga S., Lee B.L. Recent advances in the innate immunity of invertebrate animals. J. Biochem. Mol. Biol. 2005;38:128–150. doi: 10.5483/BMBRep.2005.38.2.128.
    1. Soltanian S., Stuyven E., Cox E., Sorgeloos P., Bossier P. Beta-glucans as immunostimulant in vertebrates and invertebrates. Crit. Rev. Microbiol. 2009;35:109–138. doi: 10.1080/10408410902753746.
    1. Riggi S.J., Di Luzio N.R. Identification of a reticuloendothelial stimulating agent in zymosan. Am. J. Physiol. 1961;200:297–300. doi: 10.1152/ajplegacy.1961.200.2.297.
    1. Bohn J.A., BeMiller J.N. (1→3)-β-d-Glucans as biological response modifiers: A review of structure-functional activity relationships. Carbohydr. Polym. 1995;28:3–14. doi: 10.1016/0144-8617(95)00076-3.
    1. Novak M., Vetvicka V. Development of views on β-glucan composition and structure. In: Vetvicka V., Novak M., editors. Biology and Chemistry of Beta Glucan. Volume 1. Bentham Science; Sharjah, UAE: 2011. pp. 1–9.
    1. Vetvicka V., Dvorak B., Vetvickova J., Richter J., Krizan J., Sima P., Yvin J.C. Orally administered marine (1-->3)-beta-d-glucan Phycarine stimulates both humoral and cellular immunity. Int. J. Biol. Macromol. 2007;40:291–298. doi: 10.1016/j.ijbiomac.2006.08.009.
    1. Hong F., Yan J., Baran J.T., Allendorf D.J., Hansen R.D., Ostroff G.R., Xing P.X., Cheung N.K., Ross G.D. Mechanism by which orally administered beta-1,3-glucans enhance the tumoricidal activity of antitumor monoclonal antibodies in murine tumor models. J. Immunol. 2004;173:797–806. doi: 10.4049/jimmunol.173.2.797.
    1. Chan G.C., Chan W.K., Sze D.M. The effects of beta-glucan on human immune and cancer cells. J. Hematol. Oncol. 2009;2:25–35. doi: 10.1186/1756-8722-2-25.
    1. Moriyuki H., Ichimura M. Acute toxicity of lentinan in mice and rats (author’s transl) J. Toxicol. Sci. 1980;5:1–9. doi: 10.2131/jts.5.Supplement_1.
    1. Vetvicka V., Richter J., Svozil V., Rajnohova Dobiasova L., Kral V. Placebo-driven clinical trials of Transfer Point Glucan #300 in children with chronic respiratory problems: Antibody production. Am. J. Immunol. 2013;9:43–47. doi: 10.3844/ajisp.2013.43.47.
    1. Dawood M.A.O., Eweedah N.M., Moustafa E.M., Shahin M.G. Synbiotic effects of Aspergillus oryzae and beta-glucan on growth and oxidative and immune responses of Nile tilapia, Oreochromis niloticus. Probiot. Antimicrob. Proteins. 2019 doi: 10.1007/s12602-018-9513-9.
    1. Mukhopadhya A., O’Doherty J.V., Sweeney T. A combination of yeast beta-glucan and milk hydrolysate is a suitable alternative to zinc oxide in the race to alleviate post-weaning diarrhoea in piglets. Sci. Rep. 2019;9:616. doi: 10.1038/s41598-018-37004-9.
    1. Anusuya S., Sathiyabama M. Foliar application of beta-D-glucan nanoparticles to control rhizome rot disease of turmeric. Int. J. Biol. Macromol. 2015;72:1205–1212. doi: 10.1016/j.ijbiomac.2014.10.043.
    1. Menard R., de Ruffray P., Fritig B., Yvin J.C., Kauffmann S. Defense and resistance-inducing activities in tobacco of the sulfated beta-1,3 glucan PS3 and its synergistic activities with the unsulfated molecule. Plant Cell Physiol. 2005;46:1964–1972. doi: 10.1093/pcp/pci212.
    1. Al Tuwaijri A.S., Mahmoud A.A., Al Mofleh I.A., Al Khuwaitir S.A. Effect of glucan on Leishmania major infection in BALB/c mice. J. Med. Microbiol. 1987;23:363–365. doi: 10.1099/00222615-23-4-363.
    1. Cook J.A., Holbrook T.W. Immunogenicity of soluble and particulate antigens from Leishmania donovani: Effect of glucan as an adjuvant. Infect. Immun. 1983;40:1038–1043.
    1. Bacon J.S., Farmer V.C. The presence of a predominantly beta(1-6)component in preparations of yeast glucan. Biochem. J. 1968;110:34P–35P. doi: 10.1042/bj1100034Pb.
    1. Bousquet M., Escoula L., Pipy B., Bessieres M.H., Chavant L., Seguela J.P. Enhancement of resistance of mice Toxoplasma gondii by 2 polysaccharides beta 1-3, beta 1-6 (PSAT and Scleroglucan) Ann. Parasitol. Hum. Comp. 1988;63:398–409. doi: 10.1051/parasite/1988636398.
    1. Dritz S.S., Shi J., Kielian T.L., Goodband R.D., Nelssen J.L., Tokach M.D., Chengappa M.M., Smith J.E., Blecha F. Influence of dietary beta-glucan on growth performance, nonspecific immunity, and resistance to Streptococcus suis infection in weanling pigs. J. Anim. Sci. 1995;73:3341–3350. doi: 10.2527/1995.73113341x.
    1. Kumar P., Ahmad S. Glucan-induced immunity in mice against Plasmodium berghei. Ann. Trop. Med. Parasitol. 1985;79:211–213. doi: 10.1080/00034983.1985.11811908.
    1. Liang J., Melican D., Cafro L., Palace G., Fisette L., Armstrong R., Patchen M.L. Enhanced clearance of a multiple antibiotic resistant Staphylococcus aureus in rats treated with PGG-glucan is associated with increased leukocyte counts and increased neutrophil oxidative burst activity. Int. J. Immunopharmacol. 1998;20:595–614. doi: 10.1016/S0192-0561(98)00007-1.
    1. Rasmussen L.T., Seljelid R. Dynamics of blood components and peritoneal fluid during treatment of murine E. coli sepsis with beta-1,3-D-polyglucose derivatives. I. Cells. Scand. J. Immunol. 1990;32:321–331. doi: 10.1111/j.1365-3083.1990.tb02926.x.
    1. White T.R., Thompson R.C., Penhale W.J., Chihara G. The effect of lentinan on the resistance of mice to Mesocestoides corti. Parasitol. Res. 1988;74:563–568. doi: 10.1007/BF00531635.
    1. Williams D.L., Yaeger R.G., Pretus H.A., Browder I.W., McNamee R.B., Jones E.L. Immunization against Trypanosoma cruzi: Adjuvant effect of glucan. Int. J. Immunopharmacol. 1989;11:403–410. doi: 10.1016/0192-0561(89)90087-8.
    1. Yun C.H., Estrada A., Van Kessel A., Gajadhar A., Redmond M., Laarveld B. Immunomodulatory effects of oat beta-glucan administered intragastrically or parenterally on mice infected with Eimeria vermiformis. Microbiol. Immunol. 1998;42:457–465.
    1. Vetvicka V., Terayam K., Mandeville R., Brousseau P., Kournikakis B., Ostroff G. Pilot study: Orally-administered yeast β1,3-glucan prophylactically protects against anthrax infectin and cancer in mice. JANA. 2002;5:1–5.
    1. Nakao I., Uchino H., Orita K., Kaido I., Kimura T., Goto Y., Kondo T., Takino T., Taguchi T., Nakajima T., et al. Clinical evaluation of schizophyllan (SPG) in advanced gastric cancer—A randomized comparative study by an envelope method. Gan To Kagaku Ryoho. 1983;10:1146–1159.
    1. Malyarenko O.S., Usoltseva R.V., Zvyagintseva T.N., Ermakova S.P. Laminaran from brown alga Dictyota dichotoma and its sulfated derivative as radioprotectors and radiosensitizers in melanoma therapy. Carbohydr. Polym. 2019;206:539–547. doi: 10.1016/j.carbpol.2018.11.008.
    1. Bouike G., Nishitani Y., Shiomi H., Yoshida M., Azuma T., Hashimoto T., Kanazawa K., Mizuno M. Oral treatment with extract of Agaricus blazei murill enhanced Th1 Response through intestinal epithelial cells and suppressed OVA-sensitized allergy in mice. Evid. Based Complement. Altern. Med. 2011;2011:532180. doi: 10.1155/2011/532180.
    1. Hong F., Hansen R.D., Yan J., Allendorf D.J., Baran J.T., Ostroff G.R., Ross G.D. Beta-glucan functions as an adjuvant for monoclonal antibody immunotherapy by recruiting tumoricidal granulocytes as killer cells. Cancer Res. 2003;63:9023–9031.
    1. Ross G.D., Vetvicka V., Yan J., Xia Y., Vetvickova J. Therapeutic intervention with complement and beta-glucan in cancer. Immunopharmacology. 1999;42:61–74. doi: 10.1016/S0162-3109(99)00013-2.
    1. Xu H., Zou S., Xu X. The beta-glucan from Lentinus edodes suppresses cell proliferation and promotes apoptosis in estrogen receptor positive breast cancers. Oncotarget. 2017;8:86693–86709. doi: 10.18632/oncotarget.21411.
    1. Fortin O., Aguilar-Uscanga B.R., Vu K.D., Salmieri S., Lacroix M. Effect of Saccharomyces boulardii cell wall extracts on colon cancer prevention in male F344 rats treated with 1,2-dimethylhydrazine. Nutr. Cancer. 2018;70:632–642. doi: 10.1080/01635581.2018.1460672.
    1. Větvička V.C. [Beta]-Glucans as Natural Biological Response Modifiers. Nova Science Publishers, Inc.; New York, NY, USA: 2013.
    1. Schepetkin I.A., Quinn M.T. Botanical polysaccharides: Macrophage immunomodulation and therapeutic potential. Int. Immunopharmacol. 2006;6:317–333. doi: 10.1016/j.intimp.2005.10.005.
    1. Vetvicka V., Vetvickova J. Physiological effects of different types of beta-glucan. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2007;151:225–231. doi: 10.5507/bp.2007.038.
    1. Ali M.F., Driscoll C.B., Walters P.R., Limper A.H., Carmona E.M. Beta-glucan-activated human B lymphocytes participate in innate immune responses by releasing proinflammatory cytokines and stimulating neutrophil chemotaxis. J. Immunol. 2015;195:5318–5326. doi: 10.4049/jimmunol.1500559.
    1. Elcombe S.E., Naqvi S., Van Den Bosch M.W., MacKenzie K.F., Cianfanelli F., Brown G.D., Arthur J.S. Dectin-1 regulates IL-10 production via a MSK1/2 and CREB dependent pathway and promotes the induction of regulatory macrophage markers. PLoS ONE. 2013;8:e60086. doi: 10.1371/journal.pone.0060086.
    1. Municio C., Alvarez Y., Montero O., Hugo E., Rodriguez M., Domingo E., Alonso S., Fernandez N., Crespo M.S. The response of human macrophages to beta-glucans depends on the inflammatory milieu. PLoS ONE. 2013;8:e62016. doi: 10.1371/journal.pone.0062016.
    1. Bashir K.M.I., Choi J.S. Clinical and physiological perspectives of beta-glucans: The past, present, and future. Int. J. Mol. Sci. 2017;18:1906. doi: 10.3390/ijms18091906.
    1. Chan A.S., Jonas A.B., Qiu X., Ottoson N.R., Walsh R.M., Gorden K.B., Harrison B., Maimonis P.J., Leonardo S.M., Ertelt K.E., et al. Imprime PGG-mediated anti-cancer immune activation requires immune complex formation. PLoS ONE. 2016;11:e0165909. doi: 10.1371/journal.pone.0165909.
    1. Vetvicka V., Novak M. Biology and Chemistry of Beta Glucan. Volume 1 Bentham Science; Sharjah, UAE: 2011.
    1. Li X., Chen P., Zhang P., Chang Y., Cui M., Duan J. Protein-bound beta-glucan from Coriolus versicolor has potential for use against obesity. Mol. Nutr. Food Res. 2019:e1801231. doi: 10.1002/mnfr.201801231.
    1. Vetvicka V., Gover O., Karpovsky M., Hayby H., Danay O., Ezov N., Hadar Y., Schwartz B. Immune-modulating activities of glucans extracted from Pleurotus ostreatus and Pleurotus eryngii. J. Funct. Foods. 2019;54:81–91. doi: 10.1016/j.jff.2018.12.034.
    1. Vetvicka V., Vetvickova J. Glucan supplementation ameliorates some health problems related to the development of Lyme disease. World J. Pathol. 2019;8:7–13.
    1. Berdal M., Appelbom H.I., Eikrem J.H., Lund A., Zykova S., Busund L.T., Seljelid R., Jenssen T. Aminated beta-1,3-D-glucan improves wound healing in diabetic db/db mice. Wound Repair Regen. 2007;15:825–832. doi: 10.1111/j.1524-475X.2007.00286.x.
    1. Gulcelik M.A., Dincer H., Sahin D., Faruk Demir O., Yenidogan E., Alagol H. Glucan improves impaired wound healing in diabetic rats. Wounds. 2010;22:12–16.
    1. Takatsuki F., Namiki R., Kikuchi T., Suzuki M., Hamuro J. Lentinan augments skin reaction induced by bradykinin: Its correlation with vascular dilatation and hemorrhage responses and antitumor activities. Int. J. Immunopharmacol. 1995;17:465–474. doi: 10.1016/0192-0561(95)00037-3.
    1. Gaspar L.R., Camargo F.B., Jr., Gianeti M.D., Maia Campos P.M. Evaluation of dermatological effects of cosmetic formulations containing Saccharomyces cerevisiae extract and vitamins. Food Chem. Toxicol. 2008;46:3493–3500. doi: 10.1016/j.fct.2008.08.028.
    1. Pillai R., Redmond M., Röding J. Anti-wrinkle therapy: Significant new findings in the non-invasive cosmetic treatment of skin wrinkles with beta-glucan. Int. J. Cosmet. Sci. 2005;27:292. doi: 10.1111/j.1463-1318.2005.00268_3.x.
    1. O’Day S., Stopeck A., Huhn R., Gargano M., Prathikanti R., Ma B., Mattson P., Lowe J., Bose N., Ertelt K., et al. Abstract OT1-01-04: A phase 2, open-label study of imprime PGG (Imprime), a novel beta glucan, with pembrolizumab (Pembro) in chemotherapy-resistant metastatic triple negative breast cancer (TNBC) Cancer Res. 2018;78 doi: 10.1158/1538-7445.SABCS17-OT1-01-04.
    1. Tamayo M.E., Cornelio G.H., Bautista J.B., Flores M.L., Kurman M.R., Paul M.M., Gargano M.A., Patchen M.L. A phase Ib/2, dose-escalating, safety, and efficacy study of imprime PGG, cetuximab and irinotecan in patients with advanced colorectal cancer (CRC) J. Clin. Oncol. 2009;27:e15062. doi: 10.1200/jco.2009.27.15s.e15062.
    1. Wesa K.M., Cunningham-Rundles S., Klimek V.M., Vertosick E., Coleton M.I., Yeung K.S., Lin H., Nimer S., Cassileth B.R. Maitake mushroom extract in myelodysplastic syndromes (MDS): A phase II study. Cancer Immunol. Immunother. 2015;64:237–247. doi: 10.1007/s00262-014-1628-6.
    1. Aleem E. β-Glucans and their applications in cancer therapy: Focus on human studies. Anticancer Agents Med. Chem. 2013;13:709–719. doi: 10.2174/1871520611313050005.
    1. Vetvicka V., Vetvickova J. Glucans and cancer: Comparison of commercially available β-glucans—Part IV. Anticancer Res. 2018;38:1327–1333. doi: 10.21873/anticanres.12355.
    1. Richter J., Kral V., Stiborova I., Rajnohova D., Vetvicka V. Anti-inflammatory effects of β-glucan in cancer related fatigue. J. Nutr. Health Sci. 2015;2:304–310. doi: 10.15744/2393-9060.2.304.
    1. Richter J., Kral V., Svozil V., Rajnohova Dobiasova L., Pohorska J., Stiborova I., Vetvicka V. Effect of Transfer Point Glucan #300 supplementation on children exposed to passive smoking: Placebo-driven double-blind trials. J. Nutr. Health. 2014;1:105–111.
    1. Richter J., Svozil V., Kral V., Rajnohova Dobiasova L., Stiborova I., Vetvicka V. Clinical trials of yeast-derived beta-(1,3) glucan in children: Effects on innate immunity. Ann. Transl. Med. 2014;2:15. doi: 10.3978/j.issn.2305-5839.2014.02.01.
    1. Fuller R., Moore M.V., Lewith G., Stuart B.L., Ormiston R.V., Fisk H.L., Noakes P.S., Calder P.C. Yeast-derived beta-1,3/1,6 glucan, upper respiratory tract infection and innate immunity in older adults. Nutrition. 2017;39–40:30–35. doi: 10.1016/j.nut.2017.03.003.
    1. Richter J., Kral V., Vetvicka V., Lucie R.D., Fernandez-Botran R. Effect of beta-glucan supplementation on levels of IgM, IgA, IgG and its subclasses IgG1, IgG2, IgG3, and IgG4 in cancer patients. J. Tumor. 2016;4:469–473.
    1. Vetvicka V., Richter J., Kral V., Rajnohova Dobiasova L., Stiborova I., Pohorska J. Regulation of hematopoiesis in cancer patients: Placebor driven, double-blind clinical trials of β-glucan. J. Tumor. 2015;3:305–308.
    1. Pohorska J., Richter J., Kral V., Rajonohova Dobiasova L., Stiborova I., Vetvicka V. Reconstruction of NK cells during complex cancer treatment. J. Tumor. 2016;4:398–402. doi: 10.17554/j.issn.1819-6187.2016.04.86.
    1. Stier H., Ebbeskotte V., Gruenwald J. Immune-modulatory effects of dietary yeast beta-1,3/1,6-D-glucan. Nutr. J. 2014;13:38. doi: 10.1186/1475-2891-13-38.
    1. Wang Y., Ames N.P., Tun H.M., Tosh S.M., Jones P.J., Khafipour E. High molecular weight barley beta-glucan alters gut microbiota toward reduced cardiovascular disease risk. Front. Microbiol. 2016;7:129. doi: 10.3389/fmicb.2016.00129.
    1. Richter J., Zavorkova M., Vetvicka V., Liehneova I., Kral V., Dobiasova L.R. Effects of B-glucan and vitamin D supplementation on inflammatory parameters in patients with diabetic retinopathy. J. Diet. Suppl. 2018;19:1–10. doi: 10.1080/19390211.2018.1458769.
    1. Richter J., Zavorkova M., Vetvicka V., Vlastimil K., Stiborova I., Liehneova I., Pohorska J., Rajnohova D.L. IgG4-related orbital disease in patients with diabetic retinopathy: Effects of glucan and vitamin D supplementation. Pathol. Discov. 2018;6:1–7.
    1. Markovina N., Banjari I., Bucevic Popovic V., Jelicic Kadic A., Puljak L. Efficacy and safety of oral and inhalation commercial beta-glucan products: Systematic review of randomized controlled trials. Clin. Nutr. 2019 doi: 10.1016/j.clnu.2019.01.003.
    1. Gibson G.R., Roberfroid M.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 1995;125:1401–1412. doi: 10.1093/jn/125.6.1401.
    1. de Jesus Raposo M.F., de Morais A.M., de Morais R.M. Emergent sources of prebiotics: Seaweeds and microalgae. Mar. Drugs. 2016;14:27. doi: 10.3390/md14020027.
    1. Malkki Y., Virtanen E. Gastrointestinal effects of oat bran and oat gum—A review. Lebensm.-Wiss. Technol. 2001;34:337–347. doi: 10.1006/fstl.2001.0795.
    1. Ngamkala S., Futami K., Endo M., Maita M., Katagiri T. Immunological effects of glucan and Lactobacillus rhamnosus GG, a probiotic bacterium, on Nile tilapia Oreochromis niloticus intestine with oral Aeromonas challenges. Fish. Sci. 2010;76:833–840. doi: 10.1007/s12562-010-0280-0.
    1. Rosburg V., Boylston T., White P. Viability of bifidobacteria strains in yogurt with added oat beta-glucan and corn starch during cold storage. J. Food Sci. 2010;75:C439–C444. doi: 10.1111/j.1750-3841.2010.01620.x.
    1. Szymańska-Czerwińska M., Bednarek D. Effect of tylosin and prebiotics on the selected humoral immunological parameters in calves. Medycyna Wet. 2011;67:275–278.
    1. Nakashima A., Yamada K., Iwata O., Sugimoto R., Atsuji K., Ogawa T., Ishibashi-Ohgo N., Suzuki K. β-Glucan in foods and its physiological functions. J. Nutr. Sci. Vitaminol. (Tokyo) 2018;64:8–17. doi: 10.3177/jnsv.64.8.
    1. Jenkins D.J., Kendall C.W., Axelsen M., Augustin L.S., Vuksan V. Viscous and nonviscous fibres, nonabsorbable and low glycaemic index carbohydrates, blood lipids and coronary heart disease. Curr. Opin. Lipidol. 2000;11:49–56. doi: 10.1097/00041433-200002000-00008.
    1. Fadel J.G., Newman R.K., Newman C.W., Barnes A.E. Hypocholesterolemic effects of beta-glucans in different barley diets fed to broiler chicks. Nutr. Rep. Int. 1987;35:1049–1058.
    1. Lim M.K., Ku S.K., Choi J.S., Kim J.W. Effect of polycan, a beta-glucan originating from Aureobasidium, on a high-fat diet-induced hyperlipemic hamster model. Exp. Ther. Med. 2015;9:1369–1378. doi: 10.3892/etm.2015.2238.
    1. Kusmiati, Dhewantara F.X. Cholesterol-lowering effect of beta glucan extracted from Saccharomyces cerevisiae in rats. Sci. Pharm. 2016;84:153–165. doi: 10.3797/scipharm.ISP.2015.07.
    1. Anderson J.W., Gustafson N.J. Hypocholesterolemic effects of oat and bean products. Am. J. Clin. Nutr. 1988;48:749–753. doi: 10.1093/ajcn/48.3.749.
    1. Anderson J.W., Story L., Sieling B., Chen W.J., Petro M.S., Story J. Hypocholesterolemic effects of oat-bran or bean intake for hypercholesterolemic men. Am. J. Clin. Nutr. 1984;40:1146–1155. doi: 10.1093/ajcn/40.6.1146.
    1. Chen J., Huang X.F. The effects of diets enriched in beta-glucans on blood lipoprotein concentrations. J. Clin. Lipidol. 2009;3:154–158. doi: 10.1016/j.jacl.2009.04.054.
    1. Rondanelli M., Opizzi A., Monteferrario F., Klersy C., Cazzola R., Cestaro B. Beta-glucan- or rice bran-enriched foods: A comparative crossover clinical trial on lipidic pattern in mildly hypercholesterolemic men. Eur. J. Clin. Nutr. 2011;65:864–871. doi: 10.1038/ejcn.2011.48.
    1. Sima P., Vannucci L., Vetvicka V. β-glucans and cholesterol (Review) Int. J. Mol. Med. 2018;41:1799–1808. doi: 10.3892/ijmm.2018.3411.
    1. Vetvicka V., Vetvickova J. A comparison of injected and orally administered beta glucans. JANA. 2008;11:42–49.
    1. Hashimoto K., Suzuki I., Yadomae T. Oral administration of SSG, a beta-glucan obtained from Sclerotinia sclerotiorum, affects the function of Peyer’s patch cells. Int. J. Immunopharmacol. 1991;13:437–442. doi: 10.1016/0192-0561(91)90014-X.
    1. Rice P.J., Adams E.L., Ozment-Skelton T., Gonzalez A.J., Goldman M.P., Lockhart B.E., Barker L.A., Breuel K.F., Deponti W.K., Kalbfleisch J.H., et al. Oral delivery and gastrointestinal absorption of soluble glucans stimulate increased resistance to infectious challenge. J. Pharmacol. Exp. Ther. 2005;314:1079–1086. doi: 10.1124/jpet.105.085415.
    1. Zhang M., Kim J.A., Huang A.Y. Optimizing Tumor microenvironment for cancer immunotherapy: Beta-glucan-based nanoparticles. Front. Immunol. 2018;9:341. doi: 10.3389/fimmu.2018.00341.
    1. Ostroff G.R., Easson D.D., Jamas S. Polymeric Drugs and Drug Delivery Systems. Volume 469. American Chemical Society; Washington, DC, USA: 1991. A new β-glucan-based macrophage-targeted adjuvant; pp. 52–59.
    1. Fujiwara N., Izumi H., Morimoto Y., Sakurai K., Mochizuki S. Complex consisting of antisense DNA and beta-glucan promotes internalization into cell through Dectin-1 and hybridizes with target mRNA in cytosol. Cancer Gene Ther. 2019;26:32–40. doi: 10.1038/s41417-018-0033-2.
    1. Jones D.H., Corris S., McDonald S., Clegg J.C., Farrar G.H. Poly(DL-lactide-co-glycolide)-encapsulated plasmid DNA elicits systemic and mucosal antibody responses to encoded protein after oral administration. Vaccine. 1997;15:814–817. doi: 10.1016/S0264-410X(96)00266-6.
    1. Aouadi M., Tesz G.J., Nicoloro S.M., Wang M., Chouinard M., Soto E., Ostroff G.R., Czech M.P. Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature. 2009;458:1180–1184. doi: 10.1038/nature07774.
    1. De Smet R., Demoor T., Verschuere S., Dullaers M., Ostroff G.R., Leclercq G., Allais L., Pilette C., Dierendonck M., De Geest B.G., et al. β-Glucan microparticles are good candidates for mucosal antigen delivery in oral vaccination. J. Control. Release. 2013;172:671–678. doi: 10.1016/j.jconrel.2013.09.007.
    1. Specht C.A., Lee C.K., Huang H., Tipper D.J., Shen Z.T., Lodge J.K., Leszyk J., Ostroff G.R., Levitz S.M. Protection against experimental cryptococcosis following vaccination with glucan particles containing cryptococcus alkaline extracts. MBio. 2015;6:e01905. doi: 10.1128/mBio.01905-15.
    1. Soares E., Jesus S., Borges O. Oral hepatitis B vaccine: Chitosan or glucan based delivery systems for efficient HBsAg immunization following subcutaneous priming. Int. J. Pharm. 2018;535:261–271. doi: 10.1016/j.ijpharm.2017.11.009.
    1. Wang M., Zhang L., Yang R., Fei C., Wang X., Zhang K., Wang C., Zheng W., Xue F. Improvement of immune responses to influenza vaccine (H5N1) by sulfated yeast beta-glucan. Int. J. Biol. Macromol. 2016;93:203–207. doi: 10.1016/j.ijbiomac.2016.06.057.
    1. Sima P., Vetvicka V. β-Glucan in Allergies. Am. J. Immunol. 2017;13:73–80.
    1. Kofuji K., Aoki A., Tsubaki K., Konishi M., Isobe T., Murata Y. Antioxidant activity of beta-glucan. ISRN Pharm. 2012;2012:125864. doi: 10.5402/2012/125864.
    1. Yamada J., Hamuro J., Hatanaka H., Hamabata K., Kinoshita S. Alleviation of seasonal allergic symptoms with superfine beta-1,3-glucan: A randomized study. J. Allergy Clin. Immunol. 2007;119:1119–1126. doi: 10.1016/j.jaci.2007.02.005.
    1. Kawashima S., Hirose K., Iwata A., Takahashi K., Ohkubo A., Tamachi T., Ikeda K., Kagami S., Nakajima H. beta-glucan curdlan induces IL-10-producing CD4+ T cells and inhibits allergic airway inflammation. J. Immunol. 2012;189:5713–5721. doi: 10.4049/jimmunol.1201521.
    1. Jesenak M., Hrubisko M., Majtan J., Rennerova Z., Banovcin P. Anti-allergic effect of Pleuran (beta-glucan from Pleurotus ostreatus) in children with recurrent respiratory tract infections. Phytother. Res. 2014;28:471–474. doi: 10.1002/ptr.5020.
    1. Miyamoto K., Watanabe Y., Iizuka N., Sakaguchi E., Okita K. Effect of a hot water extract of Agaricus blazei fruiting bodies (CJ-01) on the intracellular cytokines level in a patient with bronchitis. J. Trad Med. 2002;19:142–147.
    1. Talbott S.M., Talbott J.A., Talbott T.L., Dingler E. beta-Glucan supplementation, allergy symptoms, and quality of life in self-described ragweed allergy sufferers. Food Sci. Nutr. 2013;1:90–101. doi: 10.1002/fsn3.11.
    1. Yamauchi E., Shoji S., Nishihara M., Shimoda T., Nishima S. Contribution of lung fibroblast migration in the fibrotic process of airway remodeling in asthma. Allergol. Int. 2008;57:73–78. doi: 10.2332/allergolint.O-06-481.
    1. Fuller R., Butt H., Noakes P.S., Kenyon J., Yam T.S., Calder P.C. Influence of yeast-derived 1,3/1,6 glucopolysaccharide on circulating cytokines and chemokines with respect to upper respiratory tract infections. Nutrition. 2012;28:665–669. doi: 10.1016/j.nut.2011.11.012.
    1. Jesenak M., Banovcin P., Rennerova Z., Majtan J. β-Glucans in the treatment and prevention of allergic diseases. Allergol. Immunopathol. (Madr.) 2014;42:149–156. doi: 10.1016/j.aller.2012.08.008.
    1. Wichers H. Immunomodulation by food: Promising concept for mitigating allergic disease? Anal. Bioanal. Chem. 2009;395:37–45. doi: 10.1007/s00216-009-2838-1.
    1. Sarinho E., Medeiros D., Schor D., Rego Silva A., Sales V., Motta M.E., Costa A., Azoubel A., Rizzo J.A. Production of interleukin-10 in asthmatic children after beta-1-3-glucan. Allergol. Immunopathol. (Madr.) 2009;37:188–192. doi: 10.1016/j.aller.2009.02.005.
    1. Miraglia Del Giudice M., Maiello N., Capristo C., Alterio E., Capasso M., Perrone L., Ciprandi G. Resveratrol plus carboxymethyl-beta-glucan reduces nasal symptoms in children with pollen-induced allergic rhinitis. Curr. Med. Res. Opin. 2014;30:1931–1935. doi: 10.1185/03007995.2014.938731.
    1. Miraglia Del Giudice M., Maiello N., Decimo F., Capasso M., Campana G., Leonardi S., Ciprandi G. Resveratrol plus carboxymethyl-beta-glucan may affect respiratory infections in children with allergic rhinitis. Pediatr. Allergy Immunol. 2014;25:724–728. doi: 10.1111/pai.12279.
    1. Li F., Jin X., Liu B., Zhuang W., Scalabrin D. Follow-up formula consumption in 3- to 4-year-olds and respiratory infections: An RCT. Pediatrics. 2014;133:e1533–e1540. doi: 10.1542/peds.2013-3598.
    1. Bobovcak M., Kuniakova R., Gabriz J., Majtan J. Effect of Pleuran (beta-glucan from Pleurotus ostreatus) supplementation on cellular immune response after intensive exercise in elite athletes. Appl. Physiol. Nutr. Metab. 2010;35:755–762. doi: 10.1139/H10-070.
    1. Majtan J. Pleuran (beta-glucan from Pleurotus ostreatus): An effective nutritional supplement against upper respiratory tract infections? Med. Sport Sci. 2012;59:57–61. doi: 10.1159/000341967.
    1. Murphy E.A., Davis J.M., Brown A.S., Carmichael M.D., Carson J.A., Van Rooijen N., Ghaffar A., Mayer E.P. Benefits of oat beta-glucan on respiratory infection following exercise stress: Role of lung macrophages. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008;294:R1593–R1599. doi: 10.1152/ajpregu.00562.2007.
    1. Davis J.M., Murphy E.A., Brown A.S., Carmichael M.D., Ghaffar A., Mayer E.P. Effects of oat beta-glucan on innate immunity and infection after exercise stress. Med. Sci. Sports Exerc. 2004;36:1321–1327. doi: 10.1249/01.MSS.0000135790.68893.6D.

Source: PubMed

3
Abonneren